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In this paper, we establish uniform asymptotic certainty bands for the conditional cumulative distribution function. To this aim, we give exact rate of strong uniform consistency for the local linear estimator of this function. The corollaries of this result are the asymptotic certainty bands for the quantiles and the regression function. We illustrate our results with simulations and an application on fetopathologic data.

1. Introduction 1.1. Motivations. Consider (X, Y ), a random vector defined in R × R. Throughout, we work with a sample {(X i , Y i ) 1 i n } of independent and identically replica of (X, Y ). We will assume that (X, Y ) [resp. X] has a density function f X,Y [resp. f X ] with respect to the Lebesgue measure. In this paper, we will mostly focus on the conditional cumulative distribution function (cond-cdf) of Y given X = x, defined by:

∀t ∈ R, F (t|x) = E 1 {Y t} |X = x = P (Y t|X = x) . (1) 
Saying that, we are implicitly assuming the existence of a regular version for the conditional distribution of Y given X.

In this article, we study the conditional cumulative distribution function and a nonparametric estimator associated to this function.

The present paper is organized as follows. First, we introduce the local linear estimator of the cond-cdf, with the main notations and assumptions needed for our task. Then we establish an uniform law of the logarithm for the local linear estimator of the cond-cdf in Section 2. In Section 3, we show that limit laws of the logarithm are useful in the construction of uniform asymptotic certainty bands for the cond-cdf, the regression function and the conditional quantile function. Such certainty bands are obtained from simulations in Section 4 and from fetopathologic data in Section 5.

1.2. Notations and assumptions. Let (X 1 , Y 1 ), (X 2 , Y 2 ), . . . , be independent and identically distributed replica of (X,

Y ) in R × R. Let I = [a, b], J = [a ′ , b ′ ] I, two fixed compacts of R.
First, we impose the following set of assumptions upon the distribution of (X, Y ):

(F.1) f X,Y is continuous on J × R and f X is continuous and strictly positive on J;

(F.2) Y 1 {X∈J} is bounded on R. Remark 1.
(1) Under (F.1-2), the cond-cdf is well defined.

(2) The assumption (F.2) is very useful for the proof of our results. This boundedness assumption is common in non-parametric estimation. It ensures the existence of several moments of the cond-cdf.

K denotes a positive-valued kernel function defined on R, fulfilling the conditions: (K.1) K is right-continuous function with bounded variation on R;

(K.2) K is compactly supported and R K(u)du = 1; (K.3) R uK(u)du = 0 and R u 2 K(u)du = 0.
We note:

||K|| 2 2 = R K 2 (u)du.
Further, introduce the following assumptions on the non-random sequence (h n ) (

) 1 
The assumption (H.0) is necessary to define log(h

-1 n ) -1
(see later in our Theorem 2.1). (2) The assumptions (H.0-2) are necessary and sufficient for our uniform convergence in probability (see Theorem 2.1). ( 3) In order to have almost surely convergence results, we need the assumptions (H.3-4) (see Blondin [START_REF] Blondin | Lois limites uniformes et estimation non paramétrique de la régression[END_REF]). (4) The assumptions (H.0, H.2-4) are called the Csörgö-Révész-Stute assumptions. Our aim will be to establish the strong uniform consistency of the local linear estimator of the conditional cumulative distribution function, defined by:

F (1) n (t, h n |x) = f n,2 (x, h n ) r n,0 (x, t, h n ) -f n,1 (x, h n ) r n,1 (x, t, h n ) f n,0 (x, h n ) f n,2 (x, h n ) -f n,1 (x, h n ) 2 (2) 
where (1) denotes the order 1 of the local polynomial estimator, and

f n,j (x, h n ) = 1 nh n n i=1 x -X i h n j K x -X i h n , for j = 0, 1, 2, (3) 
r n,j (x, t, h n ) = 1 nh n n i=1 1 {Y i t} x -X i h n j K x -X i h n , for j = 0, 1. ( 4 
)
Remark 3.

(1) The Nadaraya-Watson estimator F (0) n (t, h n |x) can be also written with the functions f n,j and r n,j as

F (0) n (t, h n |x) = r n,0 (x, t, h n ) f n,0 (x, h n ) •
It is the local polynomial estimator of order 0 of the conditional cumulative distribution function.

(2) The estimator F

n (t, h n |x) is better than the Nadaraya-Watson estimator when the design is random and has the favorable property to reproduce polynomial of order 1. Precisely, the local linear estimator has a high minimax efficiency among all possible estimators, including nonlinear smoothers (see Fan and Gijbels [START_REF] Fan | Local polynomial modeling and its applications[END_REF]).

(3) We have state in the beginning of this Section that we restrict ourselves to the local polynomial estimator of order 1. The local polynomial estimator can be generalized to the orders p 2, but the equations become more complicated. We show briefly the form of the local polynomial estimator of order 2:

F (2) n (t, h n |x) = a 1 r n,0 (x, t, h n ) + a 2 r n,1 (x, t, h n ) + a 3 r n,2 (x, t, h n ) a 1 f n,0 (x, h n ) + a 2 f n,1 (x, h n ) + a 3 f n,2 (x, h n )
where

         a 1 = f n,2 (x, h n ) f n,4 (x, h n ) -f n,3 (x, h n ) 2 a 2 = f n,2 (x, h n ) f n,3 (x, h n ) -f n,1 (x, h n ) f n,4 (x, h n ) a 3 = f n,1 (x, h n ) f n,3 (x, h n ) -f n,2 (x, h n ) 2
and f n,3 , f n,4 and r n,2 are the direct extensions of the definitions given in the Equations ( 3) and ( 4). Note also that, it is not very interesting to study p 3, see Fan and Gijbels [START_REF] Fan | Local polynomial modeling and its applications[END_REF], pp. 20-22 and 77-80. The argument is that the mean square error increases with p.

Now, we study the consistency of the estimator F

(1) n (t, h n |x) via the following decomposition:

F (1) n (t, h n |x) -F (t|x) = F (1) n (t, h n |x) -E F (1) n (t, h n |x) (1) 
+ E F (1) n (t, h n |x) -F (t|x) (2) 
where, following the ideas of Deheuvels and Mason (see [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF]), the centering term is defined by:

E F (1) n (t, h n |x) = f n,2 (x, h n )r n,0 (x, t, h n ) -f n,1 (x, h n )r n,1 (x, t, h n ) f n,0 (x, h n )f n,2 (x, h n ) -f 2 n,1 (x, h n ) where f n,j (x, h n ) = E f n,j (x, h n ) for j = 0, 1, 2 and r n,j (x, t, h n ) = E ( r n,j (x, h n )) for j = 0, 1.
The random part (1) is the object of our theorem given in the following Section. Under (F.1-2), (H.1) and (K.1-3), the deterministic term (2), so-called bias, converges uniformly to 0 over (x, t) ∈ I × R.

Uniform consistency of the local linear estimator

We have now all the ingredients to state our main results. The uniform law of the logarithm concerning the local linear estimator of the cond-cdf, is given in Theorem 2.1 below.

Theorem 2.1. Under (F.1-2), (H.0-2) and (K.1-3), we have:

sup x∈I nh n log(h -1 n ) F (1) n (t, h n |x) -E F (1) n (t, h n |x) P -----→ n→+∞ σ F,t (I) ( 5 
)
where

σ 2 F,t (I) = 2||K|| 2 2 sup x∈I F (t|x)(1-F (t|x)) f X (x)
• Moreover, we have:

sup t∈R sup x∈I nh n log(h -1 n ) F (1) n (t, h n |x) -E F (1) n (t, h n |x) P -----→ n→+∞ σ F (I) ( 6 
)
where

σ 2 F (I) = 2||K|| 2 2 sup t∈R sup x∈I F (t|x)(1 -F (t|x)) f X (x) = ||K|| 2 2 2 inf x∈I f X (x) • Remark 4.
(1) The matching almost surely convergence result can also be obtained by assuming (H.2-4) instead of (H.0-2). ( 2) The terms σ F,t (I) and σ F (I) depend upon the unknown density f X . But it is a minor problem in practice, because, as shown in Deheuvels [START_REF] Deheuvels | Limit laws for kernel density estimators for kernels with unbounded supports[END_REF], and Deheuvels and Mason [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF], an application of Slutsky's Lemma allows us to replace, without loss of generality, this quantity by f n,0 (x, h n ) (or by any other estimator of f X (x) which is uniformly consistent on I). Indeed, under (F.1-2), (H.0-2), (K.1-3) we have sup x∈I f n,0 (x,hn)

f X (x) -1 P -----→ n→+∞ 0.
This last remark yields to the following corollary.

Corollary 1. Under (F.1-2), (H.0-2), (K.1-3), we have:

sup t∈R sup x∈I 2nh n K 2 2 log(h -1 n ) f n,0 (x, h n ) F (1) n (t, h n |x) -E F (1) n (t, h n |x) P -----→ n→+∞ 1• (7) 
We introduce the following quantity

L n (x) := 2nh n K 2 2 log(h -1 n ) f n,0 (x, h n ) -1
. We have noted at the end of the Section 1 that the bias part can be neglected, then we have the following proposition.

Proposition 1. Under (F.1-2), (H.0-2) and (K. [START_REF] Altman | Charts of fetal size: 1. Methodology[END_REF][START_REF] Berlinet | A comparison of kernel density estimates[END_REF][START_REF] Blondin | Lois limites uniformes et estimation non paramétrique de la régression[END_REF], and if h n is such that the bias term

sup t∈R sup x∈I {L n (x)} -1 F (t|x) -E F (1) 
n (t, h n |x) -----→ n→+∞ 0 then we have:

sup t∈R sup x∈I {L n (x)} -1 F (1) n (t, h n |x) -F (t|x) P -----→ n→+∞ 1. ( 8 
)
Remark 5.

(1) The matching almost surely convergence result can also be obtained by assuming (H.2-4) instead of (H.0-2). (2) For our applications in Sections 4 and 5, a reference choice for h n is given by minimizing the weighted Mean Integrated Square Error (MISE) criteria (see for instance Berlinet [START_REF] Berlinet | A comparison of kernel density estimates[END_REF], Deheuvels [START_REF] Deheuvels | Estimation non-paramétrique de la densité par histogramme généralisé[END_REF] or Deheuvels and Mason [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF]). A detailed discussion about the theoretical choice of this bandwidth is given in Ferrigno [START_REF] Ferrigno | Un test d'adéquation global pour la fonction de répartition conditionnelle[END_REF]. The asymptotically optimal constant bandwidth is given by:

h n = C(K, F, f X )n -1 5 .
(3) The choice of the kernel K is not important in practice. The most common used kernels are the Gaussian, the indicator function over [-1 2 , 1 2 ], and the Epanechnikov kernels (see for instance Deheuvels [START_REF] Deheuvels | Estimation non-paramétrique de la densité par histogramme généralisé[END_REF]). Note that the Gaussian kernel is not compactly supported, but our results can be extended to this case.

Uniform asymptotic certainty bands

3.1. Application to the cond-cdf. We show now how the Proposition 1 can be used to construct uniform asymptotic certainty bands for F (t|x), in the following sense. Under the assumptions of the Proposition 1, we have, for each 0 < ε < 1, and as n → +∞:

P F (t|x) ∈ F (1) n (t, h n |x) ± (1 + ε)L n (x) , for all (x, t) ∈ I × R → 1 (9) 
and

P F (t|x) ∈ F (1) n (t, h n |x) ± (1 -ε)L n (x) , for all (x, t) ∈ I × R → 0. ( 10 
)
Whenever ( 9) and ( 10) hold jointly for each 0 < ε < 1, we have the following corollary:

Corollary 2. Under (F.1-2), (H.0-2) and (K. [START_REF] Altman | Charts of fetal size: 1. Methodology[END_REF][START_REF] Berlinet | A comparison of kernel density estimates[END_REF][START_REF] Blondin | Lois limites uniformes et estimation non paramétrique de la régression[END_REF], and if h n is such that the bias term

sup t∈R sup x∈I {L n (x)} -1 |F (t, h n |x) -E F (1) n (t, h n |x) | -----→ n→+∞ 0 then the interval F (1) n (t, h n |x) ± L n (x) ( 11 
)
provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the cond-cdf F (t|x), uniformly in (x, t) ∈ I × R.

Remark 6.

(1) Probability convergence is sufficient for forming certainty bands, and requires less restrictive hypotheses on the bandwidth h n than the almost surely convergence results.

That is why we use only the probability convergence result of the Proposition 1.

(2) Following a suggestion of Deheuvels and Derzko [START_REF] Deheuvels | Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme[END_REF], we use, for these upper and lower bounds for F (t|x), the qualification of certainty bands, rather that of confidence bands, because there is no preassigned confidence level α ∈ (0, 1). Some authors (see for instance Deheuvels and Mason [START_REF] Deheuvels | General asymptotic confidence bands based on kernel-type function estimators[END_REF], or Blondin [START_REF] Blondin | Lois limites uniformes et estimation non paramétrique de la régression[END_REF]) have used the term confidence bands. (1)

n (x) = y F (1) 
n (dy, h n |x) its local linear estimator. The Proposition 1 has the following corollary for the regression function.

Corollary 3. Under (F.1-2), (H.0-2) and (K.1-3), and if h n is such that the bias term

sup t∈R sup x∈I {L n (x)} -1 F (t|x) -E F (1) n (t, h n |x) -----→ n→+∞ 0 and the variable Y lives in the real interval [α, β], then the interval m (1) n (x) ± (β -α)L n (x) ( 12 
)
provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the conditional regression function m(x), uniformly in x ∈ I.

3.3.

Application to the conditional quantiles. Let 0 < α < 1. We define the conditional α-quantile of the cond-cdf by: q α (x) = inf{t ∈ R : F (t|x) α}, for all α ∈ (0, 1).

The local linear estimator of the conditional α-quantile is defined by:

q (1) α,n (x) = inf{t ∈ R : F (1)
n (t, h n |x) α}, for all α ∈ (0, 1). The Proposition 1 has the following corollary for the conditional quantiles.

Corollary 4. Under (F.1-2), (H.0-2) and (K.1-3), if h n is such that the bias term

sup t∈R sup x∈I {L n (x)} -1 F (t|x) -E F (1) n (t, h n |x) -----→ n→+∞ 0 and if the function x → f X,Y (x, q α (x)) =
0 for all x ∈ I, then the interval

q (1) α,n (x) ± 2L n (x)f X (x) f X,Y (x, q α (x)) ( 13 
)
provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the conditional α-quantile q α (x), uniformly in x ∈ I.

Remark 7.

(1) The form of these certainty bands is not very useful in practice since the bounds depend upon the unknown conditional density

f Y |X (y|x) = f X,Y (x,y) f X (x)
• Nevertheless, this gives the order of the deviation q (1) α,n (x)q(x) .

(2) To give a more practical result, the idea is to replace the conditional density

f Y |X (q α (x)|x) by an estimator f Y |X q (1) α,n (x)|x such that sup x∈I f Y |X q (1) α,n (x)|x f Y |X (qα(x)|x) -1 P -----→ n→+∞ 0. This
is not the object of the present article, and will be presented in a future work. A review of kernel estimators for the conditional density is given for instance in [START_REF] Youndje | Contribution à l'estimation non-paramétrique par la méthode du noyau[END_REF][START_REF] Youndje | Convergence properties of the kernel estimator of conditional density[END_REF]. We can cite here the kernel estimator of Parzen-Rosenblatt [START_REF] Parzen | On estimation of a probability density function and mode[END_REF][START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF].

A simulation study

In this paragraph, the cond-cdf and the certainty bands introduced in Corollary 2 are constructed on simulated data. We considered the case: X ∼ N (0, 1) where N (0, 1) denotes the Gaussian distribution with mean 0 and standard deviation 1. We present two models:

( We worked with the sample sizes n = 100 and n = 500. For the kernel K, we opted for the Epanechnikov kernel. For the bandwidth, we selected h n = n -1/5 . The Figure 1 illustrates the results for the models (M 1 ) and (M 2 ) defined above. For each model, we give the graph of a sample (X i , Y i ) i=1,...,n , and the cond-cdf: the true function F (t|x) is in full line, whereas the estimated conditional distribution F The confidence bands appear to be adequate. The fact that the true function does not belong to our certainty bands for some points was expected: it is due to the ε term in Equations ( 9) and [START_REF] Guihard-Costa | Les variations des vitesses de croissance au cours de la vie foetale[END_REF]. For n = 500, the results are better than for n = 100.

Application in study of the fetal growth

The study is based on 3606 fetuses autopsied in fetopathologic units of the "Service de foetopathologie et de placentologie" of the Maternité Régionale Universitaire (CHU Nancy, France) between 1996 and 2013. From this dataset, 694 fetuses were carefully selected by exclusion of multiple pregnancies, malformed, macerated or serious ill fetuses, or those with chromosomal abnormalities.

The naive idea, classically used by the fetopathologists or the echographists (see for instance [START_REF] Altman | Charts of fetal size: 1. Methodology[END_REF], [START_REF] Royston | How to construct "normal ranges" for fetal variables[END_REF]), is to fit a parametric regression model

Y i = β 0 + β 1 X i + β 2 X 2
i + ǫ i with the assumptions that ǫ i , for i = 1, . . . , n are independent and follow the Gaussian distribution The result is shown on the left graph of the Figure 2. This method yields to several problems:

• We obtain heteroscedastic and non-Gaussian errors.

• Moreover, regarding the confidence intervals of the previsions, they show that the prevision uncertainty is not growing with the gestational week: this is not consistent with the medical intuition. • Another problem is that the global polynomial estimation can not enhance some changes in the growing curve of the fetal weight. For the fetopathologists, such changes are important as they correspond to delicate periods during the intrauterine growth. These change points can not been observed by a global estimation.

For these reasons, the local polynomial estimation is then a non-parametric alternative to the global parametric regression model.

We can conclude, by the observation of the right graph of the Figure 2:

• Our method gives the mean, the confidence intervals and the median weight. Satisfactorily, the confidence intervals show the growing of the prevision uncertainty with the gestational week. • We observe for instance a change point between the 20th and 25th gestational week on the 0.975 percentile curve. This change point corresponds to the viability date of the fetus. We can also remark a decrease of the growing speed around the 35th This has also been remarked in the medical article [START_REF] Guihard-Costa | Les variations des vitesses de croissance au cours de la vie foetale[END_REF], where it explained that this time corresponds to the regression (in the medical sense) of the placenta. More precise statistical tests to detect the change points of the fetal growth will be presented in a future work.

3. 2 .

 2 Application to the regression function. Let m(x) = E(Y |X = x) the regression function and m

1 )

 1 Y |X = x follows a Beta(a, b) distribution with shape parameters a = 1 and b = 1 + x 2 . (M 2 ) Y |X = x follows an Uniform distribution between -|x| and |x|.

( 1 )

 1 n (t, h n |x) is in black dashed line, and certainty bands in grey line, for x = 0 and 1.

Figure 1 .

 1 Figure 1. From top to bottom: models (M 1 ) and (M 2 ) for n = 100, and (M 1 ) and (M 2 ) for n = 500.

Figure 2 .

 2 Figure 2. Fetal weight during the pregnancy: estimation of mean and quantiles with the second order polynomial regression (left), and with the linear local method (right).
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