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CERTAINTY BANDS FOR THE CONDITIONAL CUMULATIVE

DISTRIBUTION FUNCTION AND APPLICATIONS

BY M. MAUMY-BERTRAND1 AND A. MULLER-GUEUDIN2

Abstract. In this paper, we establish uniform asymptotic certainty bands for the con-
ditional cumulative distribution function. To this aim, we give exact rate of strong
uniform consistency for the local linear estimator of this function. The corollaries of this
result are the asymptotic certainty bands for the quantiles and the regression function.
We illustrate our results with simulations and an application on fetopathologic data.
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1. Introduction

1.1. Motivations. Consider (X,Y ), a random vector defined in R× R. Throughout, we work
with a sample {(Xi, Yi)16i6n} of independent and identically replica of (X,Y ). We will assume
that (X,Y ) [resp. X] has a density function fX,Y [resp. fX ] with respect to the Lebesgue
measure. In this paper, we will mostly focus on the conditional cumulative distribution function
(cond-cdf) of Y given X = x, defined by:

∀t ∈ R, F (t|x) = E
(
1{Y 6t}|X = x

)
= P (Y 6 t|X = x) . (1)

Saying that, we are implicitly assuming the existence of a regular version for the conditional
distribution of Y given X.

In this article, we study the conditional cumulative distribution function and a nonparametric
estimator associated to this function.

The present paper is organized as follows. First, we introduce the local linear estimator of the
cond-cdf, with the main notations and assumptions needed for our task. Then we establish an
uniform law of the logarithm for the local linear estimator of the cond-cdf in Section 2. In Section
3, we show that limit laws of the logarithm are useful in the construction of uniform asymptotic
certainty bands for the cond-cdf, the regression function and the conditional quantile function.
Such certainty bands are obtained from simulations in Section 4 and from fetopathologic data
in Section 5.

1.2. Notations and assumptions. Let (X1, Y1), (X2, Y2), . . . , be independent and identically
distributed replica of (X,Y ) in R× R. Let I = [a, b], J = [a′, b′] ) I, two fixed compacts of R.

First, we impose the following set of assumptions upon the distribution of (X,Y ):

(F.1) fX,Y is continuous on J × R and fX is continuous and strictly positive on J ;
(F.2) Y 1{X∈J} is bounded on R.

1mmaumy@math.unistra.fr
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Remark 1.

(1) Under (F.1-2), the cond-cdf is well defined.
(2) The assumption (F.2) is very useful for the proof of our results. This boundedness

assumption is common in non-parametric estimation. It ensures the existence of several
moments of the cond-cdf.

K denotes a positive-valued kernel function defined on R, fulfilling the conditions:

(K.1) K is right-continuous function with bounded variation on R;
(K.2) K is compactly supported and

∫
R
K(u)du = 1;

(K.3)
∫
R
uK(u)du = 0 and

∫
R
u2K(u)du 6= 0.

We note: ||K||22 =
∫
R
K2(u)du.

Further, introduce the following assumptions on the non-random sequence (hn)n>1:

(H.0) for all n, 0 < hn < 1;
(H.1) hn → 0, as n → +∞;
(H.2) nhn/ log n → +∞, as n → +∞;
(H.3) hn ց 0 and nhn ր +∞, as n → +∞;
(H.4) log(h−1

n )/ log log n → +∞, as n → +∞.

Remark 2.

(1) The assumption (H.0) is necessary to define
√

log(h−1
n )

−1

(see later in our Theorem 2.1).

(2) The assumptions (H.0-2) are necessary and sufficient for our uniform convergence in
probability (see Theorem 2.1).

(3) In order to have almost surely convergence results, we need the assumptions (H.3-4) (see
Blondin [3]).

(4) The assumptions (H.0, H.2-4) are called the Csörgö-Révész-Stute assumptions.

Our aim will be to establish the strong uniform consistency of the local linear estimator of
the conditional cumulative distribution function, defined by:

F̂ (1)
n (t, hn|x) =

f̂n,2(x, hn)r̂n,0(x, t, hn)− f̂n,1(x, hn)r̂n,1(x, t, hn)

f̂n,0(x, hn)f̂n,2(x, hn)−
(
f̂n,1(x, hn)

)2 (2)

where (1) denotes the order 1 of the local polynomial estimator, and

f̂n,j(x, hn) =
1

nhn

n∑

i=1

(
x−Xi

hn

)j

K

(
x−Xi

hn

)
, for j = 0, 1, 2, (3)

r̂n,j(x, t, hn) =
1

nhn

n∑

i=1

1{Yi6t}

(
x−Xi

hn

)j

K

(
x−Xi

hn

)
, for j = 0, 1. (4)

Remark 3.

(1) The Nadaraya-Watson estimator F̂
(0)
n (t, hn|x) can be also written with the functions f̂n,j

and r̂n,j as

F̂ (0)
n (t, hn|x) =

r̂n,0(x, t, hn)

f̂n,0(x, hn)
·

It is the local polynomial estimator of order 0 of the conditional cumulative distribution
function.
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(2) The estimator F̂
(1)
n (t, hn|x) is better than the Nadaraya-Watson estimator when the

design is random and has the favorable property to reproduce polynomial of order 1.
Precisely, the local linear estimator has a high minimax efficiency among all possible
estimators, including nonlinear smoothers (see Fan and Gijbels [8]).

(3) We have state in the beginning of this Section that we restrict ourselves to the local
polynomial estimator of order 1. The local polynomial estimator can be generalized to
the orders p > 2, but the equations become more complicated. We show briefly the form
of the local polynomial estimator of order 2:

F̂ (2)
n (t, hn|x) =

a1r̂n,0(x, t, hn) + a2r̂n,1(x, t, hn) + a3r̂n,2(x, t, hn)

a1f̂n,0(x, hn) + a2f̂n,1(x, hn) + a3f̂n,2(x, hn)

where





a1 = f̂n,2(x, hn)f̂n,4(x, hn)−
(
f̂n,3(x, hn)

)2

a2 = f̂n,2(x, hn)f̂n,3(x, hn)− f̂n,1(x, hn)f̂n,4(x, hn)

a3 = f̂n,1(x, hn)f̂n,3(x, hn)−
(
f̂n,2(x, hn)

)2

and f̂n,3, f̂n,4 and r̂n,2 are the direct extensions of the definitions given in the Equations
(3) and (4). Note also that, it is not very interesting to study p > 3, see Fan and
Gijbels [8], pp. 20-22 and 77-80. The argument is that the mean square error increases
with p.

Now, we study the consistency of the estimator F̂
(1)
n (t, hn|x) via the following decomposition:

F̂ (1)
n (t, hn|x)− F (t|x) = F̂ (1)

n (t, hn|x)− Ê
(
F̂ (1)
n (t, hn|x)

)

︸ ︷︷ ︸
(1)

+ Ê
(
F̂ (1)
n (t, hn|x)

)
− F (t|x)

︸ ︷︷ ︸
(2)

where, following the ideas of Deheuvels and Mason (see [7]), the centering term is defined by:

Ê
(
F̂ (1)
n (t, hn|x)

)
=

fn,2(x, hn)rn,0(x, t, hn)− fn,1(x, hn)rn,1(x, t, hn)

fn,0(x, hn)fn,2(x, hn)− f2
n,1(x, hn)

where fn,j(x, hn) = E
(
f̂n,j(x, hn)

)
for j = 0, 1, 2 and rn,j(x, t, hn) = E (r̂n,j(x, hn)) for j = 0, 1.

The random part (1) is the object of our theorem given in the following Section. Under (F.1-
2), (H.1) and (K.1-3), the deterministic term (2), so-called bias, converges uniformly to 0 over
(x, t) ∈ I × R.

2. Uniform consistency of the local linear estimator

We have now all the ingredients to state our main results. The uniform law of the logarithm
concerning the local linear estimator of the cond-cdf, is given in Theorem 2.1 below.

Theorem 2.1. Under (F.1-2), (H.0-2) and (K.1-3), we have:

sup
x∈I

√
nhn

log(h−1
n )

∣∣∣F̂ (1)
n (t, hn|x)− Ê

(
F̂ (1)
n (t, hn|x)

)∣∣∣ P
−−−−−→
n→+∞

σF,t(I) (5)

where σ2
F,t(I) = 2||K||22 supx∈I

(
F (t|x)(1−F (t|x))

fX(x)

)
·

Moreover, we have:

sup
t∈R

sup
x∈I

√
nhn

log(h−1
n )

∣∣∣F̂ (1)
n (t, hn|x)− Ê

(
F̂ (1)
n (t, hn|x)

)∣∣∣ P
−−−−−→
n→+∞

σF (I) (6)
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where

σ2
F (I) = 2||K||22 sup

t∈R
sup
x∈I

(
F (t|x)(1− F (t|x))

fX(x)

)
=

||K||22
2 inf
x∈I

fX(x)
·

Remark 4.

(1) The matching almost surely convergence result can also be obtained by assuming (H.2-4)
instead of (H.0-2).

(2) The terms σF,t(I) and σF (I) depend upon the unknown density fX . But it is a minor
problem in practice, because, as shown in Deheuvels [5], and Deheuvels and Mason [7],
an application of Slutsky’s Lemma allows us to replace, without loss of generality, this

quantity by f̂n,0(x, hn) (or by any other estimator of fX(x) which is uniformly consistent

on I). Indeed, under (F.1-2), (H.0-2), (K.1-3) we have supx∈I

∣∣∣ f̂n,0(x,hn)
fX(x) − 1

∣∣∣ P
−−−−−→
n→+∞

0.

This last remark yields to the following corollary.

Corollary 1. Under (F.1-2), (H.0-2), (K.1-3), we have:

sup
t∈R

sup
x∈I

√
2nhn

‖K‖22 log(h
−1
n )

f̂n,0(x, hn)
∣∣∣F̂ (1)

n (t, hn|x)− Ê
(
F̂ (1)
n (t, hn|x)

)∣∣∣ P
−−−−−→
n→+∞

1· (7)

We introduce the following quantity Ln(x) :=

√
2nhn

‖K‖22 log(h
−1
n )

f̂n,0(x, hn)

−1

. We have noted

at the end of the Section 1 that the bias part can be neglected, then we have the following
proposition.

Proposition 1. Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}
−1

∣∣∣F (t|x)− Ê
(
F̂

(1)
n (t, hn|x)

)∣∣∣ −−−−−→
n→+∞

0 then we have:

sup
t∈R

sup
x∈I

{Ln(x)}
−1

∣∣∣F̂ (1)
n (t, hn|x)− F (t|x)

∣∣∣ P
−−−−−→
n→+∞

1. (8)

Remark 5.

(1) The matching almost surely convergence result can also be obtained by assuming (H.2-4)
instead of (H.0-2).

(2) For our applications in Sections 4 and 5, a reference choice for hn is given by minimizing
the weighted Mean Integrated Square Error (MISE) criteria (see for instance Berlinet [2],
Deheuvels [4] or Deheuvels and Mason [7]). A detailed discussion about the theoretical
choice of this bandwidth is given in Ferrigno [9]. The asymptotically optimal constant
bandwidth is given by:

hn = C(K,F, fX)n− 1
5 .

(3) The choice of the kernel K is not important in practice. The most common used kernels
are the Gaussian, the indicator function over [−1

2 ,
1
2 ], and the Epanechnikov kernels (see

for instance Deheuvels [4]). Note that the Gaussian kernel is not compactly supported,
but our results can be extended to this case.
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3. Uniform asymptotic certainty bands

3.1. Application to the cond-cdf. We show now how the Proposition 1 can be used to construct
uniform asymptotic certainty bands for F (t|x), in the following sense. Under the assumptions
of the Proposition 1, we have, for each 0 < ε < 1, and as n → +∞:

P
{
F (t|x) ∈

[
F̂ (1)
n (t, hn|x)± (1 + ε)Ln(x)

]
, for all (x, t) ∈ I × R

}
→ 1 (9)

and

P
{
F (t|x) ∈

[
F̂ (1)
n (t, hn|x)± (1− ε)Ln(x)

]
, for all (x, t) ∈ I × R

}
→ 0. (10)

Whenever (9) and (10) hold jointly for each 0 < ε < 1, we have the following corollary:

Corollary 2. Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}
−1|F (t, hn|x)− Ê

(
F̂

(1)
n (t, hn|x)

)
| −−−−−→

n→+∞
0 then the interval

[
F̂ (1)
n (t, hn|x)± Ln(x)

]
(11)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the
cond-cdf F (t|x), uniformly in (x, t) ∈ I × R.

Remark 6.

(1) Probability convergence is sufficient for forming certainty bands, and requires less re-
strictive hypotheses on the bandwidth hn than the almost surely convergence results.
That is why we use only the probability convergence result of the Proposition 1.

(2) Following a suggestion of Deheuvels and Derzko [6], we use, for these upper and lower
bounds for F (t|x), the qualification of certainty bands, rather that of confidence bands,
because there is no preassigned confidence level α ∈ (0, 1). Some authors (see for instance
Deheuvels and Mason [7], or Blondin [3]) have used the term confidence bands.

3.2. Application to the regression function. Let m(x) = E(Y |X = x) the regression func-

tion and m̂
(1)
n (x) =

∫
yF̂

(1)
n (dy, hn|x) its local linear estimator. The Proposition 1 has the

following corollary for the regression function.

Corollary 3. Under (F.1-2), (H.0-2) and (K.1-3), and if hn is such that the bias term

supt∈R supx∈I{Ln(x)}
−1

∣∣∣F (t|x)− Ê
(
F̂

(1)
n (t, hn|x)

)∣∣∣ −−−−−→
n→+∞

0 and the variable Y lives in the

real interval [α, β], then the interval
[
m̂(1)

n (x)± (β − α)Ln(x)
]

(12)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the
conditional regression function m(x), uniformly in x ∈ I.

3.3. Application to the conditional quantiles. Let 0 < α < 1. We define the conditional
α-quantile of the cond-cdf by:

qα(x) = inf{t ∈ R : F (t|x) > α}, for all α ∈ (0, 1).

The local linear estimator of the conditional α-quantile is defined by:

q̂(1)α,n(x) = inf{t ∈ R : F̂ (1)
n (t, hn|x) > α}, for all α ∈ (0, 1).

The Proposition 1 has the following corollary for the conditional quantiles.
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Corollary 4. Under (F.1-2), (H.0-2) and (K.1-3), if hn is such that the bias term

supt∈R supx∈I{Ln(x)}
−1

∣∣∣F (t|x)− Ê
(
F̂

(1)
n (t, hn|x)

)∣∣∣ −−−−−→
n→+∞

0 and if the function x 7→ fX,Y (x, qα(x)) 6=

0 for all x ∈ I, then the interval
[
q̂(1)α,n(x)±

2Ln(x)fX(x)

fX,Y (x, qα(x))

]
(13)

provides uniform asymptotic certainty bands (at an asymptotic confidence level of 100%) for the
conditional α-quantile qα(x), uniformly in x ∈ I.

Remark 7.

(1) The form of these certainty bands is not very useful in practice since the bounds depend

upon the unknown conditional density fY |X(y|x) =
fX,Y (x,y)
fX(x) · Nevertheless, this gives

the order of the deviation
∣∣∣q̂(1)α,n(x)− q(x)

∣∣∣.
(2) To give a more practical result, the idea is to replace the conditional density fY |X(qα(x)|x)

by an estimator f̂Y |X

(
q̂
(1)
α,n(x)|x

)
such that supx∈I

∣∣∣∣∣
f̂Y |X

(
q̂
(1)
α,n(x)|x

)

fY |X(qα(x)|x)
− 1

∣∣∣∣∣
P

−−−−−→
n→+∞

0. This

is not the object of the present article, and will be presented in a future work. A review
of kernel estimators for the conditional density is given for instance in [15, 14]. We can
cite here the kernel estimator of Parzen-Rosenblatt [11, 12].

4. A simulation study

In this paragraph, the cond-cdf and the certainty bands introduced in Corollary 2 are con-
structed on simulated data. We considered the case: X ∼ N (0, 1) where N (0, 1) denotes the
Gaussian distribution with mean 0 and standard deviation 1. We present two models:

(M1) Y |X = x follows a Beta(a, b) distribution with shape parameters a = 1 and b = 1 + x2.
(M2) Y |X = x follows an Uniform distribution between −|x| and |x|.

We worked with the sample sizes n = 100 and n = 500. For the kernel K, we opted for the
Epanechnikov kernel. For the bandwidth, we selected hn = n−1/5. The Figure 1 illustrates the
results for the models (M1) and (M2) defined above. For each model, we give the graph of a
sample (Xi, Yi)i=1,...,n, and the cond-cdf: the true function F (t|x) is in full line, whereas the

estimated conditional distribution F̂
(1)
n (t, hn|x) is in black dashed line, and certainty bands in

grey line, for x = 0 and 1.
The confidence bands appear to be adequate. The fact that the true function does not belong

to our certainty bands for some points was expected: it is due to the ε term in Equations (9)
and (10). For n = 500, the results are better than for n = 100.

5. Application in study of the fetal growth

The study is based on 3606 fetuses autopsied in fetopathologic units of the ”Service de foe-
topathologie et de placentologie” of the Maternité Régionale Universitaire (CHU Nancy, France)
between 1996 and 2013. From this dataset, 694 fetuses were carefully selected by exclusion of
multiple pregnancies, malformed, macerated or serious ill fetuses, or those with chromosomal
abnormalities.

The naive idea, classically used by the fetopathologists or the echographists (see for in-
stance [1], [13]), is to fit a parametric regression model Yi = β0 + β1Xi + β2X

2
i + ǫi with

the assumptions that ǫi, for i = 1, . . . , n are independent and follow the Gaussian distribution
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Figure 1. From top to bottom: models (M1) and (M2) for n = 100, and
(M1) and (M2) for n = 500.

N (0, σ). The parameters β0, β1, β2, σ are estimated by the least squares method. We use the R

2.15.1 function lm.
The result is shown on the left graph of the Figure 2. This method yields to several problems:

• We obtain heteroscedastic and non-Gaussian errors.
• Moreover, regarding the confidence intervals of the previsions, they show that the pre-
vision uncertainty is not growing with the gestational week: this is not consistent with
the medical intuition.

• Another problem is that the global polynomial estimation can not enhance some changes
in the growing curve of the fetal weight. For the fetopathologists, such changes are
important as they correspond to delicate periods during the intrauterine growth. These
change points can not been observed by a global estimation.

For these reasons, the local polynomial estimation is then a non-parametric alternative to the
global parametric regression model.

We can conclude, by the observation of the right graph of the Figure 2:

• Our method gives the mean, the confidence intervals and the median weight. Satisfac-
torily, the confidence intervals show the growing of the prevision uncertainty with the
gestational week.

• We observe for instance a change point between the 20th and 25th gestational week
on the 0.975 percentile curve. This change point corresponds to the viability date of
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Figure 2. Fetal weight during the pregnancy: estimation of mean and
quantiles with the second order polynomial regression (left), and with the
linear local method (right).

the fetus. We can also remark a decrease of the growing speed around the 35th week.
This has also been remarked in the medical article [10], where it is explained that this
time corresponds to the regression (in the medical sense) of the placenta. More precise
statistical tests to detect the change points of the fetal growth will be presented in a
future work.
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