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Coordination in networks of linear impulsive agents
Irinel-Constantin Morărescu, Samuel Martin, Antoine Girard, Aurélie Muller-Gueudin

Abstract—Consensus in heterogeneous networks containing
both linear and linear impulsive dynamics is considered in
this paper. The model applies for networks of interconnected
dynamical systems, called agents, that are partitioned into several
clusters. Most of the agents can only update their state in a
continuous way using only inner-cluster agent states. On top of
this, few agents also have the peculiarity to update their states
in a discrete way by reseting it using states from agents outside
their clusters. We firstly analyze the case when the reset sequence
verifies some explicit time conditions. Secondly we consider the
case when the reset instants are event-triggered, i.e.defined by the
occurrence of specific events. Finally, we treat the case when the
reset instants arrive stochastically following a Poisson renewal
process.

Index Terms—Multiagent systems; consensus; reset systems.

I. INTRODUCTION

The problem of consensus or synchronization is motivated

by different applications as communication networks, power

and transport grids, decentralized computing networks, and

social networks. Throughout the paper, the network is modeled

as a graph with nodes and edges representing the agents

and their interconnections, respectively. The connectivity of

the network, persistence of links and interactions reciprocity

influence the convergence speed [1], [2] and the achievement

of consensus wether the dynamics is linear [3], [4], [5],

[6], [7], or nonlinear [8], [9], [10]. For this reason, most of

the studies assume connectivity over bounded or unbounded

time intervals. However, there also exist analysis and control

designs for network connectivity preservation [11], [12], [13]

as well as studies of networks that loose connectivity property

[14], [15].

Our point of view is that real networks are partitioned in

several clusters inside which the interactions take place often

and can be seen as continuous while, due to communication

constraints (harsh environment, energy optimization or opinion

preferences for instance), the inter-cluster interactions are rare,

thus discrete. In social networks, the opinion of each individual

evolves by taking into account the opinions of the members

belonging to its community. Nevertheless, one or several indi-

viduals can change its opinion by interacting with individuals

outside its community. These inter-cluster interactions can be

seen as resets of the opinions. This leads us to a network

dynamics that is expressed in term of reset systems (see [16],
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[17], [18] for details). In [19] the authors assumed that each

cluster has a leader and all the leaders nearly-periodically reset

their state by taking into account the state of their neighboring

leaders. However, generally we can have several agents in the

same cluster that interact in discrete manner with agents in

other clusters and, more importantly, we cannot synchronize

the inter-cluster interactions in a decentralized way. Therefore,

in this paper we address the more general and realistic problem

of decentralized synchronization in heterogeneous networks

containing both linear and linear impulsive dynamics

The rest of the paper is organized as follows. In Section

II we introduce the concepts necessary for the problem for-

mulation. Section III contains the working assumptions on

the network structure and system dynamics. We also provide

there a prerequisite property of the exponential of a Laplacian

matrix. The main results concerning the convergence analysis

are presented in Section IV. Section V considers the case

where the reset instants are imposed by some events while

Section VI deals with reset instants that follows a probability

law. Before conclusions we illustrate numerically the behavior

of the network under consideration.

Notation. The following standard notation will be used

throughout the paper. The sets of nonnegative integers, real

and nonnegative real numbers are denoted by N, R and R+,

respectively. For a vector x we denote by ‖x‖ its Euclidian

norm. The transpose of a matrix A is denoted by A⊤. Given

the symmetric matrices A,B ∈ R
n×n, notation A ≥ B

(A > B) means that A − B has all its entries (strictly)

positive. By In we denote the n × n identity matrix. ✶n and

0n are the column vectors of size n having all the components

equal 1 and 0, respectively. We also use 0n×n do denote

the square matrix of dimension n having all the components

equal 0. Finally, for a left continuous function x(·) we use

x(t−k ) = lim
t→tk,t<tk

x(t).

II. PROBLEM FORMULATION

A. Graph theory prerequisites

We consider a network of n agents described by the digraph

(i.e. directed graph) G = (V, E) where the vertex set V
represents the set of agents and the edge set E ⊂ V × V
represents the interactions.

Definition 1: A directed path of length p in a given

digraph G = (V, E) is a union of directed edges
⋃p

k=1(ik, jk)
such that ik+1 = jk, ∀k ∈ {1, . . . , p − 1}. The node j is

connected with node i in a digraph G = (V, E) if there exists

at least a directed path in G from i to j (i.e. i1 = i and

jp = j). A strongly connected digraph is such that any

two distinct elements are connected. A strongly connected

component of a digraph is a maximal subset of V such that

any of its two distinct nodes are connected. We say node i is
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a parent of node j in the digraph G = (V, E) if (i, j) ∈ E .

A directed tree is a directed subgraph in which there exists

a single node without parents called root while all the others

have exactly one parent. The length of a directed tree is the

length of its longest path. A directed spanning tree of a

digraph is a directed tree that connects all the nodes of the

graph. For a given graph G = (V, E), the subgraph induced

by a subset of nodes U ⊆ V is the graph
(

U , E ∩
(

U × U
))

.

In the sequel, we consider that the vertex set V is partitioned

in m clusters C1, . . . , Cm. We denote by ni the cardinality of

each cluster Ci. For the sake of simplicity we reorder the nodes

to obtain, for i ∈ {1, . . . , n},

Ci = {mi−1 + 1, . . . ,mi}, (1)

where m0 = 0, mi ≥ mi−1 + 1, mm = n, and thus,

ni = mi −mi−1.

Let us also introduce the intra-cluster graph GL = (V, EL)
containing only the edges of G that connect agents belonging

to the same cluster. That is

EL = {(i, j) ∈ E | ∃k ∈ {1, . . . ,m} such that i, j ∈ Ck}.

B. System dynamics

The state of each agent evolves continuously by taking into

account the states of other agents belonging to their cluster.

Doing so, the agents approach local agreements which can be

different from one cluster to another. In order to reach the

consensus in the entire network every inter-cluster connection

is activated at some discrete instants. When the inter-cluster

link (j, i) ∈ E \ EL is activated, the state of agent i is reset

to a weighted average of the states of i and j. If several links

arriving at i are activated simultaneously, all the source states

of these edges are considered in the weighted average. In

order to keep the presentation simple each agent will have

a scalar state denoted by xi. We also introduce the vectors

x = (x1, . . . , xn)
⊤ ∈ R

n collecting the states of all the agents

and xCi
= (xmi−1+1, . . . , xmi

)⊤ ∈ R
ni , i ∈ {1, . . . ,m}

collecting the states of the agents belonging to cluster i,
respectively.

The previous discussion is formally described by the linear

reset system defining the overall network dynamics:






ẋ(t) = −Lx(t), ∀t ∈ R+ \ T
x(tk) = P (tk)x(t

−
k ) ∀k ∈ N

x(0) = x0

(2)

where x0 ∈ R
n, T is the countable set of reset instants which

are described by the diverging and increasing sequence (tk)k,

L ∈ R
n×n is a generalized Laplacian matrix associated to the

intra-cluster graph GL and P (tk) ∈ R
n×n is a stochastic ma-

trix associated to the inter-cluster graph GP (tk) = (V, EP (tk))
where EP (tk) 6= ∅ is the set of inter-cluster links activated at

time tk, so that EP (tk) ⊆ E \ EL. Precisely, the entries of L
and P (tk) satisfy the following relations:























Li,j = 0, if (j, i) /∈ EL
Li,j < 0, if (j, i) ∈ EL, i 6= j

Li,i = −
n
∑

j 6=i, j=1

Li,j , ∀i ∈ {1, . . . , n},
(3)































Pi,j(tk) = 0, if (j, i) /∈ EP (tk), i 6= j

Pi,i(tk) > 0, ∀i = {1, . . . , n}
Pi,j(tk) > 0, if (j, i) ∈ EP (tk), i 6= j
n
∑

j=1

Pi,j(tk) = 1, ∀i ∈ {1, . . . , n}.

(4)

According to (4), given some i, if Pi,j(tk) = 0 for all j 6= i
then Pi,i(tk) = 1, meaning that no jump occurs on the state of

the agent i at time tk. The values Li,j and Pi,j(tk) represent

the weight of the state of the agent j in the updating process

of the state of agent i when using the continuous and discrete

dynamics, respectively. The matrices L and P (tk) describe

the level of influence of each agent inside its cluster and

outside it, respectively. So, L is constant while P varies in time

depending on which agents udpate their state. The weight of

influence Pi,j may also vary in time for a same couple (j, i).
It is worth noting that L has the following block diagonal

structure

L =







L1

. . .

Lm






, Li ∈ R

ni (5)

with Li✶ni
= 0ni

and P (tk)✶n = ✶n.

III. PRELIMINARIES

A. Framework assumptions

In order to prove that the reset algorithm (2) guarantees

asymptotic consensus for every initial condition x0 we have

to impose some standard assumptions. The first one concerns

a minimal connectivity property of the whole network and of

each cluster.

Assumption 1 (Network structure): The graph G = (V, E)
is such that

1a) For each cluster Ci, the induced graph
(

Ci, EL ∩
(

Ci × Ci

))

contains a spanning tree,

1b) If needed one can reorder the clusters such that: for all

i ≥ 2 there exist j < i, li ∈ Cj and ri a root of a

spanning tree of Ci such that (li, ri) ∈ E . We denote by

ET = {(li, ri)|i ∈ {2, . . . ,m}}
the set of these m− 1 such edges.

The previous assumption implies that G contains a spanning

tree having the root in C1 (formed by the union of the spanning

trees in each cluster together with the edges in ET ). The

assumption is satisfied if the induced graph of each cluster

is strongly connected and so is G. It also holds if we replace

(1b) by the requirement that the graph induced by the set of

roots of all clusters contains a spanning tree. We note that

Assumption 1 implies that 0 is a simple eigenvalue of each

Li, ∀i ∈ {1, . . . ,m} (see [20]). The first part of Assumption 1

has a direct consequence on the continuous dynamics since

equation (3) imposes Li,j < 0 when (j, i) ∈ EL. The

second part of Assumption 1 guarantees the existence of the

inter-cluster interaction structure formed by ET . The next

assumption estabishes the relationship between ET and the

reset dynamics.
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Assumption 2 (Recurrent activation of inter-cluster links):

There exists a positive constant δmax > 0 satisfying the

following: for all (l, r) ∈ ET ,

• there exists k ∈ N such that tk ≤ δmax and (l, r) ∈
EP (tk),

• if (l, r) ∈ EP (tk) there exists τ ∈ [tk, tk + δmax] such

that (l, r) ∈ EP (τ).
Remark 1: Assumption 2 can be easily imposed in a decen-

tralized way since it concerns inter-cluster links one by one in

a decoupled manner. This assumption bears only on the few

links in ET which connect a node in a parent cluster to a root in

a child cluster of the structure defined in Assumption 1. Other

links may appear in EP (tk) but these are not constrained by

Assumption 2. Notice that Assumption 2 ensures that edges

in ET reset an infinite number of times.

The next hypothesis of this work is standard in the literature

(see [21]) and it ensures a minimal influence of the states

implicated in the reset process of the agents.

Assumption 3 (Minimal influence): There exists a constant

α ∈ (0, 1) such that, for all reset times tk, Pi,i ≥ α and, if

Pi,j(tk) 6= 0 and (i, j) ∈ ET then Pi,j(tk) ≥ α.

Remark 2: As stated at the end of the previous section, Pi,j

can vary in time. Thus Pi,j , (i, j) ∈ E \ EL can converge

to zero. However, in order to reach consensus, the interaction

between clusters should not completely vanish. In this context,

Assumption 3 guarantees a minimal influence of one cluster

on the root of some other at the reset time.

In order to emphasize that agents belonging to the cluster

Ci reset their state at time tk, we use extraction function φi

defined such that tφi(h), h ∈ N is the h-th time an agent in

cluster Ci resets its state, i.e.

φi(h) = min{k > φi(h−1)|∃j ∈ Ci, ℓ ∈ V\Ci, Pj,ℓ(tk) > 0}.

where for consistency, we imposed φi(−1) = −1 and

tφi(−1) = 0, for all i ∈ {1, . . . ,m}. We do not disregard

the situation in which agents from different clusters reset their

state simultaneously. Therefore, we may have φi(k) = φj(h)
for i 6= j and k, h ∈ N.

While in discrete time, a minimal influence is guaranted

by Assumption 3, in continuous time, a minimal influence

can be ensured using a dwell time. This will be shown in

Proposition 2 below.

Assumption 4 (Dwell time): There exists a positive con-

stant δ ≤ δmax such that

tφi(k+1) − tφi(k) ≥ δ, ∀i ∈ {1, . . . ,m}.

In other words, there exists a lower bound for the period

between the consecutive reset instants on the state of agents

belonging to the same cluster. Notice that according to As-

sumptions 1 and 2, all clusters in {2, . . . ,m} resets an infinite

number of times, so that for these clusters, φi is well defined.

Cluster C1 may not reset an infinite number of times. In this

case, tφ1(k) is only defined for k smaller than some finite

bound, and should still satisfy Assumption 4 for these k. This

has no impact on the results of the paper.

Remark 3: A simple manner to ensure Assumption 4 in a

decentralized way is for each cluster Ci, to allow only one

agent to interact outside Ci. Then, this one agent has full con-

trol of tφi(k) and can reset respecting the dwell time condition

without the need for further communication. Otherwise, since

Assumption 4 concerns the resets of all agents in a cluster

(unlike Assumption 2), these agents should have a way to

communicate the last reset time which occured in the cluster.

Remark 4: Notice that Assumption 2 implies that for all

cluster i ∈ {2, . . . ,m} and for all k ∈ N,

tφi(k+1) − tφi(k) ≤ δmax.

It is important to mention that dynamics (2) leads to the

collective state trajectory
{

x(t) = e−L(t−tk)P (tk)x(t
−
k ), ∀k ∈ N and ∀t ∈ [tk, tk+1)

x(0) = x0

(6)

but a jump occurs in xCi
only at times tφi(k), which involves

edges with sink in cluster i. This can be formalized as






xCi
(t) = e−Li(t−tφi(k))PCi

(tφi(k))x(t
−
φi(k)

),

∀k ∈ N and ∀t ∈ [tφi(k), tφi(k+1))
x(0) = x0

(7)

where PCi
(tφi(k)) contains only the rows of P (tφi(k)) corre-

sponding to the cluster Ci (i.e. the rows mi−1 + 1, . . . ,mi of

P (tφi(k))).

B. Matrix prerequisite properties

In this subsection we provide an instrumental result con-

cerning the matrices defining the state-trajectory associated

with the dynamics (2). First, we recall that a weighted adja-

cency matrix A associated with a graph Ḡ = (V̄, Ē) is a matrix

with non-negative entries satisfying Ai,j > 0 ⇔ (i, j) ∈ Ē .

Denote κ = min(1,min(Ai,j > 0|(i, j) ∈ Ē)) a lower bound

to the smallest non-null element of A. The corresponding

degree matrix D is diagonal and Di,i =

n
∑

j=1

Ai,j where n

is the size of A which is equal the cardinality of V̄ . The

weighted Laplacian matrix associated with A is simply defined

as L̄ = D −A.

Proposition 2: Let Ḡ be a directed graph without self

loops with n vertices containing a spanning tree and A a

weighted adjacency matrix associated with it. Let D and L̄
the corresponding degree and weighted Laplacian matrices.

Then e−L̄t is a stochastic matrix for all t ≥ 0 and

∀δ > 0, ∀δM > δ, ∃ᾱ ∈ (0, 1), such that
{

(e−L̄t)i,j ≥ ᾱ, ∀(j, i) connected by a directed path in Ē
(e−L̄t)i,i ≥ ᾱ, ∀i = {1, . . . , n}

(8)

for all t ∈ [δ, δM ]. Moreover, if the graph Ḡ is strongly

connected then

∀δ > 0, ∃ᾱ ∈ (0, 1), such that ∀t ≥ δ, e−L̄t ≥ ᾱ✶n✶
⊤
n .

(9)

Proof: The stochasticity of e−L̄t has been proven in

[20]. However, to render the paper self contained, we prefer

to present a complete proof of our result. We first notice
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that e−L̄t
✶n = ✶n follows from the definition of the matrix

exponential as a series and the fact that L̄✶n = 0n. Secondly,

we denote dmax = max
i={1,...,n}

L̄i,i = max
i={1,...,n}

Di,i, and

Q = 2dmaxIn − L̄.

We notice that Ḡ contains a spanning tree. Thus, Ē 6= ∅
implying dmax 6= 0. By definition of dmax, Qi,i > 0 and

since for i 6= j, L̄ij ≤ 0, we have Q ≥ 0n×n. Thus,

eQt ≥ Qt ≥ 0n×n, (eQt)i,i > 0, and since e−2dmaxt ≥ 0
one has

e−L̄t = e−2dmaxteQt ≥ e−2dmaxtQt ≥ 0n×n, ∀t ≥ 0.

Thus, e−L̄t is stochastic i.e. non-negative matrix with the row

sums equal 1. Let us show that its diagonal elements are

bounded below. We have

(e−L̄t)i,i = e−2dmaxt(eQt)i,i.

By definition of the matrix exponential, since Q ≥ 0n×n,

(eQt)i,i ≥ 1. Also, e−2dmaxt ≥ e−2dmaxδM > 0 for t ∈
[δ, δM ]. As a consequence, ∀δ > 0, ∀δM > δ, ∃γ1 > 0
such that

(e−L̄t)i,i ≥ γ1, ∀t ∈ [δ, δM ]. (10)

We now show that (e−L̄t)i,j is bounded below if i is con-

nected to j via a directed path in Ḡ. Denote k ≤ n the length

of this path. Since Q = 2dmaxIn − L̄ = 2dmaxIn −D + A,

Q ≥ A. So that (Qk)i,j ≥ (Ak)i,j ≥ κk > 0.

Using again the definition of the matrix exponential as a

series, one has eQt ≥ Qktk/k!. So, for an arbitrary δ > 0 and

any t ≥ δ one has (eQt)i,j ≥ (κδ)k/k!. Thus, ∀δM > δ finite,

arbitrarily fixed and ∀t ∈ [δ, δM ] the following holds

(e−L̄t)i,j = e−2dmaxt(eQt)i,j ≥ e−2dmaxδM (κδ)k/k!. (11)

Introducing

γ2 = e−2dmaxδM min
k∈{1,...,n}

{(κδ)k/k!} > 0, (12)

one gets (8) holds for ᾱ = min{γ1, γ2} with γ1, γ2 defined in

(10) and (12).

Let us prove that, if Ḡ is strongly connected then (9) holds

for any t ≥ δ. In this case, there exists a path from j to i for

all i, j. Thus (11) holds for all (i, j) ∈ V̄ × V̄ . For Ḡ strongly

connected, we recall that (see for instance [20], [4])

e−L̄t −→
t→∞

✶nv
⊤

where v⊤L̄ = v⊤ > 0. From the limit definition one has

∀ǫ > 0 ∃T > 0 such that |e−L̄t − ✶nv
⊤| < ǫ, ∀t ≥ T

where |A| = maxi,j∈{1,...,n} |Ai,j |. Let us denote by vmin > 0
the smallest component of v. For a fixed ǫ ∈ (0, vmin

2 ] we

introduce the following notation γ = vmin − ǫ > 0 and we

get that

∃δM > 0 such that e−L̄t > γ✶n✶
⊤
n , ∀t ≥ δM . (13)

Making use of (11) and (13) we prove (9) for ᾱ = min{γ, γ2}
with γ2 defined in (12).

Remark 5: Notice that (see (7)) the matrix e−Li(t−tφi(k))

defines the state trajectory of the cluster Ci between two

reset instants. Moreover, the graph associated with any cluster

satisfies the hypothesis of Proposition 2 and the time in-

terval between consecutive reset instants is bounded. Thus,

Proposition 2 shows that Assumption 4 (Dwell time) is the

corresponding of Assumption 3 (Minimal influence) for the

continuous dynamics defined by Li.

Remark 6: We can apply Proposition 2 to the continuous

dynamics in each cluster defined in section II. For given δ
and δM > δ, Proposition 2 states that for all i ∈ {1, . . . ,m}
it exists αi such that (e−Lit, αi) satisfies (8) or (9) for all

t ∈ [δ, δM ]. Nevertheless, since we have a finite number of

matrices Li, we can consider a unique value α ≤ minαi

satisfying Assumption 3 on one hand and (e−Lit, α) satisfies

(8) or (9), on the other.

IV. CONVERGENCE ANALYSIS

A. Coordination in synchronous reset systems

In the synchronous reset framework all the inter-cluster

interactions take place at the same time instants tk. Conse-

quently, the reset dynamics is always defined by a constant

matrix P (tk) = P, ∀k ∈ N where P satisfies (4). As first

result, we can give another proof of convergence under relaxed

assumptions for the model considered in [19]. This model is

given by the dynamics (2) with the sequence of resets (tk)
satisfying Assumptions 2 and 4. Unlike [19], our formalism

allows that more than one agent per cluster can be influenced

by agents in other clusters.

Proposition 3: Under Assumptions 1, 2, 3 and 4, for all

initial conditions x(0) ∈ R
n the reset consensus algorithm (2)

guarantees asymptotic consensus.

Proof:

x(t−k+1) = e−L(tk+1−tk)Px(t−k ), ∀k ≥ 0. (14)

For all k ≥ 0, Proposition 2 and Assumptions 2 and 4 yield

e−L(tk+1−tk) is a stochastic matrix associated with a weighted

connected graph between the agents belonging to the same

cluster. Assumption 2 (Recurrent activation of inter-cluster

links) guarantees that all the inter-cluster links of ET are

activated at least once within any interval of lengths superior

to δmax. Therefore, the union of the graphs associated with

the matrices P and e−L(tk+1−tk), k ≥ 0 contains a spanning

tree.

Proposition 2, Assumption 3 (Minimal influence) and Assump-

tion 4 (Dwell time) guarantee that the non-zero components

of the matrices P and e−L(tk+1−tk), k ≥ 0 are superior

to α. Therefore, the discrete algorithm (14) satisfies all the

requirements of Lemma 2 in [22] that guarantees asymptotic

consensus of (2).

Discussion: It is noteworthy that the consensus algorithm

(14) studied above can be identified with the discrete dynamics

with dynamic interaction topology studied in [5].

For synchronous reset, (14) reduces to the algorithm studied in

[21], [22]. Therefore, as in [21], if the model is symmetric, we

only need that all the links of G are activated infinitely many

times. In other words Assumption 2 (Recurrent activation of
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inter-cluster links) can be relaxed if the inter-cluster model is

symmetric (Pi,j > 0 ⇔ Pj,i > 0) and G strongly connected.

B. Coordination in asynchronous decentralized reset system

This part contains the main results of the paper concerning

fully decentralized reset rules. In this section, unlike the

previous one, resets of clusters are not synchronized and the

intervals (tφi(k), tφi(k+1)) and (tφj(h), tφj(h+1)) may overlap

for distinct i and j. This means, tk+1 − tk can be arbitrarily

small and the existing results in the literature are not ap-

plicable. Assumption 4 (Dwell time) only ensures a dwell

time on the resets of the same cluster. In this section, we

assume that Assumptions 1, 2, 3 and 4, are satisfied. Under

such assumptions, we will show that all agents eventually

converge toward the same consensus state at exponential speed

(Theorem 9). Prior to stating the main result we provide the

necessary intermediate ingredients.

For all time t ∈ R+, we define the global diameter of the

group as

∆(t) = x̄(t)−
¯
x(t)

with

x̄(t) = max
i∈{1,...,n}

xi(t) and
¯
x(t) = min

i∈{1,...,n}
xi(t).

Our goal in the sequel is to show that ∆(t) approaches 0 when

t increases. This requires some intermediate results presented

as lemmas in the sequel. All of them are written in terms of

minimum
¯
x(t) but they can be easily transformed in terms of

maximum x̄(t).
Summary

• In Lemma 4 we prove that: if an agent resets its state by

taking into account a state bigger than
¯
x(t), then its state

after reset will be bigger than
¯
x(t).

• In Lemma 5 we complement Lemma 4 by proving that,

if all the states in the cluster Ci are bigger than
¯
x(t) at

some time, they will remain bigger than
¯
x(t) after a finite

number of resets.

• In Lemma 6 we prove that during the continuous dy-

namics the root of a cluster will pull all the states of

the corresponding cluster far from the minimum value.

Before the next reset concerning this cluster, none of its

states will be arbitrarily close to the minimum
¯
x(t).

• In Lemma 7, we show that no state of any cluster

Cw can be arbitrarily close to the minimum
¯
x(t). This

is done by induction on a sequence of clusters going

from C1 to Cw chosen along the spanning tree in G
(see Assumption 1). Combining Lemma 4 and Lemma

6 provides the induction step.

• Finally, in Theorem 9 we use the lemmas to prove the

geometric decrease of the diameter ∆(t).

Lemma 4 (Reset): Let i ∈ {1, . . . ,m} and t ≥ 0 fixed. Let

k ∈ N such that tφi(k) > t the first reset instant of cluster

i after t. Assume that there are some ℓ ∈ V , some bound

X ∈ R+, some j ∈ Ci and some bound α ∈ (0, 1) such that

xℓ(t
−
φi(k)

)−
¯
x(t) ≥ X and Pj,ℓ(tφi(k)) ≥ α.

Then, we have

xj(tφi(k))− ¯
x(t) ≥ αX.

Proof: Using the stochasticity of P (tk), one obtains 1 =
∑

h∈V,h 6=ℓ

Pj,h(tφi(k)) + Pj,ℓ(tφi(k)), thus, by equation (2),

xj(tφi(k)))− ¯
x(t) =

∑

h∈V,h 6=ℓ

Pj,h(tφi(k))(xh(t
−
φi(k)

)−
¯
x(t))

+ Pj,ℓ(tφi(k))(xℓ(t
−
φi(k)

)−
¯
x(t)) ≥ αX.

The last inequality follows from the fact that P (tφi(k)) ≥
0n×n, Pj,ℓ(tφi(k)) ≥ α and xh(t

−
φi(k)

) ≥
¯
x(t) since

¯
x is non-

decreasing (i.e.
¯
x(t) ≤

¯
x(t−

φi(k)
)).

Considering x̄Ci
(t) = maxj∈Ci

xj(t),
¯
xCi

(t) =
minj∈Ci

xj(t), the previous lemma can be complemented as

follows.

Lemma 5 (Reset): Let i ∈ {1, . . . ,m} and t ≥ 0 fixed. Let

tφi(k) > t be some reset instant. Assume that there is some

bound X ∈ R+, such that

¯
xCi

(t−
φi(k)

)−
¯
x(t) ≥ X.

Then, for all h ∈ N, for all τ ∈ [t−
φi(k)

, tφi(k+h)],

¯
xCi

(τ)−
¯
x(t) ≥ αh+1X.

Proof: Using Assumption 3 (Minimal influence) and

equation (4), we have Pj,j(tφi(k+h)) ≥ α for all h ∈ N and

j ∈ Ci. Thus we can apply Lemma 4 with l := j for all

j ∈ Ci. Also,
¯
xCi

is non-decreasing between two consecutive

reset instants, thus the bound from Lemma 4 is preserved until

the next reset of the cluster. This allows us to iterate on h to

conclude.

Lemma 6 (Continuous dynamics): Let i ∈ {1, . . . ,m} and

t ≥ 0 fixed. Let k ∈ N such that tφi(k) > t and introduce the

matrix R = e−Li(tφi(k+1)−tφi(k)). Assume that for the root ri
of one spanning tree of the cluster Ci, there exist some bounds

Y ∈ R+ and α ∈ [0, 1] such that

xri(tφi(k))− ¯
x(t) ≥ Y and ∀j ∈ Ci, Rj,ri ≥ α.

Then, we have

¯
xCi

(t−
φi(k+1))− ¯

x(t) ≥ αY.

Proof: Since xCi
(t−

φi(k+1)) = RxCi
(tφi(k)) with R

stochastic, the proof is the same as the one in Lemma 4. The

difference is that ∀j ∈ Ci, Rj,ri ≥ α. The proof can be applied

for all j ∈ Ci and a minimum can be taken at the end.

Before giving the next result, let us introduce some notation

that will simplify the presentation. Let Cw be some cluster.

According to Assumption 1, there is a sequence of clusters

(K1, . . . ,Kq) with q ≤ m connecting Cw to C1, meaning that

K1 = C1, Kq = Cw and for all intermediate cluster h ∈
{1, . . . , q − 1}, there is a node l ∈ Kh and a root r of a

spanning tree of Kh+1 with (l, r) ∈ ET .

Let t ≥ 0 be fixed. We define a sequence of integers

t ≤ f1 < s1 < f2 < s2 < . . . < fq < sq (15)

such that
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• f1 is the first reset instant after t of a root of a spanning

tree of cluster K1, if a root reseting its state exists in K1.

This may not be the case since K1 may not be influenced

by the other clusters (according to Assumption 1), then

f1 = t and s1 = t+ δ.

• For all h ∈ {2, . . . , q}, we define sh the first instant after

fh when an agent of Kh resets its state.

• For all h ∈ {1, . . . , q − 1} we define fh+1 as the first

reset instant of a root of a spanning tree of cluster Kh+1

after time sh.

It is noteworthy that, thanks to Assumption 2,

fh+1 − sh ≤ δmax and sh − fh ≤ δmax. (16)

This also gives

sq − f1 ≤ (2q − 1)δmax ≤ (2m− 1)δmax. (17)

Let also introduce

µ = ip(δmax/δ) (18)

where ip(y) denotes the biggest integer smaller than y.

Remark 7: Due to Assumptions 2 (Maximum inactivation

time) and 4 (Dwell time), we have at most µ resets of a root

of cluster Kh between sh and fh+1.

In the sequel, iteratively applying Lemmas 4 and 6, we will

show in Theorem 9 that ∆(sq) geometrically decreases. For

the next result we assume that a root r1 of a spanning tree of

K1 = C1 satisfies

xr1(f1)− ¯
x(f−

1 ) ≥ ∆(f−
1 )/2.

If it is not the case, we instead consider the system where

all the states have been reversed: xi := −xi and apply the

same reasoning. In other words we relate the reasoning to

the maximum instead of the minimum. In the sequel, we use

¯
xKh

(t) = mini∈Kh
xi(t).

Lemma 7 (Path of clusters): For all h ∈ {1, . . . , q}, we

have

¯
xKh

(s−h )− ¯
x(f−

1 ) ≥ α(µ+3)(h−1)+1∆(f−
1 )

2
. (19)

where µ is given in equation (18).

Proof: We show the lemma by induction. Due to Assump-

tions 4 (Dwell time) and 2 (Maximum inactivation time), one

has δmax ≥ s1 − f1 ≥ δ, so that Proposition 2 applies to

R = e−Li1 (s1−f1). The value α is chosen as in Remark 6. As

a consequence we can apply previous lemmas with the same

α. Lemma 6 yields

¯
xK1

(s−1 )− ¯
x(f−

1 ) ≥ α∆(f−
1 )

2
,

which shows equation (19) for h = 1. Assume the proposition

is true for some h ∈ {1, . . . , p} where p ≤ q−1 and we prove

the same for h = p + 1. As mentioned in Remark 7, there

will be at most µ resets of cluster Kp over (sp, fp+1). Thus,

denoting ℓ such that tφp(ℓ) = sp, we have fp+1 ≤ tφp(ℓ+µ).

We can apply Lemma 5 so that

¯
xKp

(fp+1)−
¯
x(f−

1 ) ≥ αµ+1 · α
(µ+3)(p−1)+1∆(f−

1 )

2
.

At time fp+1, cluster Kp+1 resets. A root rp+1 of Kp+1

receives influence from at least one agent j in cluster Kp.

Because of Assumption 3, Prp+1,j(fp+1) ≥ α. So, we apply

Lemma 4 on Kp+1 to get

xrp+1(fp+1)−
¯
x(f−

1 ) ≥ αµ+2 · α
(µ+3)(p−1)+1∆(f−

1 )

2
.

To conclude, we apply Lemma 6 on Cp+1 with R =
e−Lp+1(sp+1−fp+1) and we get

¯
xKp+1

(s−p+1)− ¯
x(f−

1 ) ≥ α(µ+3)p+1∆(f−
1 )

2
.

A corollary of Lemma 7 is the following proposition.

Proposition 8: We have

¯
x((2m−1)δmax+f1)−

¯
x(f−

1 ) ≥ αν+1α
(µ+3)(m−1)+1∆(f−

1 )

2
(20)

with ν = ip((2m− 1)δmax/δ).
Proof: Taking h = q in Lemma 7 gives a lower bound

on the minimum of Cw = Kq . This is true for any cluster Cw.

Using h ≤ m in equation (19), the bound can be replaced by

α(µ+3)(m−1)+1∆(f−
1 )

2
.

Then, equation (17) guarantees that there is no more than

ν resets of cluster Cw over [f−
1 , (2m − 1)δmax + f−

1 ], thus

Lemma 5 gives that for all cluster Cw,

¯
xCw

((2m− 1)δmax + f1)−
¯
x(f−

1 )

≥ αν+1α
(µ+3)(m−1)+1∆(f−

1 )

2
.

In other words, equation (20) holds.

Once Proposition 8 is given, the exponential decay of the

network diameter comes easily.

Theorem 9: There exists some positive decay rate β ∈ [0, 1)
such that for all t ∈ R+,

∆(2(m+ 1)δmax + t) ≤ β∆(t)

Proof: Let t ≥ 0 be fixed and define f1 as in (15). It

follows that

t ≤ f1 < f1 + (2m− 1)δmax ≤ t+ 2(m+ 1)δmax.

Since x̄ is non-increasing and
¯
x is non-decreasing, one has

∆(t+ 2(m+ 1)δmax) ≤ ∆((2m− 1)δmax + f1),

∆(f−
1 ) ≤ ∆(t).

(21)

On the other hand, using Proposition 8, we have

∆((2m− 1)δmax + f1) =

= x̄((2m− 1)δmax + f1)−
¯
x((2m− 1)δmax + f1)

≤ x̄(f−
1 )−

¯
x(f−

1 )− αν+1α
(µ+3)(m−1)+1∆(f−

1 )

2

≤ (1− αν+1α
(µ+3)(m−1)+1

2
)∆(f−

1 ).

The proof ends by combining this with (21).
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V. EVENT TRIGGERED RESET RULE

The dynamics (2) can be used for consensus in fleets of

robots that are partitioned in clusters. The robots that are

relatively close one to each other continuously interact and

form a cluster. Inter-cluster interactions need supplementary

energy associated to long distance communications between

clusters and consequently, they have to be activated only if

needed. In order to avoid unnecessary inter-cluster commu-

nications we can define the reset sequence using an event-

based strategy. One example of such strategy is analyzed in

this section. Precisely, we consider the asynchronous resets

case and suppose Assumptions 1 (Network structure) and 3

(Minimal influence) are satisfied. We will show that under the

event triggered reset rule, Assumption 4 and 2 are satisfied

so that Theorem 9 applies and the consensus occurs. To do

so, we also need to impose a maximal influence during the

continuous dynamics.

Assumption 5: [Maximal influence] The components of the

Laplacian matrix L are uniformly bounded i.e. there exists α >
0 finite real number such that |Li,j | ≤ α, ∀i, j ∈ {1, . . . , n}.

This is necessary to ensure that during the continuous dynam-

ics, the agents do not approach one to another indefinitely fast.

We can notice that, in practice, this assumption is very natural

and is almost always satisfied.

Definition 10: The diameter of the cluster Ci is defined

as ∆i(t) = x̄Ci
(t) −

¯
xCi

(t). The reset sequence (tk)k∈N

associated with the dynamics (2) is defined as follows: for

all i ∈ {1, . . . ,m} and for all k ≥ 0,

• if ∆i(tφi(k−1)) = 0, tφi(k) = tφi(k−1) + δ with δ =
mini∈{1,...,m}

1
2niα

ln(ai),

• otherwise tφi(k) = min
t≥tφi(k−1)

{

∆i(t) ≤
∆i(tφi(k−1))

ai

}

,

where the ai > 1 are design parameters fixed a priori. (We

recall that for consistency, we denote tφi(−1) = 0).

Notice that the first point of the definition is required to avoid

zeno-type behavior. The objective of this section is to prove

that the reset sequence defined above satisfies Assumptions 2

(Recurrent activation of inter-cluster links) and 4 (Dwell time).

Once this objective accomplished, we can apply the results

stated in Section IV to ensure the coordination of all agents

in the network.

Remark 8:

1) It is noteworthy that the reset rule is centralized at the

cluster level. In other words, in each cluster exists a

central entity that is able to compute the diameter of

the cluster and transmit it continuously to the reseting

agents. The resets of the agents belonging to the same

cluster are synchronized. For the sake of simplicity, in

the following, we consider that each cluster possesses

only one agent (a root of a spanning tree of the graph

representing the cluster) that resets its state and this

agent can continuously compute the diameter of the

cluster.

2) The parameters ai > 1, i ∈ {1, . . . ,m} in Definition 10

can be chosen all equal but they can be also designed

as functions of the decreasing speed of ∆i. The later

requires supplementary knowledge but it can be used,

if needed, to homogenize the reset intervals from one

cluster to another. We do not focus on this issue and

in our numerical illustrations: we consider ai = 2, ∀i ∈
{1, . . . ,m}.

Theorem 11: Let us consider the dynamics (2) under As-

sumptions 1 (Network structure), 3 (Minimal influence) and

5 (Maximal influence). Then, the associated reset sequence

introduced by Definition 10 satisfies the Assumptions 2 (Re-

current activation of inter-cluster links) and 4 (Dwell time).

Proof:

• We start by proving that Assumption 4 holds. If

∆i(tφi(k)) = 0, the first point in Definition 10 applies and

Assumption 4 holds. Otherwise, the second point applies and

for a fixed cluster Ci, i ∈ {1, . . . ,m} we have to show that

∆i does not decrease infinitely fast. This means, a dwell time

δ exists between a reset time tφi(k) and the first time t such

that when ∆i(t) ≤ ∆i(tφi(k))

ai
.

Let t ∈ (tφi(k), tφi(k+1)). First, recall that (see [7]) for

almost all t ≥ 0, there exist mi(t) ∈ argminj∈Ci
(xj(t)) and

Mi(t) ∈ argmaxj∈Ci
(xj(t)) such that:

˙
¯
xCi

(t) = ẋmi(t)(t) = −
∑

j∈Ci

Lmi(t),j(xj(t)− xmi(t)),

˙̄xCi
(t) = ẋMi(t)(t) = −

∑

j∈Ci

LMi(t),j(xj(t)− xMi(t)).

Thus, using Assumption 5, one obtains that between two reset

instants the following holds:

˙
¯
xCi

(t) ≤ niα∆i(t), ˙̄xCi
(t) ≥ −niα∆i(t),

yielding

∆̇i(t) ≥ −2niα∆i(t).

In other words, one has

∆i(t) ≥ e−2niα(t−tφi(k))∆i(tφi(k)).

Thus, since ∆i(tφi(k)) > 0, ∆i(t) ≤ ∆i(tφi(k))

ai
implies

2niα(t− tφi(k)) ≥ ln(ai) that is equivalent to

t− tφi(k) ≥
1

2niα
ln(ai)

and Assumptions 4 holds for

δ = min
i∈{1,...,m}

1

2niα
ln(ai).

• Now, let us prove that Assumption 2 holds. Since we

consider only one agent per cluster can reset its state, this is

equivalent to the existence of δmax > 0 finite, such that for

all ∀k ≥ 0, for all i ∈ {1, . . . ,m} one has tφi(k)− tφi(k−1) ≤
δmax.

Let t ∈ (tφi(k−1), tφi(k)). Let us recall that ni represents

the cardinality of Ci. Let us also introduce ρi > 0 a bound on

the convergence speed in the cluster Ci over an interval where

Ci does not reset. Mainly we consider an overestimation of

the second Lyapunov exponent of the continuous dynamics

describing the behavior of Ci (see [1], [2], [22]), yielding

‖xCi
(t)− x∗

i (tφi(k−1))‖2 ≤
e−ρi(t−tφi(k−1))‖xCi

(tφi(k−1))− x∗
i (tφi(k−1))‖2

(22)
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where we denote

x∗
i (tφi(k−1)) = lim

t→∞
e−Li(t−tφi(k−1))xCi

(tφi(k−1))

the agreement of the cluster Ci if no reset occurs in its state

after the instant tφi(k−1).

One can proove that

∆i(t) ≤ ‖xCi
(t)−x∗

i (tφi(k−1))‖1 ≤ √
ni‖xCi

(t)−x∗
i (tφi(k−1))‖2

and
√
ni∆i(tφi(k−1)) ≥ ‖xCi

(tφi(k−1))− x∗
i (tφi(k−1))‖1

≥ ‖xCi
(tφi(k−1))− x∗

i (tφi(k−1))‖2,
where we successively used the triangle inequality, the

1-2 norm inequality, the fact that, since e−Li(t−tφi(k−1))

is stochastic, x∗
i (tφi(k−1)) remains in the convex hull of

{xj(tφi(k−1))|j ∈ Ci}, and once again, the 1-2 norm in-

equality. Combining the two previous inequalities with equa-

tion (22), gives

∆i(t) ≤ e−ρi(t−tφi(k−1))ni∆i(tφi(k−1)),

so that taking t ≥ tφi(k−1) + ln(aini)/ρi leads to ∆i(t) ≤
∆i(tφi(k−1))/ai. As a conclusion,

δmax = max
i∈{1,...,m}

ln(aini)

ρi

is a suitable upper bound on the duration between two resets.

The following result is a straightforward consequence of

Theorem 9. We only need to observe that Theorem 11 provides

the assumptions required for the application of Theorem 9.

Corollary 1: Let us consider the dynamics (2) with the reset

rule introduced in Definition 10. If Assumptions 1 (Network

structure), 3 (Maximal influence) and 5 (Minimal influence)

hold, there exists some positive decay rate β ∈ [0, 1) such that

for all t ∈ R+,

∆(2mδmax + t) ≤ β∆(t).

VI. STOCHASTIC RESET RULE

In some settings, the resets of agent states are the result of

uncertain events. In this case, we model the sequences of resets

as a stochastic process. In the present section, we show that

even under uncertainty, suitable conditions on the probability

law governing the sequence of resets lead to consensus with

probability one. To prove this fact, we need to show that, at any

time, the diameter decay provided in Theorem 9 occurs with

positive probability. Throughout this section we denote P(X)
the probability of the event X and P(X | Y ) the probability

of X conditioned by Y .

Theorem 12: Consider dynamics (2). Suppose that As-

sumptions 1 (Network structure) and 3 (Minimal influence) are

satisfied. Also, suppose that no more than one agent in each

cluster Ci resets its state and this agent is the one described as

ri in Assumption 1. Finally, assume that these sequences of

resets follow independent Poisson renewal processes. Then,

there exists some positive decay rate β ∈ [0, 1) and some

positive constant bound p > 0 such that for all t ∈ R+,

P

(

∆(2mδmax + t) ≤ β∆(t)
)

≥ p.

Moreover, consensus occurs with probability one.

In what follows, we suppose that the assumptions required

in Theorem 12 are satisfied. The Poisson renewal processes

implies that the increments between two consecutive reset

instants are independent and stationary. Theorem 12 is a

consequence of the following lemma and Theorem 9:

Lemma 13: Let δmax > δ > 0. Then, for all t arbitrarily

fixed in R+, Assumptions 2 (Recurrent activation of inter-

cluster links) and 4 (Dwell time) hold for all the reset instants

belonging to [t, t + 2mδmax] with a certain strictly positive

probability (independent of t).
Proof of Theorem 12: Using Lemma 13, we know that

Assumptions 2 and 4 hold for all the reset instants belonging

to [t, t + 2mδmax] with some probability p, for all t ∈ R+.

Thus we can apply Theorem 9 restricted to the interval [t, t+
2mδmax] to obtain that there exists some positive decay rate

β ∈ [0, 1), independent of t, such that for all t ∈ R+,

P (∆(2mδmax + t) ≤ β∆(t)) ≥ p.

So, using the fact that ∆ is non-increasing, we can bound the

expectation of ∆:

E (∆(2mδmax + t)|∆(t)) ≤ pβ∆(t) + (1− p)∆(t),

and then,

E(∆(2mδmax + t)) ≤ (1− (1− β)p)E(∆(t)),

which shows that E(∆) exponentially converges to 0. More-

over, since ∆ is almost surely non-increasing and non-

negative, it converges almost surely. Denote l its limit which is

also non-negative. By continuity of E one has limt→∞ E(∆) =
E(l). Thus, E(l) = 0 and since l is non-negative, we get l = 0.

Concluding, consensus occurs with probability one.

There remains to prove Lemma 13. Notice that, since only

one agent per cluster resets its state, Assumption 2 reduces to

tφi(k) − tφi(k−1) ≤ δmax, ∀i ∈ {2, . . . ,m}, ∀k ∈ N,

so the conjunction of Assumption 2 and Assumption 4 is

equivalent to

tφi(k)−tφi(k−1) ∈ [δ, δmax], ∀i ∈ {2, . . . ,m}, ∀k ∈ N. (23)

We highlight that the reset instants of one cluster are indepen-

dent of the ones related to other clusters. So, the probability

of statement (23) is the product of the probabilities for each

cluster. Thus, we can decouple the analysis of reset sequences

concerning different clusters. Before proving Lemma 13,

we describe some necessary probabilistic notation and an

intermediate result. The occurrence of the reset tφi(k) for

k ≥ 0 is described by the random variable Tφi(k) and the

duration between Tφi(k−1) and Tφi(k) is given by the random

variable Sφi(k). Using these notations, the Poisson renewal

process corresponds to the following. The reset instants occurs

randomly in time and Nt is the number of reset occurrences
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in [0, t] (Nt depends on the cluster index i but for simplicity

of notation we do not display it explicitly):

Nt =

∞
∑

k=0

χ(Tφi(k)≤t),

where χΩ denote the indicator function of the set Ω. In other

words,
{

Tφi(k−1) ≤ t ⇔ Nt ≥ k,
Tφi(k−1) > t ⇔ Nt < k.

(24)

We recall here some important properties of the Poisson

renewal process (see for instance [23]).

Remark 9: The process Nt has independent and stationary

increments:

• for all 0 ≤ t0 < t1 < . . . < tn the random variables

Nt1 −Nt0 , . . . , Ntn −Ntn−1 are independent,

• for all t, s ∈ R+, Nt+s − Nt and Nt follow the same

distribution: a Poisson distribution with parameter λis.

Moreover, the Sφi(k), k ≥ 0 are independent and identically

distributed (i.i.d.) following an exponential distribution with

parameter λi > 0. In particular, for any b1 < b2 ∈ R+ one

has P(Sφi(k) ∈ [b1, b2]) > 0.

The next lemma is instrumental since it allows us to reduce

the analysis to the interval [0, 2mδmax]. Precisely, we show

that the sequence of reset instants higher than t is described

by the same probability distribution as the sequence of resets

that starts at 0. Let i be some cluster index and Λ denote the

event {Nt = k,Nt+ξ = k + ℓ}
Lemma 14: Let t, ξ be arbitrarily fixed in R+. Then for all

k, ℓ ∈ N, the distributions of
(

Tφi(0), . . . , Tφi(ℓ−1)

)

|{Nξ = ℓ}
and

(

Tφi(k) − t, . . . , Tφi(k+ℓ−1) − t
)

|Λ are equal.

Proof:

First, it is a well known fact that given Nξ = ℓ, the ℓ
arrival times

(

Tφi(0), . . . , Tφi(ℓ−1)

)

are distributed as the order

statistics corresponding to ℓ independent random variables

uniformly distributed on the interval [0, ξ] (see for instance

[23]). The density is then given by: f(x0, . . . , xℓ−1|ℓ) =
ℓ!
ξℓ
χ(0<x0<...<xℓ−1<ξ).

Secondly, let the following real terms t < xk ≤ xk + hk <
xk+1 ≤ xk+1 + hk+1 < . . . < xk+ℓ−1 ≤ xk+ℓ−1 + hk+ℓ−1 ≤
t+ ξ. The two followings events:

Γ =
{

Nt = k,Nt+ξ = k+ℓ−1, Tφi(k) ∈ [xk, xk+hk], . . . ,
Tφi(k+ℓ−1) ∈ [xk+ℓ−1, xk+ℓ−1 + hk+ℓ−1]

}

and
{

Nt = k,Nxk
−Nt = 0, Nxk+hk

−Nxk
= 1, . . . ,

Nxk+ℓ−1+hk+ℓ−1
−Nxk+ℓ−1

= 1, Nt+ξ−Nxk+ℓ−1+hk+ℓ−1
= 0

}

are equal.

Then, by using the Remark 9, we have:

P (Γ) = e−λit
(λit)

k

k!
· e−λi(xk−t) · e−λihkλihk · . . . ·

e−λihk+ℓ−1λihk+ℓ−1 · e−λi(t+ξ−xk+ℓ−1−hk+ℓ−1)

=
(λit)

k

k!
e−λite−λiξλℓ

ihk . . . hk+ℓ−1.

By Remark 9, we also have:

P(Λ) = P(Nt+ξ −Nt = ℓ,Nt = k) = P(Nξ = ℓ)P(Nt = k)
(25)

then

P
(

∀j ∈ {k, . . . , k + ℓ− 1}, Tφi(j) ∈ [xj , xj + hj ]|Λ
)

=
ℓ!

ξℓ
hk . . . hk+ℓ−1.

Dividing by hk . . . hk+ℓ−1 and making succesively

hk, . . . , hk+ℓ−1 tending to 0, we obtain (see [24]) the density

of
(

Tφi(k), . . . , Tφi(k+ℓ−1)

)

|Λ is defined by

f(xk, . . . , xk+ℓ−1|ℓ) =
ℓ!

ξℓ
χ(t<xk<...<xk+ℓ−1<t+ξ).

It is the distribution of the order statistics corresponding to

ℓ independent random variables uniformly distributed on the

interval [t, t+ ξ]. By a translation of −t, we have proven the

lemma.
Proof of Lemma 13: Using the notation described above

and using statement (23), we have to uniformly bound below
the following probability:

P

(

m
⋂

i=2

(

∀j ∈ {Nt + 1, . . . , Nt+2mδmax − 1}, Sφi(j) ∈ [δ, δmax]
)

)

,

for all t ≥ 0. Since the reset sequences associated with dif-
ferent clusters are independent, it is clear that this probability
is equal to

m
∏

i=2

P
(

∀j ∈ {Nt + 1, . . . , Nt+2mδmax − 1}, Sφi(j) ∈ [δ, δmax]
)

.

As discussed above, Lemma 14 allows us to prove the
result only on the interval [0, 2mδmax]. Indeed, we can map
(Tφi(k)− t, . . . , Tφi(k+ℓ−1)− t) to (Sφi(k+1), . . . , Sφi(k+ℓ−1))
and (Tφi(0), . . . , Tφi(ℓ−1)) to (Sφi(1), . . . , Sφi(ℓ−1)) by the
same operation. Denoting ξ = 2mδmax and using (25), we
have:

P
(

∀j ∈ {Nt + 1, . . . , Nt+ξ − 1}, Sφi(j) ∈ [δ, δmax]
)

=
∑

k,ℓ∈N

P
(

∀j ∈ {k + 1, . . . , k + ℓ− 1}, Sφi(j) ∈ [δ, δmax]|Λ
)

P (Λ)

=
∑

k,ℓ∈N

P
(

∀j ∈ {1, . . . , ℓ− 1}, Sφi(j) ∈ [δ, δmax]|Nξ = ℓ
)

·

P (Nt = k)P (Nξ = ℓ)

= P
(

∀j ∈ {1, . . . , Nξ − 1}, Sφi(j) ∈ [δ, δmax]
)

Thus, it is sufficient to prove that

P
(

∀j ∈ {0, . . . , N2mδmax
}, Sφi(j) ∈ [δ, δmax]

)

> 0.

We denote by pi this probability. Let us note that

pi =
∞
∑

l=1

P

(

(∀j ∈ {0, . . . , l}, Sφi(j) ∈ [δ, δmax]) ∩ (N2mδmax = l)
)

≥ P

(

(∀j ∈ {0, . . . , 2m}, Sφi(j) ∈ [δ, δmax]) ∩ (N2mδmax = 2m)
)

.

By denoting with gS the probability density describing the

random variable S one obtains

pi ≥
∫ δmax

δ

. . .

∫ δmax

δ

χ(tφi(2m−1)≤2mδmax<tφi(2m))g(b)db,

where g(b)db , gSφi(0)
(b0) . . . gSφi(2m)

(b2m)db0 . . . db2m
and tφi(2m) ,

∑2m
k=0 bk. Next, we remark that



10

χ(tφi(2m−1)≤2mδmax<tφi(2m)) = 1 if bk ∈ [δmin, δmax], ∀k ∈
{0, . . . , 2m} where δmin = max{δ, 2mδmax

2m+1 }. This yields

pi ≥
∫ δmax

δmin

. . .

∫ δmax

δmin

gSφi(0)
(b0) . . . gSφi(2m)

(b2m)db0 . . . db2m

=

2m
∏

k=0

P
(

Sφi(k) ∈ [δmin, δmax]
)

> 0

The last inequality follows from the last part of Remark 9.

VII. NUMERICAL EXAMPLES

In this section, we illustrate our main result (Theorem 9)

using two examples. The first example is based on a 5-agent

system with two clusters and help to clarify the dynamics of

the reset system presented in section II. In the second, exam-

ple, we take a more elaborate 30-agent system to illustrate the

various network topologies that our framework enables.

A. 5-agent system

In the following we consider a network of five agents

grouped in two clusters. The network structure satisfies As-

sumption 1 and is described by the following Laplacian matrix:

L =













3 0 −3 0 0
−1 1 0 0 0
−2 0 2 0 0
0 0 0 0 0
0 0 0 −1 1













which has a block diagonal structure corresponding to the two

clusters. Each cluster contains only one node able to interact

with agents outside its own cluster (node 1 in the first cluster

and node 4 in the second cluster). The weights of the inter-

cluster interactions are chosen as follows

P =













0.7 0 0 0.3 0
0 1 0 0 0
0 0 1 0 0

0.25 0 0 0.75 0
0 0 0 0 1













,

such that Assumption 3 holds. We point out that at reset times

tk either only one or both nodes 1 and 4 reset their state.

Therefore, the matrices P (tk) are either equal P or obtained

by replacing the first or forth line of P by (1, 0, 0, 0, 0) or

(0, 0, 0, 1, 0), respectively. Assumptions 4 and 2 are guaranteed

by the choice of δ = 4 and δmax = 8.

In Figure 1 we firstly emphasize the agreement of all five

agents. A zoom-in allows to point out that each impulsive

agent resets its state in its own rhythm and it may happen that

one of them resets twice between the reset times of the other.

B. 30-agent system

We now consider networks of 30 agents grouped in 3
clusters of similar size. We initialize the agents’ state so as

to enable visual distinction of the 3 clusters. The intra-cluster

network is randomly constructed to ensure that each cluster

contains a spanning tree (not necessarily unique). Potentially,

0 10 20 30 40 50 60 70 80 90
2
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6

7

8

9

time (s)

x(
t)

0 2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

time (s)

x(
t)

Fig. 1. Up: Consensus of the five agents grouped in 2 clusters. Down: Zoom
in pointing out that the resets are not synchronized.

several agents of the cluster are roots of spanning trees. In

a similar way, a network of inter-cluster links between the

roots of the clusters is constructed to ensure that a spanning

tree connects at least one of these roots to all others. This

guarantees that Assumption 1 is satisfied. For simplicity, the

intra-cluster weights in L and inter-cluster weights in P are

chosen constant. Also, we assume that all resets in a given

cluster occur synchronously but resets in different clusters may

happen asynchronously. We set the mininmum and maximum

inter-activation reset threshold to δ = 10 and δmax = 20,

respectively. In Figure 2 and 3 are displayed the trajectories of

the 30-agent system for two disctinct topologies. In Figure 2,

none of the agents in the top initial cluster (in blue) is

influenced by outer agents so that local consensus is quickly

reached in this cluster. The top cluster influences the bottom

cluster (in red) which in turn influences the middle cluster (in

green). Thus, the overall interaction network is not strongly

connected. The zoom-in view presented in the bottom figure
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shows that several agents reset their states in each cluster. The

exponential decrease of the global diameter takes place, as

expected thanks to Theorem 9. By contrast, Figure 3 presents

a case where the interaction network between the 3 clusters

is strongly connected : the top (blue) cluster is influenced by

the bottom (red) cluster, the bottom (red) cluster is influenced

by the middle (green) cluster and the middle (green) is itself

influenced by the top (blue) cluster. So, the overall interaction

network between clusters is a cycle. Once again, the diameter

exponentially converges to 0.

0 10 20 30 40 50 60 70 80 90
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60

80

100

120

time (s)

x(
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15 20 25 30 35 40 45 50 55

55
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65
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75

80

85

90

95

100

time (s)

x(
t)

Fig. 2. Top : Trajectory of the reset system (2) with 30 agents grouped in
3 clusters. The overall interaction network topology among cluster is a tree.
The top (blue) cluster influences the bottom (red) clusters which influences
the middle (green) cluster. Bottom : zoom-in of the trajectory.

VIII. CONCLUSIONS

In this paper we have studied the consensus in heteroge-

neous network containing both linear and linear impulsive

dynamics. Under appropriate assumptions, we have proven

that all subsystems agree and we have bounded above the

convergence speed. One requirement is related to a minimal

dwell-time separating two consecutive reset instants of the

same cluster. It is noteworthy that the reset instants of different

clusters are not synchronized meaning that no global dwell-

time is imposed between two consecutive reset instants in

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

time (s)

x(
t)

64 66 68 70 72 74

54.5

55

55.5

56

56.5

57

57.5

58

58.5

59

59.5

time (s)

x(
t)

Fig. 3. Top : Trajectory of the reset system (2) with 30 agents grouped in
3 clusters. The overall interaction network topology among cluster is a cycle.
The top (blue) cluster influences the middle (green) clusters which influences
the bottom (red) cluster which influences the top (blue) cluster. Bottom :
zoom-in of the trajectory.

the network. The consensus problem has been solved under

different strategies defining the reset sequence. Firstly we

considered a time-triggering strategy which imposes sufficient

assumptions for consensus. Secondly, we designed an event-

triggering reset rule and we proved that the proposed sufficient

assumptions for consensus are satisfied. Finally, we proved that

the reset sequence defined by a Poisson renewal process also

satisfies the proposed sufficient assumptions for consensus.

Some numerical examples illustrates the validity of the main

result ensuring consensus in the heterogeneous network under

study.
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