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Abstract–Low-dose CT (LDCT) images are often severely 

degraded by amplified mottle noise and streak artifacts. These 

artifacts are often hard to suppress without introducing tissue 

blurring effects. In this paper, we propose to process LDCT 

images using a novel image-domain algorithm called “artifact 

suppressed dictionary learning (ASDL)”. In this ASDL method, 

orientation and scale information on artifacts is exploited to train 

artifact atoms, which are then combined with tissue feature 

atoms to build three discriminative dictionaries. The streak 

artifacts are cancelled via a discriminative sparse representation 

(DSR) operation based on these dictionaries. Then, a general 

dictionary learning (DL) processing is applied to further reduce 

the noise and residual artifacts. Qualitative and quantitative 

evaluations on a large set of abdominal and mediastinum CT 

images are carried out and the results show that the proposed 

method can be efficiently applied in most current CT systems. 

 

Index Terms—Low-dose CT (LDCT), dictionary learning, 

noise, artifact suppression, artifact suppressed dictionary 

learning algorithm (ASDL) 

I. INTRODUCTION 

The radiation doses delivered to patients during X-ray 

computed tomography (CT) examinations are relatively high 

when compared with other radiological examinations [1]. The 

scanning parameters determining CT radiation dose include 

scanner geometry, tube current and voltage, scanning modes, 

length, collimation, table speed and pitch, and gantry rotation 

time and shielding [2]. Low dose scanning protocols (e.g. 

lowered mA (milliampere)/mAs (milliampere second) settings) 
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often lead to degraded reconstructed images with increased 

mottle noise and non-stationary streak artifacts [2–3]. 

Suppressing artifacts in low-dose CT (LDCT) images is rather 

challenging because most artifacts have position-dependent 

distributions and amplitudes similar to those of normal 

attenuating structures. Often with relatively prominent 

intensity features, artifacts can significantly decrease the 

discrimination of normal or pathological tissues. Current 

solutions to improve the quality of LDCT images can be 

roughly divided into three categories: pre-processing 

approaches, iterative reconstruction algorithms and 

post-processing methods. 

The first one refers to those techniques that restore the 

projected raw data before performing standard FBP 

reconstructions. Adaptive filtering, multiscale penalized 

weighted least-squares filtering and bilateral filtering were 

respectively proposed in [3-5] to suppress the excessive 

quantum noise in projected raw data. Iterative reconstruction 

approaches consider the LDCT imaging as an ill-posed inverse 

problem, and solve the problem via the maximization or the 

minimization of a prior-regularized cost function using 

iterative type optimizations [6-18]. Many edge-preserving 

priors have been proposed in the past decade, for example the 

q-generalized Gaussian MRF (q-GGMRF) prior [8], the Huber 

prior [9], the total-variation (TV) based priors [10-12], the 

similarity based nonlocal priors in [13-14], and the normal 

image introduced priors for the prior image constrained 

compressed sensing (PICCS) algorithm in [15-18]. All these 

iterative methods can provide higher quality reconstructed CT 

images by incorporating image prior information into 

optimization. Effective clinical applications in LDCT have 

been reported for the total-variation prior (or regularization) 

based reconstruction, the PICCS algorithm and the adaptive 

statistical iterative reconstruction (ASIR) [19]. However, due 

to the often unavailability of well-formatted projection data 

from the main CT vendors, research and practical applications 

in this direction are sometimes limited. 

Our study falls into the scope of the third category, 

post-processing methods, which can be directly applied on 

filtered back-projection (FBP) reconstructed CT images to 

suppress noise and artifacts. Post-processing methods have 

good practical applicability considering most equipped CT 

scanners are based on FBP algorithms. The key issue when 

applying post-processing on LDCT images is to obtain images 

with an overall perceptual quality close to the corresponding 

SDCT (standard-dose CT) images, and to ensure that neither 

important structures are lost nor new artifacts introduced. 
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However, the back-projection process in FBP algorithms 

distributes non-stationary noise and artifacts over the whole 

CT image. These mottle noise and streak artifacts do not obey 

to specific distribution models and are difficult to remove. In 

the past decade, some techniques have been proposed for 

improving the quality of LDCT images. In [20-21], several 

noise reduction filters were proposed to enhance the 

conspicuity of lesions in abdomen LDCT images. In [22], a 

large-scale nonlocal means (LNLM) filter was applied to 

improve abdomen LDCT images with hepatic cysts by 

exploiting the large-scale structure similarity information. This 

LNLM method was further combined with a multiscale 

directional diffusion scheme to reduce streak artifacts in 

thoracic CT images [23]. 

A growing interest has been recently observed on sparse 

representations using dictionary learning (DL) [24-31]. Sparse 

representation and dictionary learning are closely related to 

each other in the framework of compress sensing theory. 

Compared to other restoration methods based on pixel-wise 

intensity update, patch-wise DL processing enables a more 

effective representation of patch-shaped features such as 

tumors or organs. Some successful applications in medical 

imaging have been explored for DL approaches. They 

concerned undersampled MRI image reconstruction [32], 

resolution enhancement [33], interior tomography [34], DL 

constrained iterative LDCT reconstruction [35], 3-D medical 

image denoising [36], few-views tomography [9-11, 15-17, 

37], spectral CT [38] and abdomen LDCT image processing 

[39]. It has been widely accepted that the TV based 

reconstruction can also be considered a typical tomographic 

application of compressed sensing theory [9, 11,15, 37]. 

Though effective in representing patch-shaped features in 

LDCT image processing, the general DL based processing is 

ineffective in suppressing streak artifacts because the 

prominence of both orientation and intensity features in 

artifacts can lead to the same large sparse coefficients as 

normal tissue features in sparse coding. We will illustrate this 

in the following section. To overcome this, we propose an 

image-domain approach called artifact suppressed dictionary 

learning algorithm (ASDL) to improve LDCT images. The 

ASDL algorithm includes two steps, and performs noise and 

artifact reduction at different scales. In the first step, streak 

artifacts in LDCT images are suppressed by means of a 

discriminative sparse coding in high frequency bands. Three 

novel discriminative dictionaries are respectively designed to 

characterize artifact and normal tissue feature components in 

different orientations. Then, the second step makes use of the 

general DL processing to further suppress the noise and 

residual artifacts. Experiments on both abdominal and 

mediastinum data were conducted to show the improvements 

in image quality brought by the proposed algorithm. The 

structure of this paper is as follows: In section II, we describe 

the general DL algorithm and the proposed algorithm. 

Experimental settings and results are given and discussed in 

section III. Conclusions and plans for future work are sketched 

in section IV. 

II. METHOD 

A. The General Dictionary Learning Based Processing 

Assuming the patches in the target LDCT image sparsely 

representable, DL based patch processing can be carried out 

by coding each patch as a linear combination of only a few 

patches in the dictionary [23-24]. This method finds the best 

global over-complete dictionary and represents each image 

patch as a linear combination of a few dictionary vectors 

(atoms). The coefficients of the linear combination can be 

estimated through the sparse coding process described in [25]. 

Based on the terminology used in [26-27], the DL based patch 

processing aims to solve the following problem: 
22
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  min ij ij ij ij

x D
ij ij

x Dx y Rα λ µ α α+ −+− ∑ ∑    (1) 

Where, x and y denote respectively the m-pixel in the 

processed image and in the original LDCT image. The 

subscript ij indexes each image pixel index (i, j). ijR  

represents the operator that extracts the patch ij
x  of size 

n n×  (centered at (i, j)) from image x . The patch-based 

dictionary D  is a n K× matrix, which is composed of K  

n-vector atoms (columns). Each n-vector column corresponds 

to one n n×  patch. α denotes the coefficient set { }ij
ij

α  for 

all the sparse representations of patches, and each patch can be 

approximated by a linear combination 
0

|| ||ij ijDα α⋅ denotes the 

0l  norm that counts the nonzero entries of vector ijα . Based 

on [28], solving Eq. (1) includes the following two steps 

including Eq. (2) and Eq. (3): 
2
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Eq. (2) aims to train the coefficients α  and dictionary D  

from a set of image patches and can be efficiently solved by 

the K-means Singular Value Decomposition (K-SVD) with the 

replacement of x  by the known observed image y  [28]. 

Starting from an initial dictionary (e.g. the DCT dictionary, 

which is obtained by sampling the cosine wave functions in 

different frequencies), this K-SVD operation estimates α  

and D  by alternatively applying two steps: (i) the Sparse 

Coding Step using the orthogonal matching pursuit (OMP) 

algorithm and (ii) the Dictionary Update Step based on SVD 

decomposition. The columns of the target dictionary D are 

constrained to be of unit norm to avoid scaling ambiguity in 

calculation [28]. The ε  in Eq. (2) denotes the tolerance 

parameter used in calculating α  by the OMP method and is 

modulated with respect to the level of noise/artifact level. L 

limits the number of atoms in the representation of each patch. 

Parameter L in Eq. (2) ensures that the atom number does not 

exceed a certain number in each representation, even if the 

tolerance constraint is not met. Then, with fixed dictionary D  

and α , we can obtain the output image x  by solving Eq. (3) 

through zeroing the first order derivative of Eq. (3) with 

respect to image x:  
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The dictionary can also be pre-trained from a typical SDCT 

image before LDCT processing. It has been validated in [39] 

that a global dictionary can lead to almost the same result as 

the dictionary trained from the LDCT image itself. Besides, 

using a pre-trained dictionary will save considerable 

computation cost in the overall processing. With a 

pre-calculated dictionary 
pD

 
(obtained via solving Eq.(2) 

using some other SDCT images) chosen as the global 

dictionary, the whole DL processing can be transformed into 

the following two steps: 

0

2
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Here, the sparse coefficient α can be solved via Eq. (5) using 

the OMP algorithm. The image x  in Eq.(6) can be calculated 

via above Eq. (4).  

As pointed out above, streak artifacts are found hard to be 

suppressed via the DL method. Fig.1(b) illustrates one typical 

LDCT image section with strong artifacts, and Fig.1(c) is the 

result of the DL processing using the global dictionary in Fig.1 

(a). Parameters in the DL method were adjusted to provide the 

best visual result in terms of noise/artifact suppression and 

structure preservation. In the DL processed LDCT image in 

Fig.1(c) we can observe obvious residual artifacts. Applying 

more aggressive parameters to remove all the artifacts would 

lead to blurred details.  

 

Fig.1 (a), the global dictionary trained from a typical SDCT image; (b), one 

typical LDCT image section with strong streak artifacts; (c), the 
corresponding DL processed LDCT image section. 

B. Artifact Suppressed Dictionary Learning Algorithm 

The assumption for the general DL algorithm relies on the 

fact that normal tissue structures always lead to significantly 

larger sparse coefficients than such undesirable features as 

noise or artifacts. Unfortunately, using the feature dictionary 

atoms showed in Fig.1(a), streak artifacts in LDCT images can 

also be linked to large sparse coefficients, and are thus hard to 

be differentiated from normal anatomical structures in the 

general DL processing.  

Fig.2 illustrates the high frequency bands of one typical 

LDCT abdomen image and the corresponding SDCT image 

from the best matched slice in another SDCT scan. We can see 

in Fig.2 that most streak artifacts show directional and 

oscillating patterns in high frequency domain. Better artifact 

suppression can be expected if it is performed for different 

orientations in high frequency domain. Also, the directional 

features of artifact can be used to build specific atoms to get a 

discriminative processing in sparse representation. From these 

intuitive observations, we propose in this paper a ASDL 

(b) 

(c) 

(a) 

Fig.2 (a1) is one typical LDCT image; (a2)-(a4) are the horizontal, vertical 

and diagonal high frequency bands of the LDCT image, repectively; (b1) is 
the corresponding SDCT image, and (b2)-(b4) are the corresponding high 

frequency bands of the SDCT image. 

(a4) 

(a2) 

(a3) 

(b4) 

(b2) 

(b3) 

(a1) (b1) 



approach based on a novel concept of discriminative 

dictionary. The idea behind discriminative dictionary is to 

obtain an integrated dictionary containing both artifact atoms 

and normal tissue feature atoms, which can be independently 

trained from pre-selected artifact and feature samples. 

Effective artifact suppression can then be achieved by simply 

setting those artifact sparse coefficients (related to artifact 

atoms) to zero in the image solving step in Eq.(6). This 

operation is named Discriminative Sparse Representation 

(DSR).  

The stationary wavelet transform (SWT) is used in this 

work to preserve translation-invariance in decomposing the 

LDCT images into two scales (high frequency scale and low 

frequency scale). The high frequency scale includes the three 

bands for horizontal, vertical and diagonal orientations. It is 

found the three orientation bands in high frequency scale can 

well represent most high frequency artifact components. The 

Haar wavelet is here used in SWT for it is fast and found to 

suffer less from the so-called “ringing” or pseudo-Gibbs 

artifacts than other wavelet forms with wider filter bases [22]. 

We first construct artifact samples (as given in Fig.3(b), (d) 

and (f)) by manually extracting artifact patches from ten 

typical abdomen LDCT images in the three high frequency 

bands. Artifact patches were first carefully selected under the 

guidance of an experienced doctor (X.D.Y. with 15 years of 

experience) from background regions in the original LDCT 

image to avoid the inclusion of image details. Considering that 

translation-invariance (point to point correspondence) is well 

preserved in SWT, we can easily obtain the background 

regions in wavelet domain by choosing exactly the same 

background regions specified in the original image. From 

Fig.4 Illustration of the discriminative dictionaries for the high frequency 

bands with different orientations. The first, second and third row show the 

concatenated dictionaries , and  for horizontal, vertical and 

diagonal bands, respectively. 

 

Horizontal 

Vertical 

Diagonal 

Fig.3 Demonstration of the training samples in this study. (a) is one 
typical SDCT image. (b), (d) and (f) are the extracted artifact samples in 

the three high frequency bands collected from ten typical LDCT images; 

(c), (e) and (g) are the corresponding high frequency feature samples 
extracted from the SDCT image in (a). 

(b) (c) 

(d) (e) 

(f) (g) 

(a) 



these artifact patches, we trained three artifact dictionaries
a

chdD ,
a

cvdD  and 
a

cddD  for the three bands. Also, we trained 

three tissue feature dictionaries 
f

cvdD , 
f

cvdD  and 
f

cddD  

using the high frequency bands (as given in Fig.3(c), (e) and 

(g)) obtained from one typical SDCT images (as given in 

Fig.2(a)). The K-SVD algorithm in [28] is used to train the 

dictionaries via solving Eq.(2) and Eq.(3). Three 

discriminative dictionaries (
d

chdD ,
d

cvdD  and 
d

cddD ) can be 

built by concatenating the artifact and feature dictionaries: 

[ | ],d a f

chd chd chdD D D= [ | ]d a f

cvd cvd cvdD D D=  and [ | ]=d a f

cdd cdd cdd
D D D . In 

this study, as illustrated in Fig.3, the cardinals of feature and 

artifact dictionaries are both set to 450 (M=450) to guarantee 

redundancy in sparse representation.  

We can see in Fig.4 that all the discriminative dictionaries 

include both the artifact atoms (left part, from artifact 

dictionary) and the feature atoms (right part, from feature 

dictionary). The orientation and textural information for image 

features and artifacts can be distinctly observed in Fig.3. Then, 

given the discriminative dictionaries displayed in Fig.4, the 

overall ASDL algorithm is implemented based on the 

flowchart in Fig.5 and the outline in Fig.6. The original LDCT 

image is first decomposed via SWT into three high frequency 

bands chd
f , cvd

f , cdd
f  and one low frequency band ca

f . In the 

DSR operation with the discriminative dictionaries 
d

chdD ,
d

cvdD  and 
d

cddD , tissue features are prominently related to 

sparse coefficients from feature atoms whereas artifact 

features to sparse coefficients from artifact atoms. Artifact 

suppression is performed by setting the first M coefficients 

linked to artifact atoms in discriminative dictionaries to zero. 

Then the artifact suppressed bands chd
f , cvd

f , cdd
f  are built via 

the same way given in Eq.(4). In this process, tissue features 

can be well preserved because the sparse coefficients related 

to feature atoms are kept. Following the artifact suppression 

step for high frequency bands, the Inverse Stationary Wavelet 

Transform (ISWT) with Haar wavelet is carried out to retrieve 

the artifact-suppressed image from the artifact suppressed high 

frequency bands and the original low frequency band. The 

final restored image can be obtained by applying the general 

DL processing on the artifact suppressed image via above 

Eq.(2)-(4) to deal with noise and residual artifacts. 

It is found in Fig.4 that the trained artifact dictionaries are 

composed mostly by the atoms characterizing artifact features. 

Nevertheless, some image feature information (e.g. fine edges) 

can be introduced into artifact dictionaries, which leads to 

suppressed image features. Subtraction between LDCT and 

SDCT images of a static anthropopathic phantom might give 

more exclusive artifact samples for training. But we currently 

do not have such anthropopathic phantoms, and a simple 

modularized phantom cannot provide CT images with the 

artifact textures in clinical patient images. 

Training Discriminative Dictionaries: train three 

artifact dictionaries 
a

chdD ,
a

cvdD  and 
a

cddD  from 

extracted artifact samples and three feature dictionaries 
f

chdD , 
f

cvdD  and 
f

cddD  from extracted feature samples 

using the K-SVD algorithm. Two kinds of dictionaries 

are then merged into three discriminative dictionaries 

[ | ],d a f

chd chd chdD D D= [ | ],d a f

cvd cvd cvdD D D= [ | ]d a f

cdd cdd cddD D D= . 

Suppressing Artifacts: 

 Loop: repeat T times 

 Image Decomposition: perform stationary wavelet 

decomposition on the original LDCT image f , in 

order to get the high frequency bands chd
f , cvd

f , cdd
f  

and low frequency band ca
f . 

 Sparse Coding: with 
d

chdD , 
d

cvdD  and 
d

cddD , calculate the corresponding sparse 

coefficients chd
α , cvd

α and cdd
α  for chd

f , cvd
f  and 

cdd
f  using OMP method. 

 Artifact Suppression: set the first M rows of chd
α , 

cvd
α and cdd

α  to zero and obtain 
pα = [

p

chdα ,
p

cvdα ,
p

cddα ]. Then compute the artifact suppressed band 

images chd
f , cvd

f , cdd
f  as 

1

    
T T p

ij ij

ij ij
ij ij

I R R y R Dλ λ α
−
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 Inverse Wavelet Transformation: build artifact 

suppressed image f  from chd
f , cvd

f , cdd
f  and ca

f . 

Suppressing noise and residual artifacts: apply the 

general DL algorithm to suppress the residual noise and 

artifacts in f  and obtain the final processed LDCT 

image f̂ . 

Fig.6 Outline of the ASDL algorithm. 

Though different artifact samples lead to different trained 

dictionary atoms, the artifacts in LDCT images for different 

Fig.5 The flowchart of the proposed ASDL method. � denotes the input degraded LDCT image. ��� denotes the decomposed low frequency band. ��ℎ�, ����, ���� and ��̅ℎ�, ��̅��, ��̅�� respectively denote the original and artifact suppressed high frequency bands in horizontal, vertical and diagonal 

orientations. � ̅ denotes the artifact suppressed image from the ISWT operation of all the bands (���, ��̅ℎ�, ��̅��, ��̅��). �̂ is the finally restored LDCT 

image after applying the DL processing on �̅ to suppress residual noise and artifacts. 

SWT 

Input LDCT image � ���� 

���� 

��ℎ� 
��� ��� ��̅ℎ� ��̅�� 

��̅�� 

ISWT � ̅ Restored LDCT image �̂ 

DL 

DSR 

DSR 

DSR 

 



human parts share common directional patterns. So the trained 

dictionaries from abdomen CT images are expected to be able 

to be used in processing CT images of other human body parts. 

We validate this with study on mediastinum CT data. 

III. EXPERIMENT RESULTS 

A. Experiment Settings 

Abdomen and mediastinum CT images were acquired in 

DICOM from a multi-detector row CT unit (Siemens 

SOMATOM Sensation 16 CT scanner). 32 and 24 patients 

were involved in abdomen and mediastinum data collection, 

respectively. We classified the whole 56 patients into 

abdomen scanning group and mediastinum scanning group. 

The abdomen scanning group includes 14 women and 18 men 

with an average age of 65.4 years (age range: 52-82 years). 

The mediastinum scanning group includes 11 women and 13 

men with an average age of 62.8 years (age range: 50-77 

years). Approval of this study was granted by our institutional 

review board. Data collection and processing were conducted 

according to the authorized protocol. All the patients have 

given their written consent to the participation. A non-conflict 

of interest for this work was also declared. The CT images 

were exported as DICOM files and then processed offline 

under a PC workstation (Intel Core™ i7-3770 CPU and 8192 

Mb RAM, GPU (NVIDIA GTX465)). 

Radiation dose was controlled by modulating the tube 

current time products [milliampere second (mAs)] [2]. LDCT 

and SDCT images were from the scans with a reduced tube 

current 40mAs and the routine tube current 160mAs, 

respectively. Some scan protocol parameters are as follows: 

kVp, 120; slice thickness, 6mm; reconstruction method, FBP 

algorithm with convolution kernel “B70f” or “B30f”. In FBP 

algorithm, the parameter of convolution kernel is used to 

control contrast preservation and artifact/noise suppression. In 

FBP reconstruction, compared with kernel “B30f”, kernel 

“B70f” can provide CT images with more detail information 

but more severe artifacts and noise. For brevity, we denote the 

FBP reconstruction with B70f and B30f to FBPB70f and 

FBPB30f, respectively. Other scanning parameters were set by 

default. In this study, to provide initial images with rich 

structure information, the LDCT images reconstructed from 

FBPB70f algorithm were chosen for processing. In order to 

have reference images for evaluation, we reconstructed SDCT 

images with kernel “B30f” because “B30f” is the routine 

kernel setting for Siemens CT imaging in abdomen and 

mediastinum windows. LDCT images from FBP with kernel 

“B30f” were also provided for comparison. The recorded 

accumulated doses represent each scan with 40 slices in the 

form of CTDIvol (volume CT dose index) for each CT 

examination. The averaged recorded CTDIvol are 12.48mGy 

(milligray) and 3.12mGy for each SDCT and LDCT scan, 

respectively. The AS-LNLM method and the global dictionary 

based general DL processing have shown good artifact or 

noise suppression in [23] and [39], and were conducted for 

comparison purpose. 

 

Parameters for all the methods are listed in TABLE I. The 

involved parameters for the AS-LNLM and ASDL methods 

were specified under the control of one radiological doctor 

(X.D.Y. with 15 years of experience) to provide the best visual 

results. We practically found that the same parameter setting 

can be well used to process the LDCT images with the same 

scan protocol. The AS-LNLM method involved 7 parameters 

to set, namely: the total decomposition scale S of SWT, K , 

Iter and inc for the nonlinear diffusion, the decaying 

parameter h and the values of n and N for the LNLM 

processing. For the general DL method, the sparsity limit 0
L  

is set to 5 atoms; the dictionary size is set to 256 atoms ( 0
K

=256) for 8×8 patch ( 0
n =64). The global dictionary for 

general DL processing is pre-trained from the SDCT in 

Fig.2(b1) based on [39] using parameters as follows: 20 

iterations are used in dictionary training (Iter=20); sparsity 

limit T
L  is set to 5 atoms; the dictionary size is set to 256 

atoms ( T
K =256) for 8×8 patch ( T

n =64); tolerance parameter 

T
ε  in Eq.(5) is set to 45.8 10× . The proposed ASDL 

method include three parts -- DT (dictionary training), DSR 

processing in wavelet domain, and the following general DL 

operation. Though pre-trained dictionaries are routinely used 

in this study, we list the involved parameters for dictionary 

training in the DT row in TABLE I to provide the complete 

information for the proposed algorithm. The trained 

discriminative dictionaries in Fig.4 is used in all the 

processing; 20 iterations are used to train each dictionary 

(Iter=20); the sparsity limit 1
L  is set to 8 atoms; sizes M for 

artifact and feature dictionaries are both set equally to 450; 1
n  

is set to 256 (for 16×16 patch); the tolerance parameter 1
ε  in 

discriminative sparse coding is set to 300 to give an accurate 

approximation with the discriminative dictionaries; Parameter λ  in Eq.(6) is set to 25 and the artifact suppression operation 

is performed twice (T=2) to reduce residuel noise and artifacts. 

For the second step in ASDL method, the general DL 

processing with the same dictionary in Fig.1(a) is used, and 

the parameters are set as follows: sparsity limit 2
L  to 5 atoms; 

TABLE I  

PARAMETER SETTINGS FOR DIFFERENT METHODS IN EXPERIMENT 

Methods Abdomen data Mediastinum data 

AS-LNLM 

2, 200, 10S K Iter= = =  

20, 0.05,8 8 ,h inc n= = ×  

81 81 × N  

1, 100, 10S K Iter= = =   

5, 0.05,8 8 ,h inc n= = ×  

81 81 × N  

General 

DL 

0 020, 5, 256Iter L K= = =  

5

0 064, 4.14 10n ε= = ×
10λ =  

0 020, 5, 256Iter L K= = =
5

0 064, 3.05 10n ε= = ×
10λ =  

A 

S 

D 

L 

DT 

DSR: 20, 8, 450, 256, 300T T T TIter L M n ε= = = = =  

DL: 
420, 5, 256, 64, 5.8 10T T T TIter L K n ε= = = = = ×   

D 

S 

R 

1 18, 450, 256,L M n= = =  

1 300, 25, 2Tε λ= = =  

1 18, 450, 256,L M n= = =  

1 300, 25, 2Tε λ= = =  

  

 DL 

2 2 25, 256, 64L K n= = =
4

1 7.6 10 , 50ε λ= × =  

2 2 25, 256, 64L K n= = =  

4

1 4.1 10 , 50ε λ= × =  

 



the dictionary size to 256 atoms ( 2
K =256) for 8×8 patch ( 2

n

=64); tolerance parameter 2
ε  in Eq.(5) to 47.6 10×  and 

44.1 10×  for the abdomen and mediastinum data, respectively. 

Parameter λ  is set to 50.  

The abdomen window (center, 50HU; width, 350HU) and 

mediastinum window (center, 0HU; width, 350HU) are 

respectively used in the illustrations for abdomen and 

mediastinum data. The AS-LNLM processing was 

implemented based on [22] using GPU parallelization 

technique in a CUDA framework. We practically found that 

the GPU technique is ineffective in accelerating the OMP 

calculation due to the asynchronous stopping of the sparse 

coding for each patch. So we resort to accelerating the loop 

calculations in both the general DL method and the proposed 

Fig.7 Illustraion of artifact suppression in high frequency bands (wavelet domain). (a1)-(c1): for the LDCT image, the horizontal high frequency 
band, the vertical high frequency band and the diagonal high frequency band. (a21)-(c2): for the corresponding SDCT image, the horizontal high 

frequency band, the vertical high frequency band, the diagonal high frequency band. (a3)-(c3): the artifact suppressed high frequency bands of the 

LDCT image from the DSR operation. (a4)-(c4): the high frequency bands computed with only the coefficients for artifact atoms. 
 

(a1) (b1) (c1) 

(a2) (b2) 

(c3) (b3) (a3) 

(c2) 

(a4) (c4) (b4) 



ASDL method by using MATLAB Parallel Computing 

ToolboxTM where multicore CPUs can be fully employed [40]. 

B. Illustration of Artifact Suppression in Wavelet Domain 

Fig.7 illustrates artifact suppression in wavelet domain for 

the proposed ASDL approach. Fig.7(a1)-(a3) and (b1)-(b3) 

display the decomposed high frequency bands of a typical 

abdomen LDCT image and the corresponding SDCT image. 

Fig.7(c1)-(c3) show the results after applying the DSR 

operation to suppress the high frequency artifact components 

of the LDCT image. With the high frequency bands of the 

SDCT image as reference, we can see that the high frequency 

artifact components of LDCT image can be effectively 

reduced through the proposed DSR operation with 

discriminative dictionaries. Also in Fig.7(d1)-(d3), we 

illustrate the images calculated with only the coefficients 

related to artifact atoms in the discriminative dictionary. We 

can see that the images in Fig.7(d1)-(d3) mainly contain the 

high frequency artifact features, which confirms the 

correlation between artifact atoms and the artifact features in 

LDCT images. 

C. Visual Assessment 

Fig.8 and Fig.9 show the processing results on the same 

abdomen LDCT image of an 84 years old man with hepatic 

metastases (pointed by red arrows), and Fig.10 shows the 

result for a mediastinum LDCT image of a 70 years old man 

with lung cancer (pointed by red arrows). Fig.8 gives the 

results after each steps in the ASDL implementation. 

Fig.8(a)-(d) are the original LDCT image, the result after the 

first DSR operation, the result after the second DSR operation, 

and the final processed image after DL processing. We can 

observe a progressive improvement of image quality at each 

step, and that the DSR operation can give effective artifact 

suppression. Fig.9(a) and Fig.10(a) are the original FBPB70f 

reconstructed LDCT images. Fig.9(b) and Fig.10(b) are the 

corresponding reference original SDCT images from FBPB30f 

reconstruction. The results of the general DL method and the 

proposed ASDL methods are given in (c) and (f) in Fig.9 and 

Fig.10, respectively. Additionally, in Fig.9(d) and Fig.10(d), 

we provide the LDCT images processed twice using the 

general DL method with the same parameters as the General 

DL method in TABLE I. Also, in Fig.9(e) and Fig.10(e), we 

provide the LDCT images processed twice using the general 

DL method, the first using the same parameters for the general 

DL method in TABLE I and the second using the parameters 

of the DL step in the ASDL method in TABLE I. In Fig.9-10, 

(e)-(h) illustrate the zoomed regions of interest (ROI) 

specified by the red squares in (a). By comparing (a) and (b) in 

Fig.9-10, we can see that, under LDCT scanning condition, 

mottle noise and streak artifacts severely degrade the 

reconstructed images and lower tissue discrimination. As 

shown in Fig.9-10 (c), the general DL method is not only 

ineffective in suppressing streak artifacts but also leads to 

obvious structure ambiguity. We can also see in (d) and (e) in 

Fig.9 and Fig.10 that an additional DL prcessing can also lead 

to successful artifact suppression, but tend to significantly 

smooth normal image structures. It can be observed in (d) in 

Fig.9 and Fig.10 that our ASDL approach performs much 

better in both noise and artifact suppression, and can produce 

images with visual illustration similar to the reference SDCT 

images in Fig.9(b) and Fig.10(b).  

Fig.11 provides the processing results for abdomen CT 

images of four adult patients and Fig.12 the processing results 

for mediastinum CT images of another four adult patients. 

Zoomed image sections are also given below. The first, second, 

third, fourth and fifth columns in the Fig.11-12 (except the 

second row) correspond to the FBPB70f reconstructed LDCT 

images (a1, a2, a3, a4), the reference FBPB30f reconstructed 

SDCT images (b1, b2, b3, b4), the FBPB30f reconstructed 

LDCT images (c1, c2, c3, c4), the AS-LNLM processed 

LDCT images (d1, d2, d3, d4) and the ASDL processed LDCT 

images (e1, e2, e3, e4). To be specific, the first row (al, b1, c1, 

d1, e1) in Fig.11 illustrates the CT images with hepatic cysts 

(pointed by red arrows in a1) and the second row provides the 

difference images between the resulting LDCT images and the 

original FBPB70f reconstructed LDCT images; the third and the 

fourth rows (a2, b2, c2, d2, e2, a3, b3, c3, d3, e3) show two 

cases with hepatic metastases (pointed by red arrows in a2 and 

a3); the fifth row (a4, b4, c4, d4, e4) illustrates the images 

from one healthy patient with the red arrows pointing to the 

biliary ducts. As to Fig.12, the first row (al, b1, c1, d1, e1) 

illustrates the images with esophageal cancer (pointed by red 

arrow in a1) and the second row the difference images 

between the processed images and the original FBPB70f 

reconstructed LDCT images; the third and the fourth row (a2, 

b2, c2, d2, e2, a3, b3, c3, d3, e3) depict two cases with 

mediastinal lymph nodes (pointed by red arrows in a2 and a3); 

the fifth row (a4, b4, c4, d4, e4) illustrates the images with 

lung cancer (pointed by red arrow in a4). 

In Fig.11-12, with the SDCT images (b1, b2, b3, b4) as 

reference, we observe that the mottle noise and streak artifacts 

severely degrade the LDCT images of FBPB70f (a1, a2, a3, a4), 

and the FBPB30f algorithm leads to smoother textures (c1, c2, 

c3, c4) but with obvious noise/artifact residuals in the LDCT 

images. We can also see in (d1, d2, d3, d4) that the AS-LNLM 

method reduces noise and artifacts but at the same time tends 

to introduce some striped artifacts (see the yellow arrows in d1 

and d2 in Fig.11-12). Significant improvements of image 

quality (e1, e2, e3, e4) are achieved by using the proposed 

ASDL method without introducing such artifacts, and the 

processed results present textures visually closer to the 

reference SDCT images. Especially, the ASDL approach 

improves the conspicuity of both anatomical tissues and 

pathological changes (e.g. the location specified by the red 

arrows in Fig.11-12) better than the AS-LNLM processing and 

the FBPB30f reconstruction. In the second rows in Fig.11-12, 

comparing the difference images with respect to the original 

LDCT images, we can observe the strongest artifacts/noise 

components (see the yellow circles in the second row in Fig.11) 

in the difference images between the original LDCT images 

and the ASDL processed results. This observation confirms 

that the ASDL method can lead to more effective artifact/noise 

suppression. Even though, we can still observe a few residual 

artifact traces in the ASDL processed images (pointed by the 

yellow arrows in the most right colums of Fig.11-12). This is 



due to the fact that some high contrast artifacts also have prominent components in low frequency bands.

  

Fig.8. Step by step result in the ASDL implementation of one 84 years old man with hepatic metastases (pointed by red arrows) in abdomen 
window. (a), the original FBPB70f reconstructed LDCT image; (b), result after the first DSR operation; (c), result after the second DSR 

operation; (d), the final result after the DL operation ; (e)-(h) show the zoomed ROI in (a)-(d). 
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(b) Result after the frist DSR operation 

 

(c) Result after the second DSR operation 
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Fig.9 Processing result of one 84 years old man with hepatic metastases (pointed by red arrows) in abdomen window. 
(a), the original FBPB70f reconstructed LDCT image; (b), the reference FBPB30f reconstructed SDCT image; (c), the 

general DL processed LDCT image; (d), the LDCT image processed twice using the general DL method , both using the 

same parameters for the general DL method in TABLE I; (e), the LDCT image processed twice using the general DL 
method, where the first processing uses the parameters for the general DL method in TABLE I and the second uses the 

parameters of the DL step for the ASDL method in TABLE I; (f), the ASDL processed LDCT image; (g)-(l) show the 

zoomed ROI in (a)-(f). 
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(e) General DL twice processed LDCT image II 
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Fig.10 Processing result of one 70 years old man with lung cancer (pointed by arrows in (e)) in mediastinal window. (a), 

the original FBPB70f reconstructed LDCT image; (b) the reference FBPB30f reconstructed SDCT image; (c), the general DL 
processed LDCT image; (d), the LDCT image processed twice using the general DL method, both using the same 

parameters for the general DL method in TABLE I; (e), the LDCT image processed twice using the general DL method, 

where the first processing uses the parameters for the general DL method in TABLE I and the second uses the parameters 
of the DL step for the ASDL method in TABLE I; (f), the ASDL processed LDCT image; (g)-(l) show the zoomed ROI 

in (a)-(f). 
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Fig.11 Processing result of four adult patients in abdomen window. The first, second, third, fourth and fifth columns correspond to the original FBPB70f 
reconstructed LDCT images (a1, a2, a3, a4), the reference FBPB30f reconstructed SDCT images (b1, b2, b3, b4), the FBPB30f reconstructed LDCT images 

(c1, c2, c3, c4), the AS-LNLM processed LDCT images (d1, d2, d3, d4) and the ASDL processed LDCT images (e1, e2, e3, e4). The second row 

illustrates the difference images between the resulting LDCT images and the original LDCT image in the first row. 
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Fig.12 Processing result of four adult patients in mediastinal window. The first, second, third, fourth and fifth columns correspond to the FBPB70f 

reconstructed LDCT images (a1, a2, a3, a4), the reference FBPB30f reconstructed SDCT images (b1, b2, b3, b4), the FBPB30f reconstructed LDCT 
images (c1, c2, c3, c4) ,the AS-LNLM processed LDCT images (d1, d2, d3, d4) and the ASDL processed LDCT images (e1, e2, e3, e4). The second 

row illustrates the difference images between the resulting LDCT images and the original LDCT images in the first row. 
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D. Comparison with Iterative Reconstruction Algorithm  

We compared the proposed ASDL method with typical 

iterative reconstruction algorithms. Both simulated phantom 

and clinical patient data are considered in this part.  

As to the experiment on simulated phantom data, a 

monoenergetic CT model with fanbeam geometry 

configuration was simulated. The detector cell spacing is set to 

1 mm. The detectors arrays are located on an arc concentric to 

the X-ray source with a distance of 949 mm, and the distance 

of the rotation center to the arc detector band is 408 mm. The 

detector cell spacing is 1 mm. 360 projection views are evenly 

spanned on a circular orbit of 2π and the number of bins for 

each projection view is 729. Thus, the simulated sinogram size 

is 729×360. Noise-free projection data along the rays through 

the phantom are computed based on the known intensities and 

the intersection areas of the rays with the inside geometric 

objects. Based on [41-42], the calibrated and log-transformed 

projection data of LDCT protocols follow approximately a 

Gaussian distribution, the relation between the mean and 

variance being: 

2 exps ρ η
 = ×   

d

d

g
                 (7) 

where 
d

g  and 
d

s  denote respectively the mean and variance 

of the projection data at detector d. We obtained the simulated 

LDCT projection data (sinogram) by adding Gaussian noise to 

the noise-free sinogram with a variance given by Eq.(7). The ρ  and η  were set to 21.5 10×  and 44.5 10×  in this study. 

We simulated the corresponding LDCT sinogram by setting 

the total photon count number to 85 10× . Fig.13(a) and (c) 

illustrate the simulated sinogram data for the phantom images 

in Fig.14(a) and Fig.15(a), which are respectively a modified 

Shepp-Logan phantom image and an elliptical phantom image. 

Fig.13(b) and (d) show the simulated noisy (LDCT) sinogram 

data corresponding to the true singroam data in Fig.13(a) and 

(c). Especially, the elliptical phantom image includes two hot 

regions (white) and one cold region (black), and the hot circle 

region in the right part shows gradual intensity variation into 

the background. Such gradual intensity variation can simulate 

tissue infiltrations along organ or lesion boundaries in realistic 

clinical abdomen CT. Both the two 512× 512  phantom 

images (pixel size: 1mm × 1mm ) have intensity values 

ranging from 0 (HU) to 300 (HU). We performed FBP with 

the Hanning filter (FBPhanning) to produce an image with 

visually similar contrast levels as clinical abdomen images 

reconstructed by FBPB30f. We also performed FBP with Ramp 

filter (FBP ramp) and the iterative reconstruction of L1-norm 

TV minimization in [9] and [15]. The half-interval based 

minimization technique in [15] was used to solve the TV 

regularized optimization in reconstruction. In TV 

reconstruction, the FBP ramp reconstructed LDCT image is 

used as the initial image, and the total iteration number is set 

to 500 to ensure a stable iteration. The hyperparameter of TV 

terms is chosen from 0.02 to 0.08 to depict the relationship 

between artifact suppression and hyperparameter values. 

Around 20 minutes are required to perform one TV 

reconstruction with 500 iterations. ASDL processing with the 

same parameters as in above abdomen studies was applied on 

the FBP ramp reconstructed LDCT images, which contains high 

contrast intensity information like above FBPB70f 

reconstructed LDCT clinical images. 

Experimental results on on phantom data are displayed in 

the window [0HU, 300HU] in Fig.14 and Fig.15. In Fig.14 

and Fig.15, (b) and (c) illustrate the FBP ramp and FBPhanning 

reconstructed LDCT images where obvious noise and artifacts 

can be observed. We can see that both the Ramp and Hanning 

filters cannot successfully suppress artifacts in FBP 

reconstructions. Fig.14(d) and Fig.15(d) show the results 

obtained after applying the ASDL algorithm on the FBP ramp 

reconstructed LDCT images in Fig.14(b) and Fig.15(b). The 

proposed ASDL approach appears effective in suppressing 

noise/artifacts and the processed LDCT images (Fig.14(d) and 

Fig.15(d)) present a good visual quality with respect to the 

phantom image in Fig.14(a) and Fig.15(a). Images (e)-(f) in 

Fig.14 and Fig.15 illustrate the images from TV reconstruction 

with hyperparameter ranging from 0.02 to 0.08. We can see 

that, through iterative optimization with TV regularization, 

images with effective contrast preservation and noise/artifact 

suppression can be reconstructed. We can see larger 

hyperparameters of TV term lead to more effective 

suppression of noise and artifacts in homogenous regions. But 

Fig.13 the simulated singroam data for the phantom images. (a) and (b) are the true and simulated LDCT sinograms for the phantom 
image in Fig.14(a). (c) and (d) are the true and simulated LDCT sinograms for the phantom image in Fig.15(a).  
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we also find TV regularization tends to introduce new 

staircase artifacts in the region with gradual intensity variation 

(see the arrows in the zoomed images in Fig.15). And such 

staircase artifacts cannot be removed by increasing the 

hyperparameter values. 

Below the reconstructed images in Fig.14, we list the 

signal-to-noise ratio (SNR) and the structural similarity index 

comparisons (SSIM) calculated with respect to the reference 

phantom images. The SSIM metric was proposed in [43] as a 

robust image quality metric that can give a good overall 

Fig.14 Comparison with TV based iterative algorithm for phantom image 1. (a), SDCT reference image; (b), LDCT image reconstructed by FBP with 

ramp filter (FBPramp), with PSNR 8.73 and SSIM 0.14; (c), LDCT image reconstructed by FBP with hanning filter (FBPhanning), with PSNR 14.82 and 

SSIM 0.37; (d), ASDL processed LDCT image of (b), with PSNR 18.35 and SSIM 0.93; (e), LDCT image reconstructed by TV reconstruction, with 

PSNR 18.81 and SSIM 0.84; (f), LDCT image reconstructed by TV reconstruction, with PSNR 20.48 and SSIM 0.94; (g), LDCT image reconstructed by 

TV reconstruction, with PSNR 20.90 and SSIM 0.97; (h), LDCT image reconstructed by TV reconstruction, with PSNR 20.83 and SSIM 0.97. 
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Fig.15 Comparison with TV based iterative algorithm for phantom image 2. (a), SDCT reference image; (b), LDCT image reconstructed by FBP with 

ramp filter (FBPramp), with PSNR 8.97 and SSIM 0.06; (c), LDCT image reconstructed by FBP with hanning filter (FBPhanning), with PSNR 16.50 and 

SSIM 0.31; (d), ASDL processed LDCT image of (b), with PSNR 23.05 and SSIM 0.93; (e), LDCT image reconstructed by TV reconstruction, with 
PSNR 22.40 and SSIM 0.90; (f), LDCT image reconstructed by TV reconstruction, with PSNR 24.55 and SSIM 0.98; (g), LDCT image reconstructed by 

TV reconstruction, with PSNR 24.68 and SSIM 0.97; (h), LDCT image reconstructed by TV reconstruction, with PSNR 24.96 and SSIM 0.98. 
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consideration of feature preservation. The calculations of 

PSNR and SSIM are given in Eq. (8) and (9): 

( ) ( ) ( )2 2

10
10PSNR - - , log

j j j

j j

mm

P P P Px x=    ∑ ∑    (8) 
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where, P  and x  denote the reference phantom image 

and the LDCT images to evaluate.  m  denotes the total 

pixel number. P  and x  denote the mean intensities of 

images P  and x . 
P

s  and s
x

 are the standard deviation 

of images P  and x . 
Px

s  is the covariance of images P  

and x , 
2

1 1
)(= Ks Lscs and 

2

2 2
)(= Ks Lscs  with Ls  the 

range of the HU values (300 for the range 0HU to 300HU in 

this phantom study), and 
1

Ks and 
2

Ks  are set to 0.01 and 

0.03 based on [43]. We can see that, among all the LDCT 

images, the TV reconstructed LDCT images obtain the highest 

values in both SNR and SSIM metrics.  

  Fig.16 draws the intensity profiles along the red dotted lines 

indicated in Fig.14(a) and Fig.15(a) for the reconstructed 

images. Fig.16 shows that the ASDL method and TV 

reconstruction lead to LDCT images with a much better match 

to the phantom images than the FBP results. We can also 

observe that the TV reconstruction method can give the best 

restoration of the homogenous regions (see the red arrows in 

Fig.16 (c1) and (c2)). Here too, the proposed ASDL method 

gives a good restoration of the region with gradual intensity 

variation (see the green arrows in Fig.16 (d2)).  

From above we can find TV based iterative reconstruction 

performs well in both homogeneous region restoration and 

sharp edge preservation. The highest SNR and SSIM metrics 

are attributed to the fact that wide-distributed homogenous 

regions in phantoms can be well restored via the TV 

regularization in iterations. But the TV based iterative 

reconstruction also tends to introduce new staircase artifacts in 

the region with gradual intensity variation, and the reason is 

that the pairwise neighboring intensity differences in TV 

regularization often cannot provide enough information for 

discriminating noise/artifacts from fine image structures. From 

Fig.14-15, we can see that new staircase artifacts tends to be 

introduced by TV regularization into the regions with subtle 

intensity variations, and such staircase artifacts are free in the 

ASDL processed results. In clinical CT images, such regions 

often contain important disgnostic information. Another 

drawback of TV reconstruction is the high computation cost 

involved (20 minutes per 2-D slice in this case). 

Clinical images were collected with a GE Discovery CT750 

HD CT scanner under low dose tube current setting (40mAs), 

and the reconstructions performed by means of the FBP 

algorithm with sharp filtering and the iterative ASIR 100% 

algorithm, which are two built-in algorithm options in GE 

Discovery CT750 HD CT [19]. Visual comparison with ASIR 

reconstruction for the clinical data is reported in Fig.17 in 

abdomen window. Fig.17(a1) and (a2) illustrate the original 

FBP reconstructed LDCT images. Fig.17(b1) and (b2) show 

the corresponding ASIR reconstructed LDCT images. The 

ASDL processed LDCT images are given in Fig.17(c1) and 

(c2). We can see the iterative ASIR algorithm is able to reduce 

noise but appears not effective in suppressing high-contrast 

artifacts. Here too, the present method performs better for both 

noise/artifact suppression and patchy tissue conspicuity (see 

the red arrow in Fig.17(c2)) than the ASIR algorithm.  
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Fig.17 Comparison with iterative reconstruction algorithm for clinical CT images. (a1) and (a2), FBP reconstructed LDCT images; (b1) and (b2), ASIR 

reconstructed LDCT images; (c1) and (c2), ASDL processed result for the LDCT images in (a1) and (a2). 
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Fig.16 Illustration of the intensity profiles along the two red dotted lines indicated in Fig.14(a) and Fig.15(a). (a1) and (a2), comparison between 

FBPramp reconstructed LDCT image and the reference phantom image; (b1) and (b2), comparison between FBPhanning reconstructed LDCT image 

and the reference phantom image; (c1) and (c2), comparison between the LDCT image reconstructed by TV algorithm and the reference phantom 

image; (d1) and (d2), comparison between the ASDL processed LDCT image and and the reference phantom image. (a1), (b1), (c1) and (d1) 

correspond to the vertical dotted line in Fig.14(a), and (a2), (b2), (c2) and (d2) correspond to the horizontal dotted line in Fig.15(a) 
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E. Quantitative Assessment 

First, it should be noted that the clinical LDCT and the 

corresponding SDCT images have no exact spatial 

correspondence to each other because of the inevitable 

displacements caused by patient breath and movements in 

scans. This makes it impossible to fully quantify image quality 

using some Euclidean distance metrics (e.g. the mean squared 

error (MSE)). So we chose to compare the standard deviation 

(STD) of specified regions of interest (ROI) and background 

regions in both the original and processed LDCT images with 

respect to those of the reference SDCT images. Three groups 

of image data were selected from the above patient datasets. 

Under the guidance of one radiological doctor (X.D.Y. with 

15 years of experience), the ROIs were selected to include the 

pathological tissues, and the background regions were 

delineated out from the regions outside ROIs. Fig.18 

illustrates the ROI (surrounded by red circles) and background 

regions (surrounded by yellow circles) for the original SDCT 

and LDCT images from three abdomen datasets. We 

calculated the STD of the ROI and background regions for 

both the original and processed CT images via Eq. (10): 

( )2

Ω
1

STD
1

p p

ij

ij

x xΩ∈Ω
= −Ω − ∑             (10) 

p

ijx  and 
pxΩ  denote each point intensity and the averaged 

intensity of all the pixels within Ω , respectively. TABLE II 

lists the calculated STD of the tumor and background regions 

specified in Fig.18. Tumor-k and background-k (with k equal 

to 1, 2 and 3) correspond respectively to the regions defined in 

the CT images of the first, second and third columns in Fig.18. 

We can clearly note in TABLE II that the ASDL processed 

LDCT images obtain closer STD values to those of the SDCT 

images than the original FBP reconstructed LDCT images 

(FBPB70f and FBPB30f) and also the AS-LNLM processed 

LDCT FBPB70f images. 

In addition, Fig17(c), (d), (e) and (f) plot the histogram 

maps (in black) of the specified ROI (the red box in the LDCT 

image in Fig.19(a)) for the FBPB70f reconstructed LDCT 

images, the FBPB30f reconstructed LDCT images, the 

AS-LNLM processed LDCT images (FBPB70f) and the ASDL 

processed LDCT images (FBPB70f), respectively. The 

reference ROI histogram map within the red box for the 

corresponding SDCT image is illustrated in Fig.19(b). In 

Fig.19(c), we can observe a large histogram discrepancy 

between the ROI in the original LDCT and the reference 

SDCT images. We can also see that, when compared with the 

AS-LNLM processing and the FBPB30f algorithm, the ASDL 

processing leads to the ROI with the closer histogram match 

with the corresponding ROI in the SDCT image. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig.19 The histogram maps (black) of the tumor region for the FBPB70f 
reconstructed LDCT image, the FBPB30f reconstructed LDCT image, the 

AS-LNLM processed LDCT image and the ASDL processed LDCT 
images. The histogram map of the corresponding ROI in the original 

SDCT image in (b) is overlaid (in red color) on other histogram maps. 

 

Fig.18 The three columns from left to right illustrate the selected ROI 
and background regions from three abdomen CT image datasets. In 

each column, the upper and lower images denote the SDCT image 

and the corresponding LDCT image, respectively. 

 

TABLE II 

STDS OF ROI AND BACKGROUND REGIONS FOR THE ORIGINAL LDCT 

IMAGES, THE ORIGINAL SDCT IMAGES AND THE PROCESSED LDCT IMAGES 

    
LDCT 

(FBPB70) 

Reference 

SDCT 

(FBPB30) 

 

LDCT 

(FBPB30) 

AS-LNLM 

processed 

LDCT 

(FBPB70) 

ASDL 

processed 

LDCT 

(FBPB70) 

ROI-1 86.09 15.41 19.26 17.12 16.65 

Background-1 85.30 8.33 17.99 13.26 10.98 

ROI -2 89.10 8.73 17.75 11.34 9.65 

Background-2 80.86 8.33 17.21 10.19 8.86 

ROI -3 88.54 8.80 18.11 11.07 8.62 

Background-3 109.46 11.43 23.31 15.14 11.66 

 



F. Qualitative Assessment 

The qualitative assessment includes 150 original images (25 

abdomen LDCT images (FBPB70f), 25 abdomen LDCT images 

(FBPB30f), 25 mediastinal LDCT images (FBPB70f), 25 

mediastinal LDCT images (FBPB30f), 25 abdomen SDCT 

images (FBPB30f) and 25 mediastinal SDCT images (FBPB30f)), 

and 100 processed images (25 AS-LNLM processed abdomen 

LDCT images, 25 AS-LNLM processed mediastinal LDCT 

images, 25 AS-LNLM processed abdomen LDCT images and 

25 ASDL processed mediastinal LDCT images). Only FBPB70f 

reconstructed LDCT images were considered for processing 

with AS-LNLM and ASDL methods. The quality of all the 

images were assessed using 5 subjective features: noise 

suppression, artifact suppression, contrast preservation, tissue 

discrimination and overall image quality using a 5-point 

subjective criterion (1=unacceptable, 2=substandard, 

3=acceptable, 4=above average, 5=excellent). Here, we define 

artifacts as any pattern influencing the diagnosis passively. 

Three radiological readers (X.D.Y. with 15 years of 

experience, X.H.Y. with 8 years of experience, Y.M.D. with 5 

years of experience.) independently evaluated the randomized 

LDCT images, SDCT images, the AS-LNLM processed 

LDCT images and the ASDL processed LDCT images on a 

digital DICOM archiving/assessing workstation (ViewDEX 

2.0 [44]). In this way, the 5 subjective features were assessed 

for all the 250 images (150 original CT images, and 100 

processed CT images), and this results in a total of 3750 

parameter ratings (250×5×3=3750). For each subset of 

images, the 5 image scores were reported as means±SDs 

(averaged scores of the 3 radiologists±standard deviations). 

The subjective quality parameters of the original LDCT 

images and the processed LDCT images were compared with 

those of the corresponding SDCT images and the differences 

between each two groups were evaluated by the Student t test 

(Excel; Microsoft) with P<0.05 considered as a statistically 

significant difference.  

As illustrated in TABLE III, the original LDCT images 

obtain much lower quality scores than the reference SDCT 

images and also the processed LDCT images (P<0.05). The 

FBPB30f reconstruction and the AS-LNLM processing lead to 

higher subjective scores than the FBPB70f reconstruction. The 

best performance, for all scores, is obtained for the ASDL 

processed LDCT images. Statistically significant differences 

(P<0.05) with respect to the reference SDCT images are 

noticed in all the subjective scores for the original FBPB70f 

reconstructed LDCT images, in artifact suppression and tissue 

discrimination for the AS-LNLM processed LDCT images, 

and in all the subjective scores except the tissue discrimination 

for the FBPB30f reconstructed LDCT images (P<0.05). The 

differences between the proposed ASDL processed LDCT 

images and the corresponding SDCT images for the 5 

subjective scores are found not statistically significant 

(P>0.05). TABLE III shows that the ASDL processed LDCT 

images even achieve higher scores in contrast preservation 

than the reference SDCT images. The is due to the fact that the 

B30f kernel in FBP might blur some image details in the 

SDCT images. 

G. Computation costs 

TABLE IV lists the computation costs (in seconds) for the 

different methods. We should note that both the general DL 

method and the proposed ASDL method include dictionary 

training step and OMP step. In our experiment, it takes 9.66 

seconds to train a dictionary for the general DL method. Since 

six dictionaries (three artifact dictionaries and three tissue 

feature dictionaries) must be trained and the size of each 11 

dictionary is larger than that of the general DL method (450 

compared with 256), the training step in DSR operation of 

ASDL processing is rather computational intensive and takes 

about 121.92 seconds. Fortunately, the dictionaries, once 

trained, can be used to process all the LDCT cases as 

demonstrated in the above experiments. TABLE IV shows the 

average computation costs required in the operations 

following the dictionary training only. We can see that, with 

the trained dictionary available, the general DL method and 

the proposed ASDL method requires about 0.83 and 17.60 

seconds to process one 512 512×  slice, respectively. We can 

see the ASDL method is much more time comsuming than the 

general DL method because of the more involved DL relevant 

operations for different scales. 

TABLE III 

IMAGE QUALITY SCORES ( mean SDs± ) WHERE A STANDS FOR ABDOMEN DATA 

AND M STANDS FOR MEDIASTINAL DATA 

Subjective 

Features 

 

LDCT 

(FBPB70f) 

Reference 

SDCT 

(FBPB30f) 

LDCT 

(FBPB30f) 

AS-LNLM 

processed 

LDCT 

(FBPB70f) 

ASDL 

processed 

LDCT 

(FBPB70f) 

Noise 

Suppression 

A 2.01±0.35* 4.25±0.24 3.46±0.31* 3.81±0.26 4.13±0.22 

M 2.24±0.39* 4.24±0.20 3.39±0.32* 3.88±0.29 4.08±0.26 

Artifact  A 1.59±0.33* 4.32±0.17 3.36±0.29* 3.59±0.25* 4.20±0.23 

Suppression M 1.70±0.37* 4.24±0.15 3.14±0.33* 3.57±0.31* 4.14±0.19 

Contrast  A 2.43±0.39* 4.18±0.19 3.60±0.28* 3.94±0.24 4.29±0.23 

Preservation M 2.58±0.41* 4.20±0.21 3.59±0.27* 4.01±0.20 4.26±0.25 

Tissue  A 1.62±0.32* 4.40±0.14 3.80±0.24 3.62±0.22* 4.27±0.21 

Discrimination M 1.67±0.36* 4.32±0.17 3.82±0.20 3.67±0.20* 4.23±0.18 

Overall  A 1.71±0.34* 4.33±0.16 3.55±0.34* 3.90±0.29 4.22±0.20 

Image Quality M 1.75±0.38* 4.41±0.12 3.58±0.30* 3.88±0.28 4.15±0.24 

* Significantly different from the mean scores for the reference SDCT images 

(P<0.05). 

TABLE IV 

THE AVERAGE COMPUTATION COST (IN SECONDS) FOR THE AS-LNLM 

METHOD IN [23], THE DL METHOD IN [39] AND THE PROPOSED ASDL METHOD 

 AS-LNLM General DL ASDL 

Computation Cost 9.60 0.83 17.60 

 



H. Analysis of the Sparse Coefficient Distribution 

 

In the above Fig.7, the artifacts in LDCT image take 

directional patterns in high frequency domain, and present a 

sparse distribution with respect to its original intensity 

information. The high frequency components in Fig.7 present 

a visually similar picture to the sparse gradient information (as 

shown in Fig.20), which lays the basis for TV based 

reconstruction algorithms.  

The distribution of the sparse coefficients with the proposed 

discriminative dictionary is also analyzed. Therefore, we 

record the numbers of artifact atoms and feature atoms that 

represent the overlapping patches in the LDCT horizontal high 

frequency band and the corresponding SDCT horizontal high 

frequency band in Fig.9(a) and (b), respectively. Fig.21(a) and 

(b) depict the total numbers of artifact atoms and feature 

atoms in representing the patches in the LDCT horizontal high 

frequency band; and Fig.21(c) and (d), the total numbers of 

artifact atoms and feature atoms representing the patches in 

the SDCT horizontal high frequency band. Since we set the 

restriction in (5) that the atom number representing each patch 

does not exceed 8, the numbers of artifact atoms and feature 

atoms representing each patch range from 0 to 8. We can 

observe in Fig.21(a) and (b) that for the LDCT high frequency 

band, patches are represented by much more artifact atoms 

than feature atoms (1682198 artifact atoms versus 293874 

feature atoms). For the SDCT high frequency image, however, 

the distribution shows a different pattern and the patches tend 

to be represented by much more feature atoms than artifact 

atoms (1188092 feature atoms versus 787959 artifact atoms). 

To be more precise, the total number of artifact atoms amounts 

to 1682198 for the LDCT horizontal high frequency band and 

787959 for the SDCT horizontal high frequency band in this 

case. This makes sense, because there are more artifacts in 

high frequency domain for LDCT image than for the SDCT 

image, so the patches tend to be represented by more artifact 

atoms in the LDCT situation. The effective artifact 

representation by artifact atoms can also be confirmed by 

above Fig.7(a4)-(c4). As to the vertical and diagonal situations, 

the distributions are found similar to this horizontal case, so 

we do not give the corresponding illustrations for them. 

The above analysis indicates that both artifacts and features 

can be sparsely represented via the proposed discriminative 

dictionaries including artifact and feature features (because the 

total number of artifact and feature atoms representing each 

patch does not exceed 8, which can be considered as sparse). 

I. Parameter Setting Analysis 

From above TABLE I, we can see the proposed ASDL 

method has 22 parameters to set, 5 parameters for training the 

three dictionaries for DSR step, 5 parameters for training the 

dictionary for the following DL step, 7 parameters for the 

DSR step and 5 parameters for the following DL step. Among 

all the parameters, the total 10 parameters involved in the 

dictionary training can be re-used for processing other image 

data. From our experiments, it also appears that similar results 

can be obtained by using different samples for dictionary 

training. It was also found that most parameters in the DSR 

and DL steps were not sensitive to process rather different 

image sets like abdomen and mediastinum images. TABLE 1 

shows in particular that only the error tolerance parameter 
2

ε  

needs to be adjusted to get good results. Nevertheless, the 

general applicability of such global dictionaries still needs a 

further validation on CT data with different organ targets 

(thoracic, head, etc.). 

 

IV. CONCLUSION 

This paper described a dictionary learning based on a 

post-processing approach called ASDL to improve the quality 

of LDCT images. Instead of performing sparse coding based 

on feature atoms for normal tissue structures as in the general 

DL method, the proposed ASDL approach incorporates 

artifact information into sparse coding. In the ASDL approach, 

three novel discriminative dictionaries were devised to cancel 

the streak artifacts in LDCT images in high frequency bands. 

Then, the general DL operation was applied to remove the 

noise and residual artifacts. The sparseness of the representing 

coefficients with the proposed approach is mainly reflected in 

the fact that the artifact features often have similar directional 

patterns and can get an effective representation from limited 

atoms. Comparative experiments on abdomen and 

Fig.20 Illustration of the gradient information for the LDCT image in 

Fig.8(a) (Left: horizonal gradient magnitude; Right: vertical gradient 

magnitude). 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig.21 Distribution of the representing coefficients for all the patches in LDCT and SDCT images in Fig.9 with the proposed discriminative 
dictionary. (a) and (b), the total numbers of artifact atoms and feature atoms for all the patches for the LDCT horizontal high frequency band; (c) and 

(d), the total numbers of artifact atoms and feature atoms for all the patches for the corresponding SDCT horizontal high frequency band. 



mediastinum CT data were worked out to demonstrate that the 

proposed approach can lead to significantly improved CT 

images with 1/4 routine tube current setting. Qualitative and 

quantitative assessments were both reported. The encouraging 

performance was further confirmed through a preliminary 

comparison with iterative reconstruction algorithms. Without 

requiring access to raw data, the proposed processing scheme 

can be applied in any existing CT systems. Furthermore, the 

proposed method shows good robustness to parameter setting. 

The good artifact/noise suppression performance of the 

proposed approach allows the input image to be a 

high-contrast FBP image with rather strong noise and artifacts.  

Another advantage, highlighted by the experiments conducted 

on abdomen and mediastinum images, is that the same 

parameter setting could be applicable to LDCT images of 

other human body targets as far as they follow the same scan 

protocol. However, the ASDL approach still requires a further 

acceleration to meet the clinical requirements. Some 

parameters (e.g. the sparsity level and the tolerance parameter) 

are empirically set in current status and a more robust 

derivation is also needed. The comparison with iterative 

algorithms shows that, though regularized iterative algorithms 

lead to good contrast preservation, the proposed approach has 

some advantage in preserving fine structures without 

introducing new staircase artifacts.  

So, future work in this line will include: (i) parallelizing the 

OMP computation in the proposed processing with GPU 

technique, (ii) incorporating the ASDL processing into recent 

noise-weighted FBP reconstruction in [45-46] in order to face 

very severe artifacts, (iii) extending and testing the application 

of the ASDL approach to other human body parts, (iv) testing 

the artifact dictionaries trained from anthropopathic phantom 

CT images, (v) devising new regularization terms based on the 

ASDL method for iterative reconstruction algorithms as the 

work in [35] and [47], and (vi) evaluating the potential 

accuracy enhancement in segmentation/registration (related 

with CT images) that can be brought by the proposed 

processing [48-49]. 
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