An elliptic semilinear equation with source term and boundary measure data: the supercritical case

Marie-Françoise Bidaut-Véron, Giang Hoang, Quoc-Hung Nguyen, Laurent Véron

- To cite this version:

Marie-Françoise Bidaut-Véron, Giang Hoang, Quoc-Hung Nguyen, Laurent Véron. An elliptic semilinear equation with source term and boundary measure data: the supercritical case. 2014. hal01096025v2

HAL Id: hal-01096025

https://hal.science/hal-01096025v2

Preprint submitted on 18 Dec 2014 (v2), last revised 9 Sep 2015 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An elliptic semilinear equation with source term and boundary measure data: the supercritical case

Marie-Françoise Bidaut-Véron*
Giang Hoang ${ }^{\dagger}$
Quoc-Hung Nguyen ${ }^{\ddagger}$
Laurent Véron ${ }^{\S}$
Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, FRANCE

Abstract

We give new criteria for the existence of weak solutions to equation with source term

$$
-\Delta u=u^{q} \text { in } \Omega, \quad u=\sigma \text { on } \partial \Omega
$$

where $q>1, \Omega$ is a either a bounded smooth domain or \mathbb{R}_{+}^{N} and $\sigma \in \mathfrak{M}^{+}(\partial \Omega)$ is a nonnegative Radon measure on $\partial \Omega$. In particular, one of the criteria is expressed in terms of some Bessel capacities on $\partial \Omega$. We also give a sufficient condition for the existence of weak solutions to equation with source mixed term.

$$
-\Delta u=|u|^{q_{1}-1} u|\nabla u|^{q_{2}} \quad \text { in } \Omega, \quad u=\sigma \quad \text { on } \quad \partial \Omega
$$

where $q_{1}, q_{2} \geq 0, q_{1}+q_{2}>1, q_{2}<2, \sigma \in \mathfrak{M}(\partial \Omega)$ is a Radon measure on $\partial \Omega$.

1 Introduction and main results

Let Ω be a bounded smooth domain in \mathbb{R}^{N} or $\Omega=\mathbb{R}_{+}^{N}:=\mathbb{R}^{N-1} \times(0, \infty), N \geq 3$, and $g: \mathbb{R} \times \mathbb{R}^{N} \mapsto \mathbb{R}$ be a continuous function. In this paper, we study the solvability problem for

$$
\left\{\begin{array}{l}
-\Delta u=g(u, \nabla u) \text { in } \Omega, \tag{1.1}\\
u=\sigma \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\sigma \in \mathfrak{M}(\partial \Omega)$ is a Radon measure on $\partial \Omega$. All solutions are understood in the usual very weak sense: $u \in L^{1}(\Omega), g(u, \nabla u) \in L_{\rho}^{1}(\Omega)$, where $\rho(x)$ is the distance from x to $\partial \Omega$ when Ω is bounded, or $u \in L^{1}\left(\mathbb{R}_{+}^{N} \cap B\right), g(u, \nabla u) \in L_{\rho}^{1}\left(\mathbb{R}_{+}^{N} \cap B\right)$ for any ball B if $\Omega=\mathbb{R}_{+}^{N}$, and

$$
\begin{equation*}
\int_{\Omega} u(-\Delta \xi) d x=\int_{\Omega} g(u, \nabla u) \xi d x-\int_{\partial \Omega} \frac{\partial \xi}{\partial n} d \sigma \tag{1.2}
\end{equation*}
$$

for any $\xi \in C^{2}(\bar{\Omega}) \cap C_{c}\left(\mathbb{R}^{N}\right)$ with $\xi=0$ on $\partial \Omega$, where $\rho(x)=\operatorname{dist}(x, \partial \Omega), n$ is the outward unit vector on $\partial \Omega$. It is well-known that such a solution u satisfies

$$
u=\mathbf{G}[g(u, \nabla u)]+\mathbf{P}[\sigma] \quad \text { a. e. in } \Omega .
$$

[^0]where $\mathbf{G}[],. \mathbf{P}[$.$] , respectively the Green and the Poisson potentials of -\Delta$ in Ω, are defined from the Green and the Poisson kernels by
$$
\mathbf{P}[\sigma](y)=\int_{\partial \Omega} \mathrm{P}(y, z) d \sigma(z), \quad \mathbf{G}[g(u, \nabla u)](y)=\int_{\Omega} \mathrm{G}(y, x) g(u, \nabla u)(x) d x
$$
see [14]. The case $g(u, \nabla u)=|u|^{q-1} u, q>1$ has been studied by Bidaut-Véron, Vivier, Yarur in $[2,3]$ in case the subcritical case, i.e. $1<q<\frac{N+1}{N-1}$, and Ω is bounded. They proved that problem (1.1) admits a solution provided that $|\sigma|(\partial \Omega)$ is small enough. Furthermore, they also proved that for any $\sigma \in \mathfrak{M}^{+}(\partial \Omega)$ there holds
\[

$$
\begin{equation*}
\mathbf{G}\left[(\mathbf{P}[\sigma])^{q}\right] \leq C \sigma(\partial \Omega) \mathbf{P}[\sigma] \text { in } \Omega \tag{1.3}
\end{equation*}
$$

\]

for some constant $C=C(N, q, \Omega)>0$.
Our main goal is to establish necessary and sufficient conditions for the existence of weak solution to (1.1) with nonnegative boundary measure date, in the supercritical case, together with sharp pointwise estimates of solutions. The absorption case, i.e $g(u, \nabla u)=-|u|^{q-1} u$ has been studied by Gmira and Véron in the subcritical case [7] and by Marcus and Véron in the supercritical case $[12,13,14]$. The case $g(u, \nabla u)=-|\nabla u|^{q}$ has been studied by Nguyen Phuoc and Véron [15] and extended to the case $g(u, \nabla u)=-|u|^{p}|\nabla u|^{q}$ by Marcus and Nguyen Phuoc [10].

We consider first (1.1) with $\Omega=\mathbb{R}^{N-1} \times(0, \infty)$ and as a consequence of our results when $g(u, \nabla u)=|u|^{q-1} u, q>1$ (see Theorem 1.2), we prove that if (1.1) has a nonnegative solution u with $\sigma \in \mathfrak{M}_{+}\left(\mathbb{R}^{N-1}\right)$, then

$$
\begin{equation*}
\sigma\left(B_{r}^{\prime}\left(y^{\prime}\right)\right) \leq C r^{N-\frac{q+1}{q-1}} \tag{1.4}
\end{equation*}
$$

for any ball $B_{r}^{\prime}\left(y^{\prime}\right)$ in \mathbb{R}^{N-1} where $C=C(q, N)$ and $q>\frac{N+1}{N-1}$; if $1<q \leq \frac{N+1}{N-1}$, then $\sigma \equiv 0$. Conversely, if $q>\frac{N+1}{N-1}, d \sigma=f d z$ for some $f \geq 0$ which satisfies

$$
\begin{equation*}
\int_{B_{r}^{\prime}\left(y^{\prime}\right)} f^{1+\varepsilon} d z \leq r^{N-1-\frac{2(\varepsilon+1)}{q-1}} \tag{1.5}
\end{equation*}
$$

for some $\varepsilon>0$. Then, there exists a constant $C_{0}=C_{0}(N, q)$ such that (1.1) has a nonnegative solution if $C \leq C_{0}$. The above inequality is an analogue of the classical FeffermanPhong condition [5]. In particular, (1.5) holds if f belongs to the Marcinkiewicz space $L^{\frac{(N-1)(q-1)}{2}, \infty}\left(\mathbb{R}^{N-1}\right)$.
Moreover, we give sufficient conditions for the existence of weak solutions to (1.1) when $g(u, \nabla u)=|u|^{q_{1}-1} u|\nabla u|^{q_{2}}, q_{1}, q_{2} \geq 0, q_{1}+q_{2}>1$ and $q_{2}<2$.

To state our results, let us introduce some notations. We denote $A \lesssim(\gtrsim) B$ if $A \leq(\geq) C B$ for some C depending on some structural constants, $A \asymp B$ if $A \lesssim B \lesssim A$. Various capacities will be used throughout the paper. Among them are the Riesz and Bessel capacities in \mathbb{R}^{N-1} defined respectively by

$$
\begin{aligned}
& \operatorname{Cap}_{I_{\gamma}, s}(O)=\inf \left\{\int_{\mathbb{R}^{N-1}} f^{s} d y: f \geq 0, I_{\gamma} * f \geq \chi_{O}\right\} \\
& \operatorname{Cap}_{G_{\gamma}, s}(O)=\inf \left\{\int_{\mathbb{R}^{N-1}} f^{s} d y: f \geq 0, G_{\gamma} * f \geq \chi_{O}\right\},
\end{aligned}
$$

for any Borel set $O \subset \mathbb{R}^{N-1}$, where $s>1, I_{\gamma}, G_{\gamma}$ are the Riesz and the Bessel kernels in \mathbb{R}^{N-1} with order $\gamma \in(0, N-1)$. We remark that

$$
\begin{equation*}
\operatorname{Cap}_{G_{\gamma}, s}(O) \geq \operatorname{Cap}_{I_{\gamma}, s}(O) \geq C|O|^{1-\frac{\gamma s}{N-1}} \tag{1.6}
\end{equation*}
$$

for any Borel set $O \subset \mathbb{R}^{N-1}$ where $\gamma s<N-1$ and C is a positive constant. When we consider equations in a bounded smooth domain Ω in \mathbb{R}^{N} we use a specific capacity that we define as follows: there exist open sets O_{1}, \ldots, O_{m} in \mathbb{R}^{N}, diffeomorphisms $T_{i}: O_{i} \mapsto B_{1}(0)$ and compact sets K_{1}, \ldots, K_{m} in $\partial \Omega$ such that
a. $K_{i} \subset O_{i}, \partial \Omega \subset \bigcup_{i=1}^{m} K_{i}$
b. $T_{i}\left(O_{i} \cap \partial \Omega\right)=B_{1}(0) \cap\left\{x_{N}=0\right\}, T_{i}\left(O_{i} \cap \Omega\right)=B_{1}(0) \cap\left\{x_{N}>0\right\}$.
c. for any $x \in O_{i} \cap \partial \Omega, \exists y \in O_{i} \cap \partial \Omega, d(x, \partial \Omega)=|x-y|$.

Clearly, $\rho\left(T_{i}^{-1}(z)\right) \asymp\left|z_{N}\right|$ for any $z=\left(z^{\prime}, z_{N}\right) \in B_{1}(0) \cap\left\{x_{N}>0\right\}$ and $\left|\mathbf{J}_{T_{i}}(x)\right| \asymp 1$ for any $x \in O_{i} \cap \Omega$, here $\mathbf{J}_{T_{i}}$ is the Hessian matrix of T_{i}.

Definition 1.1 Let $\gamma \in(0, N-1), s>1$. We denote the $\operatorname{Cap}_{\gamma, s}^{\partial \Omega}$-capacity of a compact set $E \subset \partial \Omega$ by

$$
\operatorname{Cap}_{\gamma, s}^{\partial \Omega}(E)=\sum_{i=1}^{m} \operatorname{Cap}_{G_{\gamma}, s}\left(\tilde{T}_{i}\left(E \cap K_{i}\right)\right)
$$

where $T_{i}\left(E \cap K_{i}\right)=\tilde{T}_{i}\left(E \cap K_{i}\right) \times\left\{x_{N}=0\right\}$.
Notice that, if $\gamma s>N-1$ then there exists $C=C(N, \gamma, s, \Omega)>0$ such that

$$
\begin{equation*}
\operatorname{Cap}_{\gamma, s}^{\partial \Omega}(\{x\}) \geq C \tag{1.7}
\end{equation*}
$$

for all $x \in \partial \Omega$.
Our first two theorems give criteria for the solvability of problem (1.1) in \mathbb{R}_{+}^{N}.
Theorem 1.2 Let $q>1$ and $\sigma \in \mathfrak{M}^{+}\left(\mathbb{R}^{N-1}\right)$. Then, the following statements are equivalent

1. The inequality

$$
\begin{equation*}
\sigma(K) \leq C \operatorname{Cap}_{I_{\frac{2}{q}}, q^{\prime}}(K) \tag{1.8}
\end{equation*}
$$

holds for any compact set $K \subset \mathbb{R}^{N-1}$.
2. The inequality

$$
\begin{equation*}
\mathbf{G}\left[(\mathbf{P}[\sigma])^{q}\right] \leq C \mathbf{P}[\sigma]<\infty \text { a.e in } \mathbb{R}^{N-1} \times(0, \infty) \tag{1.9}
\end{equation*}
$$

holds.
3. The problem

$$
\begin{align*}
-\Delta u=u^{q} & \text { in } \mathbb{R}^{N-1} \times(0, \infty) \tag{1.10}\\
u(., 0)=\varepsilon \sigma & \text { in } \mathbb{R}^{N-1}
\end{align*}
$$

has a positive solution for some $\varepsilon>0$.

Moreover, there is a constant $C_{0}>0$ such that if any one of the two statement 1 and 2 holds with $C \leq C_{0}$, then equation (1.10) admits a solution u with $\varepsilon=1$ which satisfies

$$
\begin{equation*}
u \asymp \mathbf{P}[\sigma] . \tag{1.11}
\end{equation*}
$$

Conversely, if (1.10) has a solution u with $\varepsilon=1$, then the two statement 1. and 2. hold for some $C>0$.

Theorem 1.3 Let $q_{1}, q_{2} \geq 0, q_{1}+q_{2}>1, q_{2}<2$ and $\sigma \in \mathfrak{M}\left(\mathbb{R}^{N-1}\right)$. There exists $\delta>0$ such that if the inequality

$$
\begin{equation*}
|\sigma|(K) \leq \delta \operatorname{Cap}_{\frac{\frac{2-q_{2}}{q_{1}+q_{2}}}{},\left(q_{1}+q_{2}\right)^{\prime}}(K) \tag{1.12}
\end{equation*}
$$

holds for any Borel set $K \subset \mathbb{R}^{N-1}$, then the problem

$$
\begin{align*}
-\Delta u & =|u|^{q_{1}-1} u|\nabla u|^{q_{2}} & & \text { in } \mathbb{R}^{N-1} \times(0, \infty), \tag{1.13}\\
u & =\sigma & & \text { in } \mathbb{R}^{N-1},
\end{align*}
$$

has a solution and satisfies

$$
\begin{equation*}
|u| \leq C \mathbf{P}[|\sigma|], \quad|\nabla u| \leq C(\rho(.))^{-1} \mathbf{P}[|\sigma|] . \tag{1.14}
\end{equation*}
$$

for some a constant $C>0$.
In view of (1.6) and assuming $d \sigma=f d z$, we see that if $f \in L^{\frac{(N-1)(q-1)}{2}, \infty}\left(\mathbb{R}^{N-1}\right)$ and $\frac{(N-1)(q-1)}{2}>1$, then (1.8) holds for some $C>0$, if $f \in L^{\frac{(N-1)\left(q_{1}+q_{2}-1\right)}{2-q_{2}}, \infty}\left(\mathbb{R}^{N-1}\right)$ and $\frac{(N-1)\left(q_{1}+q_{2}-1\right)}{2-q_{2}}>1$ then (1.12) holds for some $C>0$.

In a bounded smooth domain Ω we obtain existence results analogous to Theorem (1.2) and 1.3 provided the specific capacities on $\partial \Omega$ are used instead of the Riesz capacities.

Theorem 1.4 Let $q>1, \Omega$ be a bounded open set in \mathbb{R}^{N} with $\partial \Omega \in C^{2}$ and $\sigma \in \mathfrak{M}_{b}^{+}(\partial \Omega)$. Then, the following statements are equivalent:

1. The inequality

$$
\begin{equation*}
\sigma(K) \leq C \operatorname{Cap}_{\frac{2}{q}, q^{\prime}}^{\partial \Omega}(K) \tag{1.15}
\end{equation*}
$$

holds for any Borel set $K \subset \partial \Omega$.
2. The inequalities

$$
\begin{equation*}
\mathbf{G}\left[(\mathbf{P}[\sigma])^{q}\right] \leq C \mathbf{P}[\sigma]<\infty \text { a.e in } \Omega \tag{1.16}
\end{equation*}
$$

holds.
3. The problem

$$
\begin{align*}
-\Delta u & =u^{q} \tag{1.17}\\
u & =\varepsilon \sigma
\end{align*} \quad \text { in } \Omega,
$$

admits a positive solution for some $\varepsilon>0$.
Moreover, there is a constant $C_{0}>0$ such that if any one of the two statement 1. and 2. holds with $C \leq C_{0}$, then equation 1.17 has a solution u with $\varepsilon=1$ which satisfies

$$
\begin{equation*}
u \asymp \mathbf{P}[\sigma] . \tag{1.18}
\end{equation*}
$$

Conversely, if (1.17) has a solution u with $\varepsilon=1$, then the two statements 1. and 2. hold for some $C>0$.

From (1.7), we see that if $\sigma \in \mathfrak{M}_{b}^{+}(\partial \Omega)$ and $1<q<\frac{N+1}{N-1}$, then (1.15) holds for some constant $C>0$. Hence, in this case, problem (1.17) has a positive solution for some small constant $\varepsilon>0$.

Theorem 1.5 Let $q_{1}, q_{2} \geq 0, q_{1}+q_{2}>1, q_{2}<2, \Omega$ be a bounded open set in \mathbb{R}^{N} with $\partial \Omega \in C^{2}$ and $\sigma \in \mathfrak{M}_{b}(\partial \Omega)$. There exists $\delta>0$ such that if

$$
\begin{equation*}
|\sigma|(K) \leq \delta \operatorname{Cap}_{\frac{2-q_{2}}{q_{1}+q_{2}},\left(q_{1}+q_{2}\right)^{\prime}}^{\partial \Omega}(K) \tag{1.19}
\end{equation*}
$$

holds for any Borel set $K \subset \partial \Omega$ when Ω is a bounded, then problem

$$
\left\{\begin{array}{l}
-\Delta u=|u|^{q_{1}-1} u|\nabla u|^{q_{2}} \quad \text { in } \Omega \tag{1.20}\\
u=\sigma \quad \text { on } \partial \Omega
\end{array}\right.
$$

has a solution and satisfies (1.14).
As above, by (1.7) and (1.19), we deduce that for any $\sigma \in \mathfrak{M}_{b}(\partial \Omega)$ and $\frac{2-q_{2}}{q_{1}+q_{2}-1}>N-1$, problem (1.20) has a solution provided that $|\sigma|(\partial \Omega)$ is small enough.

2 Integral equations

Let Ω be either $\mathbb{R}^{N-1} \times(0, \infty)$ or Ω a bounded domain in \mathbb{R}^{N} with a C^{2} boundary $\partial \Omega$. For $0 \leq \alpha \leq \beta<N$, we denote

$$
\begin{equation*}
\mathbf{N}_{\alpha, \beta}(x, y)=\frac{1}{|x-y|^{N-\beta} \max \{|x-y|, \rho(x), \rho(y)\}^{\alpha}} \quad \forall(x, y) \in \bar{\Omega} \times \bar{\Omega} \tag{2.1}
\end{equation*}
$$

We set

$$
\mathbf{N}_{\alpha, \beta}[\nu](x)=\int_{\bar{\Omega}} \mathbf{N}_{\alpha, \beta}(x, y) d \nu(y) \quad \forall \nu \in \mathfrak{M}^{+}(\bar{\Omega})
$$

and $\mathbf{N}_{\alpha, \beta}[f]:=\mathbf{N}_{\alpha, \beta}[f d x]$ if $f \in L_{l o c}^{1}(\Omega), f \geq 0$.
In this section, we are interested in the solvability of the following integral equations

$$
\begin{equation*}
U=\mathbf{N}_{\alpha, \beta}\left[U^{q}(\rho(.))^{\alpha_{0}}\right]+\mathbf{N}_{\alpha, \beta}[\omega] \tag{2.2}
\end{equation*}
$$

where $\alpha_{0} \geq 0$ and $\omega \in \mathfrak{M}^{+}(\bar{\Omega})$.
For our purpose, we introduce Kalton and Verbitsky's result which is proved in [9]. Let X be a metric space and $\nu \in \mathfrak{M}^{+}(X)$. Let \mathbf{K} be a Borel positive kernel function $\mathbf{K}: X \times X \mapsto$ $(0, \infty]$ such that \mathbf{K} is symmetric and satisfies a quasi-metric inequality, i.e there is a constant $C \geq 1$ such that for all $x, y, z \in X$ we have

$$
\frac{1}{\mathbf{K}(x, y)} \leq C\left(\frac{1}{\mathbf{K}(x, z)}+\frac{1}{\mathbf{K}(z, y)}\right)
$$

Under these conditions, we can define the quasi-metric d by

$$
d(x, y)=\frac{1}{\mathbf{K}(x, y)}
$$

and by $\mathbb{B}_{r}(x)=\{y \in X: d(x, y)<r\}$ the open d-ball of radius $r>0$ and center x. Note that this set can be empty.

For $\omega \in \mathfrak{M}^{+}(X)$, we define the potentials $\mathbf{K} \omega$ and $\mathbf{K}^{\nu} f$ by

$$
\mathbf{K} \omega(x)=\int_{X} \mathbf{K}(x, y) d \omega(y), \quad \mathbf{K}^{\nu} f(x)=\int_{X} \mathbf{K}(x, y) f(y) d \nu(y)
$$

and for $q>1$, the capacity $\operatorname{Cap}_{\mathbf{K}, q^{\prime}}^{\nu}$ in X by

$$
\operatorname{Cap}_{\mathbf{K}, q^{\prime}}^{\nu}(E)=\inf \left\{\int_{X} g^{q^{\prime}} d \nu: g \geq 0, \mathbf{K}^{\nu} g \geq \chi_{E}\right\}
$$

for any Borel set $E \subset X$.

Theorem 2.1 ([9]) Let $q>1$ and $\nu, \omega \in \mathfrak{M}^{+}(X)$ such that

$$
\begin{array}{r}
\int_{0}^{2 r} \frac{\nu\left(\mathbb{B}_{s}(x)\right)}{s} \frac{d s}{s} \leq C \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(x)\right)}{s} \frac{d s}{s} \\
\sup _{y \in \mathbb{B}_{r}(x)} \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(y)\right)}{s} \frac{d s}{s} \leq C \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(x)\right)}{s} \frac{d s}{s} \tag{2.4}
\end{array}
$$

for any $r>0, x \in X$, where $C>0$ is a constant. Then the following statements are equivalent:

1. The equation $u=\mathbf{K}^{\nu} u^{q}+\varepsilon \mathbf{K} \omega$ has a solution for some $\varepsilon>0$.
2. The inequality

$$
\begin{equation*}
\int_{E}\left(\mathbf{K} \omega_{E}\right)^{q} d \sigma \leq C \omega(E) \tag{2.5}
\end{equation*}
$$

holds for any Borel set $E \subset X, \omega_{E}=\chi_{E} \omega$.
3. For any Borel set $E \subset X$, there holds

$$
\begin{equation*}
\omega(E) \leq C \operatorname{Cap}_{\mathbf{K}, q^{\prime}}^{\nu}(E) \tag{2.6}
\end{equation*}
$$

4. The inequality

$$
\begin{equation*}
\mathbf{K}^{\nu}(\mathbf{K} \omega)^{q} \leq C \mathbf{K} \omega<\infty \quad \nu-a . e . \tag{2.7}
\end{equation*}
$$

holds.
We now check that $N_{\alpha, \beta}$ satisfies all assumptions of \mathbf{K} in previous theorem
Lemma $2.2 \mathbf{N}_{\alpha, \beta}$ is symmetric and satisfies the quasi-metric inequality.
Proof. Clearly, $\mathbf{N}_{\alpha, \beta}$ is symmetric. Now we check the quasi-metric inequality associated to $\mathbf{N}_{\alpha, \beta}$ and $X=\bar{\Omega}$. For any $x, z, y \in \bar{\Omega}$ such that $x \neq y \neq z$, we have

$$
\begin{aligned}
|x-y|^{N-\beta+\alpha} & \lesssim|x-z|^{N-\beta+\alpha}+|z-y|^{N-\beta+\alpha} \\
& \lesssim \frac{1}{\mathbf{N}_{\alpha, \beta}(x, z)}+\frac{1}{\mathbf{N}_{\alpha, \beta}(z, y)}
\end{aligned}
$$

Since $|\rho(x)-\rho(y)| \leq|x-y|$, so

$$
\begin{aligned}
& |x-y|^{N-\beta}(\rho(x))^{\alpha}+|x-y|^{N-\beta}(\rho(y))^{\alpha} \lesssim|x-y|^{N-\beta}(\min \{\rho(x), \rho(y)\})^{\alpha}+|x-y|^{N-\beta+\alpha} \\
& \quad \lesssim\left(|x-z|^{N-\beta}+|z-y|^{N-\beta}\right)(\min \{\rho(x), \rho(y)\})^{\alpha}+|x-z|^{N-\beta+\alpha}+|z-y|^{N-\beta+\alpha} \\
& \quad=\left((\rho(x))^{\alpha}|x-z|^{N-\beta}+|x-z|^{N-\beta+\alpha}\right)+\left((\rho(y))^{\alpha}|z-y|^{N-\beta}+|z-y|^{N-\beta+\alpha}\right) \\
& \quad \lesssim \frac{1}{\mathbf{N}_{\alpha, \beta}(x, z)}+\frac{1}{\mathbf{N}_{\alpha, \beta}(z, y)},
\end{aligned}
$$

Thus,

$$
\frac{1}{\mathbf{N}_{\alpha, \beta}(x, y)} \lesssim \frac{1}{\mathbf{N}_{\alpha, \beta}(x, z)}+\frac{1}{\mathbf{N}_{\alpha, \beta}(z, y)}
$$

Lemma 2.3 If $d \nu(x)=\chi_{\Omega}(\rho(x))^{\alpha_{0}} d x$ with $\alpha_{0} \geq 0$, then (2.3) and (2.4) hold.

Proof. It is easy to see that for any $x \in \bar{\Omega}, s>0$

$$
\begin{equation*}
B_{2^{-\frac{\alpha+1}{N-\beta}} S}(x) \cap \bar{\Omega} \subset \mathbb{B}_{s}(x) \subset B_{S}(x) \cap \bar{\Omega}, \tag{2.8}
\end{equation*}
$$

with $S=\min \left\{s^{\frac{1}{N-\beta+\alpha}}, s^{\frac{1}{N-\beta}}(\rho(x))^{-\frac{\alpha}{N-\beta}}\right\}$ and $\mathbb{B}_{s}(x)=\bar{\Omega}$ when $s>2^{\frac{\alpha N}{N-\alpha}}(\operatorname{diam}(\Omega))^{N}$. We show that for any $0 \leq s<8 \operatorname{diam}(\Omega), x \in \bar{\Omega}$

$$
\begin{equation*}
\nu\left(B_{s}(x)\right) \asymp(\max \{\rho(x), s\})^{\alpha_{0}} s^{N} . \tag{2.9}
\end{equation*}
$$

Indeed, take $0 \leq s<8 \operatorname{diam}(\Omega), x \in \bar{\Omega}$. There exists $\varepsilon=\varepsilon(\Omega) \in(0,1)$ and $x_{s} \in \Omega$ such that $B_{\varepsilon s}\left(x_{s}\right) \subset B_{s}(x) \cap \Omega$ and $d\left(x_{s}, \partial \Omega\right)>\varepsilon s$.
(a) If $0 \leq s \leq \frac{\rho(x)}{4}$, so for any $y \in B_{s}(x), \rho(y) \asymp \rho(x)$. Thus, $\nu\left(B_{s}(x)\right) \asymp(\rho(x))^{\alpha_{0}} \mid B_{s}(x) \cap$ $\Omega \mid \asymp(d(x, \partial \Omega))^{\alpha_{0}} s^{N}$.
(b) If $s>\frac{\rho(x)}{4}$. Since $\rho(y) \leq \rho(x)+|x-y|<5 s$ for any $y \in B_{s}(x), \nu\left(B_{s}(x)\right) \lesssim s^{N+\alpha_{0}}$
(b.1) If $s \leq 4 \rho(x)$, we have

$$
\nu\left(B_{s}(x)\right) \gtrsim \nu\left(B_{\frac{\rho(x)}{4}}(x)\right) \asymp(\rho(x))^{\alpha_{0}+N} \gtrsim s^{N+\alpha_{0}} .
$$

(b.2) If $s \geq 4 \rho(x)$. We have for any $y \in B_{\varepsilon s / 2}\left(x_{s}\right), \rho(y) \geq-\left|y-x_{s}\right|+\rho\left(x_{s}\right)>\varepsilon s / 2$. It follows

$$
\nu\left(B_{s}(x)\right) \gtrsim \nu\left(B_{\varepsilon s / 2}\left(x_{s}\right)\right) \gtrsim s^{N+\alpha_{0}} .
$$

Thus, for any $0 \leq s<2^{\frac{(\alpha+1)(N-\beta+\alpha)}{N-\beta}}(\operatorname{diam}(\Omega))^{N-\beta+\alpha}, x \in \bar{\Omega}$ we have

$$
\begin{aligned}
\nu\left(\mathbb{B}_{s}(x)\right) \asymp & \left(\max \left\{\rho(x), \min \left\{s^{\frac{1}{N-\beta+\alpha}}, s^{\frac{1}{N-\beta}}(\rho(x))^{-\frac{\alpha}{N-\beta}}\right\}\right\}\right)^{\alpha_{0}} \\
& \times\left(\min \left\{s^{\frac{1}{N-\beta+\alpha}}, s^{\frac{1}{N-\beta}}(\rho(x))^{-\frac{\alpha}{N-\beta}}\right\}\right)^{N} \\
\asymp & \begin{cases}s^{\frac{\alpha}{N-\beta}+N} & \text { if } \rho(x) \leq s^{\frac{1}{N-\beta+\alpha}} \\
(\rho(x))^{\alpha_{0}-\frac{\alpha N}{N-\beta}} s^{\frac{N}{N-\beta}} & \text { if } \rho(x) \geq s^{\frac{1}{N-\beta+\alpha}},\end{cases}
\end{aligned}
$$

and $\nu\left(\mathbb{B}_{s}(x)\right)=\nu(\bar{\Omega}) \asymp(\operatorname{diam}(\Omega))^{\alpha_{0}+N}$ if $s>2^{\frac{(\alpha+1)(N-\beta+\alpha)}{N-\beta}}(\operatorname{diam}(\Omega))^{N-\beta+\alpha}$. We get,

$$
\int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(x)\right)}{s} \frac{d s}{s} \asymp \begin{cases}(\operatorname{diam}(\Omega))^{\alpha_{0}+\beta-\alpha} & \text { if } r>(\operatorname{diam}(\Omega))^{N-\beta+\alpha}, \\ r^{\frac{\alpha_{0}+\beta-\alpha}{N-\beta+\alpha}} & \text { if } r \in\left((\rho(x))^{N-\beta+\alpha},(\operatorname{diam}(\Omega))^{N-\beta+\alpha}\right], \\ (\rho(x))^{\alpha_{0}-\frac{\alpha N}{N-\beta}} r^{\frac{\beta}{N-\beta}} & \text { if } r \in\left(0,(\rho(x))^{N-\beta+\alpha}\right] .\end{cases}
$$

So, (2.3) holds. It remains to check (2.4). For any $x \in \bar{\Omega}$ and $r>0$, clearly, if $r>$ $\frac{1}{2}(\rho(x))^{N-\beta+\alpha}$ we have

$$
\sup _{y \in \mathbb{B}_{r}(x)} \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(y)\right)}{s} \frac{d s}{s} \lesssim \min \left\{r^{\frac{\alpha_{0}+\beta-\alpha}{N-\beta+\alpha}},(\operatorname{diam}(\Omega))^{\alpha_{0}+\beta-\alpha}\right\}
$$

we obtain

$$
\sup _{y \in \mathbb{B}_{r}(x)} \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(y)\right)}{s} \frac{d s}{s} \lesssim \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(x)\right)}{s} \frac{d s}{s} .
$$

If $0<r \leq \frac{1}{2}(\rho(x))^{N-\beta+\alpha}$, we have $\mathbb{B}_{r}(x) \subset B_{r \frac{1}{N-\beta}(\rho(x))^{-\frac{\alpha}{N-\beta}}}(x)$ and $\rho(x) \asymp \rho(y)$ for all
$y \in B_{r^{\frac{1}{N-\beta}}(\rho(x))^{-} \frac{\alpha}{N-\beta}}(x)$, thus

$$
\begin{aligned}
\sup _{y \in \mathbb{B}_{r}(x)} \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(y)\right)}{s} \frac{d s}{s} & \leq \sup _{|y-x|<r^{\frac{1}{N-\beta}}(\rho(x))^{-} \frac{\alpha}{N-\beta}} \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(y)\right)}{s} \frac{d s}{s} \\
& \asymp \sup _{|y-x|<r^{\frac{1}{N-\beta}}(\rho(x))^{-\frac{\alpha}{N-\beta}}}(\rho(y))^{\alpha_{0}-\frac{\alpha N}{N-\beta}} r^{\frac{\beta}{N-\beta}} \\
& \asymp(\rho(x))^{\alpha_{0}-\frac{\alpha N}{N-\beta}} r^{\frac{\beta}{N-\beta}} \\
& \asymp \int_{0}^{r} \frac{\nu\left(\mathbb{B}_{s}(x)\right)}{s} \frac{d s}{s} .
\end{aligned}
$$

Therefore, (2.4) holds.
Definition 2.4 For $\alpha_{0} \geq 0,0 \leq \alpha \leq \beta<N$ and $s>1$, we define $\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}$ by

$$
\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}(E)=\inf \left\{\int_{\bar{\Omega}} g^{s}(\rho(x))^{\alpha_{0}} d x: g \geq 0, \mathbf{N}_{\alpha, \beta}\left[g(\rho(.))^{\alpha_{0}}\right] \geq \chi_{E}\right\}
$$

for any Borel set $E \subset \bar{\Omega}$.
Clearly, we have

$$
\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}(E)=\inf \left\{\int_{\bar{\Omega}} g^{s}(\rho(x))^{-\alpha_{0}(s-1)} d x: g \geq 0, \mathbf{N}_{\alpha, \beta}[g] \geq \chi_{E}\right\}
$$

for any Borel set $E \subset \bar{\Omega}$. Furthermore we have by [1, Theorem 2.5.1],

$$
\begin{equation*}
\left(\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}(E)\right)^{1 / s}=\sup \left\{\omega(E): \omega \in \mathfrak{M}_{b}^{+}(E),\left\|\mathbf{N}_{\alpha, \beta}[\omega]\right\|_{\left.L^{s^{\prime}}(\Omega,(\rho(.)))^{\alpha_{0}} d x\right)} \leq 1\right\} \tag{2.10}
\end{equation*}
$$

for any compact set $E \subset \bar{\Omega}$, where s^{\prime} is the conjugate exponent of s.
Thanks to Lemma 2.2 and 2.3 , we can apply Theorem 2.1 to obtain.
Theorem 2.5 Let $\omega \in \mathfrak{M}^{+}(\bar{\Omega}), \alpha_{0} \geq 0,0 \leq \alpha \leq \beta<N$ and $q>1$. Then the following statements are equivalent:

1. The equation $u=\mathbf{N}_{\alpha, \beta}\left[u^{q}(\rho(.))^{\alpha_{0}}\right]+\varepsilon \mathbf{N}_{\alpha, \beta}[\omega]$ has a solution for some $\varepsilon>0$.
2. The inequality

$$
\begin{equation*}
\int_{E \cap \Omega}\left(\mathbf{N}_{\alpha, \beta}\left[\omega_{E}\right]\right)^{q}(\rho(x))^{\alpha_{0}} d x \leq C \omega(E) \tag{2.11}
\end{equation*}
$$

holds for any Borel set $E \subset \bar{\Omega}, \omega_{E}=\omega \chi_{E}$.
3. The inequality

$$
\begin{equation*}
\omega(K) \leq C \operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, q^{\prime}}^{\alpha_{0}}(K) \tag{2.12}
\end{equation*}
$$

holds for any compact set $K \subset \bar{\Omega}$
4. The inequality

$$
\begin{equation*}
\mathbf{N}_{\alpha, \beta}\left[\left(\mathbf{N}_{\alpha, \beta}[\omega]\right)^{q}(\rho(.))^{\alpha_{0}}\right] \leq C \mathbf{N}_{\alpha, \beta}[\omega]<\infty \quad \text { a.e in } \Omega \tag{2.13}
\end{equation*}
$$

holds.
To apply the previous theorem we need the following result.

Proposition 2.6 Let $q>1, \nu, \omega \in \mathfrak{M}^{+}(X)$. Suppose that $A_{1}, A_{2}, B_{1}, B_{2}: X \times X \mapsto[0,+\infty)$ are Borel positive Kernel functions with $A_{1} \asymp A_{2}, B_{1} \asymp B_{2}$. Then, the following statements are equivalent:

1. The problem $u=A_{1}^{\nu} u^{q}+\varepsilon B_{1} \omega \quad \nu$-a.e has a position solution for some $\varepsilon>0$.
2. The problem $u=A_{2}^{\nu} u^{q}+\varepsilon B_{2} \omega \nu$-a.e has a position solution for some $\varepsilon>0$.
3. The problem $u \asymp A_{1}^{\nu} u^{q}+\varepsilon B_{1} \omega \nu$-a.e has a position solution for some $\varepsilon>0$.
4. The problem $u \gtrsim A_{1}^{\nu} u^{q}+\varepsilon B_{1} \omega \nu$-a.e has a position solution for some $\varepsilon>0$.

Proof. We only prove that 4 implies 2. Suppose that there exist $c_{1}>0, \varepsilon_{0}>0$ and a position Borel function u such that

$$
A_{1}^{\nu} u^{q}+\varepsilon_{0} B_{1} \omega \leq c_{1} u
$$

Taken $c_{2}>0$ with $A_{2} \leq c_{2} A_{1}, B_{2} \leq c_{2} B$. We consider $u_{n+1}=A_{2}^{\nu} u_{n}^{q}+\varepsilon_{0}\left(c_{1} c_{2}\right)^{-\frac{q}{q-1}} B_{2} \omega$ and $u_{0}=0$ for any $n \geq 0$. Clearly, $u_{n} \leq\left(c_{1} c_{2}\right)^{-\frac{1}{q-1}} u$ for any n and $\left\{u_{n}\right\}$ is nondecreasing. Thus, $U=\lim _{n \rightarrow \infty} u_{n}$ is a solution of $U=A_{2}^{\nu} U^{q}+\varepsilon_{0}\left(c_{1} c_{2}\right)^{-\frac{q}{q-1}} B_{2} \omega$.

The following results provide some relations between the capacities $\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}$ and the Riesz capacities on \mathbb{R}^{N-1} which allow to define the capacities on $\partial \Omega$.
Proposition 2.7 Assume that $\Omega=\mathbb{R}^{N-1} \times(0, \infty)$ and let $\alpha_{0} \geq 0$ such that $-1+s^{\prime}(1+$ $\alpha-\beta)<\alpha_{0}<-1+s^{\prime}(N-\beta+\alpha)$. There holds

$$
\begin{equation*}
\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}(K \times\{0\}) \asymp \operatorname{Cap}_{I_{\beta-\alpha+\frac{\alpha_{0}+1}{s^{\prime}-1}}, s^{\prime}}(K) \tag{2.14}
\end{equation*}
$$

for any compact set $K \subset \mathbb{R}^{N-1}$,
Proof. The proof relies on an idea of [16, Corollary 4.20]. Thanks to [1, Theorem 2.5.1] and (2.10), we get (2.14) from the following estimate: for any $\mu \in \mathfrak{M}^{+}\left(\mathbb{R}^{N-1}\right)$

$$
\begin{equation*}
\left\|\mathbf{N}_{\alpha, \beta}\left[\mu \otimes \delta_{\left\{x_{N}=0\right\}}\right]\right\|_{\left.\left.L^{s^{\prime}}(\Omega,(\rho(.)))\right)^{\alpha_{0}} d x\right)} \asymp\left\|I_{\beta-\alpha+\frac{\alpha_{0}+1}{s^{\prime}-1}}[\mu]\right\|_{L^{s^{\prime}}\left(\mathbb{R}^{N-1}\right)}, \tag{2.15}
\end{equation*}
$$

where $I_{\gamma}[\mu]$ is the Riesz potential of μ in \mathbb{R}^{N-1}, i.e

$$
I_{\gamma}[\mu](y)=\int_{0}^{\infty} \frac{\mu\left(B_{r}^{\prime}(y)\right)}{r^{N-1-\gamma}} \frac{d r}{r} \quad \forall y \in \mathbb{R}^{N-1}
$$

with $B_{r}^{\prime}(y)$ is a ball in \mathbb{R}^{N-1}. We have

$$
\begin{aligned}
\left\|\mathbf{N}_{\alpha, \beta}\left[\mu \otimes \delta_{\left\{x_{N}=0\right\}}\right]\right\| \|_{L^{s^{\prime}}\left(\Omega,(\rho(.))^{\alpha_{0}} d x\right)}^{s^{\prime}} & =\int_{\mathbb{R}^{N-1}} \int_{0}^{\infty}\left(\int_{\mathbb{R}^{N-1}} \frac{d \mu(z)}{\left(\left|x^{\prime}-z\right|^{2}+x_{N}^{2}\right)^{\frac{N-\beta+\alpha}{2}}}\right)^{s^{\prime}} x_{N}^{\alpha_{0}} d x_{N} d x^{\prime} \\
& \asymp \int_{\mathbb{R}^{N-1}} \int_{0}^{\infty}\left(\int_{x_{N}}^{\infty} \frac{\mu\left(B_{r}^{\prime}\left(x^{\prime}\right)\right)}{r^{N-\beta+\alpha}} \frac{d r}{r}\right)^{s^{\prime}} x_{N}^{\alpha_{0}} d x_{N} d x^{\prime}
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\int_{0}^{\infty}\left(\int_{x_{N}}^{\infty} \frac{\mu\left(B_{r}^{\prime}\left(x^{\prime}\right)\right)}{r^{N-\beta+\alpha}} \frac{d r}{r}\right)^{s^{\prime}} x_{N}^{\alpha_{0}} d x_{N} & \geq \int_{0}^{\infty}\left(\int_{x_{N}}^{2 x_{N}} \frac{\mu\left(B_{r}^{\prime}\left(x^{\prime}\right)\right)}{r^{N-\beta+\alpha}} \frac{d r}{r}\right)^{s^{\prime}} x_{N}^{\alpha_{0}} d x_{N} \\
& \gtrsim \int_{0}^{\infty}\left(\frac{\mu\left(B_{x_{N}}^{\prime}\left(x^{\prime}\right)\right)}{x_{N}^{N-\beta+\alpha-\frac{\alpha_{0}+1}{s^{\prime}}}}\right)^{s^{\prime}} \frac{d x_{N}}{x_{N}}
\end{aligned}
$$

Thus, using Hölder's inequality and Fubini's Theorem, we obtain

$$
\begin{aligned}
\int_{0}^{\infty}\left(\int_{x_{N}}^{\infty} \frac{\mu\left(B_{r}^{\prime}\left(x^{\prime}\right)\right)}{r^{N-\beta+\alpha}} \frac{d r}{r}\right)^{s^{\prime}} x_{N}^{\alpha_{0}} d x_{N} & \leq \int_{0}^{\infty}\left(\int_{x_{N}}^{\infty} r^{-\frac{s}{2 s^{\prime}}} \frac{d r}{r}\right)^{\frac{s^{\prime}}{s}} \int_{x_{N}}^{\infty}\left(\frac{\mu\left(B_{r}^{\prime}\left(x^{\prime}\right)\right)}{r^{N-\beta+\alpha-\frac{1}{2 s}}}\right)^{s^{\prime}} \frac{d r}{r} x_{N}^{\alpha_{0}} d x_{N} \\
& =C \int_{0}^{\infty} \int_{x_{N}}^{\infty}\left(\frac{\mu\left(B_{r}^{\prime}\left(x^{\prime}\right)\right)}{r^{N-\beta+\alpha-\frac{1}{2 s^{\prime}}}}\right)^{s^{\prime}} \frac{d r}{r} x_{N}^{\alpha_{0}-\frac{1}{2}} d x_{N} \\
& =C \int_{0}^{\infty} \int_{0}^{r} x_{N}^{\alpha_{0}-\frac{1}{2}} d x_{N}\left(\frac{\mu\left(B_{r}^{\prime}\left(x^{\prime}\right)\right)}{r^{N-\beta+\alpha-\frac{1}{2 s}}}\right)^{s^{\prime}} \frac{d r}{r} \\
& =C \int_{0}^{\infty}\left(\frac{\mu\left(B_{r}^{\prime}\left(x^{\prime}\right)\right)}{r^{N-\beta+\alpha-\frac{\alpha_{0}+1}{s^{\prime}}}}\right)^{s^{\prime}} \frac{d r}{r} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left\|\mathbf{N}_{\alpha, \beta}\left[\mu \otimes \delta_{\left\{x_{N}=0\right\}}\right]\right\|_{\left.L^{s^{\prime}}(\Omega,(\rho(.)))^{\alpha_{0}} d x\right)} \asymp\left(\int_{\mathbb{R}^{N-1}} \int_{0}^{\infty}\left(\frac{\mu\left(B_{r}^{\prime}(y)\right)}{r^{N-\beta+\alpha-\frac{\alpha_{0}+1}{s^{\prime}}}}\right)^{s^{\prime}} \frac{d r}{r} d y\right)^{1 / s^{\prime}} \tag{2.16}
\end{equation*}
$$

It implies (2.15) from [4, Theorem 2.3].

Proposition 2.8 Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain a C^{2} boundary. Assume $\alpha_{0} \geq 0$ and $-1+s^{\prime}(1+\alpha-\beta)<\alpha_{0}<-1+s^{\prime}(N-\beta+\alpha)$. Then there holds

$$
\begin{equation*}
\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}(E) \asymp \operatorname{Cap}_{\beta-\alpha+\frac{\alpha_{0}+1}{s^{\prime}}-1, s}^{\partial \Omega}(E) \tag{2.17}
\end{equation*}
$$

for any compact set $E \subset \partial \Omega \subset \mathbb{R}^{N}$.
Proof. Let K_{1}, \ldots, K_{m} be as in definition 1.1. We have

$$
\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}(E) \asymp \sum_{i=1}^{m} \operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}\left(E \cap K_{i}\right),
$$

for any compact set $E \subset \partial \Omega$. By definition 1.1, we need to prove that

$$
\begin{equation*}
\operatorname{Cap}_{\mathbf{N}_{\alpha, \beta}, s}^{\alpha_{0}}\left(E \cap K_{i}\right) \asymp \operatorname{Cap}_{G_{\beta-\alpha+\frac{\alpha_{0}+1}{s^{\prime}-1}}, s}\left(\tilde{T}_{i}\left(E \cap K_{i}\right)\right) \quad \forall i=1,2, \ldots, m \tag{2.18}
\end{equation*}
$$

We can show that for any $\omega \in \mathfrak{M}_{b}^{+}(\partial \Omega)$ and $i=1, \ldots, m$, there exists $\omega_{i} \in \mathfrak{M}_{b}^{+}\left(\tilde{T}_{i}\left(K_{i}\right)\right)$ with $T_{i}\left(K_{i}\right)=\tilde{T}_{i}\left(K_{i}\right) \times\left\{x_{N}=0\right\}$ such that

$$
\omega_{i}(O)=\omega\left(T_{i}^{-1}(O \times\{0\})\right)
$$

for all Borel set $O \subset \tilde{T}_{i}\left(K_{i}\right)$, its proof can be found in [1, Proof of Lemma 5.2.2]. Thanks to [1, Theorem 2.5.1], it is enough to show that for any $i \in\{1,2, \ldots, m\}$ there holds

$$
\begin{equation*}
\left\|\mathbf{N}_{\alpha, \beta}\left[\chi_{K_{i}} \omega\right]\right\|_{\left.L^{s^{\prime}}(\Omega,(\rho(.)))^{\alpha_{0}} d x\right)} \asymp\left\|G_{\beta-\alpha+\frac{\alpha_{0}+1}{s^{\prime}}-1}\left[\omega_{i}\right]\right\|_{L^{s^{\prime}}\left(\mathbb{R}^{N-1}\right)}, \tag{2.19}
\end{equation*}
$$

where $G_{\gamma}\left[\omega_{i}\right](0<\gamma<N-1)$ is the Bessel potential of ω_{i} in \mathbb{R}^{N-1}, i.e

$$
G_{\gamma}\left[\omega_{i}\right](x)=\int_{\mathbb{R}^{N-1}} G_{\gamma}(x-y) d \omega_{i}(y)
$$

Indeed, we have

$$
\begin{aligned}
& \left\|\mathbf{N}_{\alpha, \beta}\left[\omega \chi_{K_{i}}\right]\right\|_{\left.L^{s^{\prime}}(\Omega,(\rho(.)))^{\alpha_{0}} d x\right)}^{s^{\prime}}=\int_{\Omega}\left(\int_{K_{i}} \frac{d \omega(z)}{|x-z|^{N-\beta+\alpha}}\right)^{s^{\prime}}(\rho(x))^{\alpha_{0}} d x \\
& \quad=\int_{O_{i} \cap \Omega}\left(\int_{K_{i}} \frac{d \omega(z)}{|x-z|^{N-\beta+\alpha}}\right)^{s^{\prime}}(\rho(x))^{\alpha_{0}} d x+\int_{\Omega \backslash O_{i}}\left(\int_{K_{i}} \frac{d \omega(z)}{|x-z|^{N-\beta+\alpha}}\right)^{s^{\prime}}(\rho(x))^{\alpha_{0}} d x \\
& \quad \asymp \int_{O_{i} \cap \Omega}\left(\int_{K_{i}} \frac{d \omega(z)}{|x-z|^{N-\beta+\alpha}}\right)^{s^{\prime}}(\rho(x))^{\alpha_{0}} d x+\left(\omega\left(K_{i}\right)\right)^{s^{\prime}}
\end{aligned}
$$

Here we used $|x-z| \asymp 1$ for any $x \in \Omega \backslash O_{i}, z \in K_{i}$.
We get by using a change of variable

$$
\begin{aligned}
\int_{O_{i} \cap \Omega} & \left(\int_{K_{i}} \frac{d \omega(z)}{|x-z|^{N-\beta+\alpha}}\right)^{s^{\prime}}(\rho(x))^{\alpha_{0}} d x+\left(\omega\left(K_{i}\right)\right)^{s^{\prime}} \\
\quad= & \int_{T_{i}\left(O_{i} \cap \Omega\right)}\left(\int_{K_{i}} \frac{d \omega(z)}{\left|T_{i}^{-1}(y)-z\right|^{N-\beta+\alpha}}\right)^{s^{\prime}}\left(\rho\left(T_{i}^{-1}(y)\right)\right)^{\alpha_{0}}\left|\mathbf{J}_{T_{i}}\left(T_{i}^{-1}(y)\right)\right|^{-1} d y+\left(\omega\left(K_{i}\right)\right)^{s^{\prime}} \\
& \asymp \int_{B_{1}(0) \cap\left\{x_{N}>0\right\}}\left(\int_{K_{i}} \frac{d \omega(z)}{\left|y-T_{i}(z)\right|^{N-\beta+\alpha}}\right)^{s^{\prime}} y_{N}^{\alpha_{0}} d y+\left(\omega\left(K_{i}\right)\right)^{s^{\prime}} \quad \text { with } y=\left(y^{\prime}, y_{N}\right),
\end{aligned}
$$

since $\left|T_{i}^{-1}(y)-z\right| \asymp\left|y-T_{i}(z)\right|,\left|\mathbf{J}_{T_{i}}\left(T_{i}^{-1}(y)\right)\right| \asymp 1$ and $\rho\left(T_{i}^{-1}(y)\right) \asymp y_{N}$ for all $(y, z) \in$ $T_{i}\left(O_{i} \cap \Omega\right) \times K_{i}$. From the definition of ω_{i}, we have

$$
\begin{aligned}
& \int_{B_{1}(0) \cap\left\{x_{N}>0\right\}}\left(\int_{K_{i}} \frac{1}{\left|y-T_{i}(z)\right|^{N-\beta+\alpha}} d \omega(z)\right)^{s^{\prime}} y_{n}^{\alpha_{0}} d y+\left(\omega\left(K_{i}\right)\right)^{s^{\prime}} \\
& \quad=\int_{B_{1}(0) \cap\left\{x_{N}>0\right\}}\left(\int_{\tilde{T}_{i}\left(K_{i}\right)} \frac{1}{\left(\left|y^{\prime}-\xi\right|^{2}+y_{N}^{2}\right)^{\frac{N-\beta+\alpha}{2}}} d \omega_{i}(\xi)\right)^{s^{\prime}} y_{N}^{\alpha_{0}} d y_{N} d y^{\prime}+\left(\omega\left(K_{i}\right)\right)^{s^{\prime}} \\
& \quad \asymp \int_{\mathbb{R}^{N-1}} \int_{0}^{\infty}\left(\int_{\min \left\{y_{N}, R\right\}}^{2 R} \frac{\omega_{i}\left(B_{r}^{\prime}\left(y^{\prime}\right)\right)}{r^{N-\beta+\alpha}} \frac{d r}{r}\right)^{s^{\prime}} y_{N}^{\alpha_{0}} d y_{N} d y^{\prime} \quad \text { with } \quad R=\operatorname{diam}(\Omega)
\end{aligned}
$$

As in the proof of Proposition 2.7, we also obtain

$$
\begin{gathered}
\int_{\mathbb{R}^{N-1}} \int_{0}^{\infty}\left(\int_{\min \left\{y_{N}, R\right\}}^{2 R} \frac{\omega_{i}\left(B_{r}^{\prime}\left(y^{\prime}\right)\right)}{r^{N-\beta+\alpha}} \frac{d r}{r}\right)^{s^{\prime}} y_{N}^{\alpha_{0}} d y_{N} d y^{\prime} \\
\quad \asymp \int_{\mathbb{R}^{N-1}} \int_{0}^{2 R}\left(\frac{\omega_{i}\left(B_{r}^{\prime}\left(y^{\prime}\right)\right)}{r^{N-\beta+\alpha-\frac{\alpha_{0}+1}{s^{\prime}}}}\right)^{s^{\prime}} \frac{d r}{r} d y^{\prime}
\end{gathered}
$$

Therefore, we get (2.19) from [4, Theorem 2.3].

3 Proof of the main results

We denote

$$
\mathbf{P}[\sigma](x)=\int_{\partial \Omega} \mathrm{P}(x, z) d \sigma(z), \quad \mathbf{G}[f](x)=\int_{\Omega} \mathrm{G}(x, y) f(y) d y
$$

for any $\sigma \in \mathfrak{M}(\partial \Omega), f \in L_{\rho}^{1}(\Omega), f \geq 0$. Then the unique weak solution of

$$
\begin{aligned}
-\Delta u=f & \text { in } \Omega, \\
u=\sigma & \text { on } \partial \Omega,
\end{aligned}
$$

can be represented by

$$
u(x)=\mathbf{G}[f](x)+\mathbf{P}[\sigma](x) \quad \forall x \in \Omega
$$

We recall below some well-know estimates for the Green and the Poisson kernels.

$$
\begin{aligned}
& \mathrm{G}(x, y) \asymp \min \left\{\frac{1}{|x-y|^{N-2}}, \frac{\rho(x) \rho(y)}{|x-y|^{N}}\right\}, \\
& \mathrm{P}(x, z) \asymp \frac{\rho(x)}{|x-z|^{N}},
\end{aligned}
$$

and

$$
\left|\nabla_{x} \mathrm{G}(x, y)\right| \lesssim \frac{\rho(y)}{|x-y|^{N}} \min \left\{1, \frac{|x-y|}{\sqrt{\rho(x) \rho(y)}}\right\}, \quad\left|\nabla_{x} \mathrm{P}(x, z)\right| \lesssim \frac{1}{|x-z|^{N}}
$$

for any $(x, y, z) \in \Omega \times \Omega \times \partial \Omega$, see [2]. Since $|\rho(x)-\rho(y)| \leq|x-y|$ we have

$$
\max \left\{\rho(x) \rho(y),|x-y|^{2}\right\} \asymp \max \{|x-y|, \rho(x), \rho(y)\}^{2}
$$

Thus,

$$
\begin{equation*}
\min \left\{1,\left(\frac{|x-y|}{\sqrt{\rho(x) \rho(y)}}\right)^{\gamma}\right\} \asymp \frac{|x-y|^{\gamma}}{(\max \{|x-y|, \rho(x), \rho(y)\})^{\gamma}} \quad \text { for } \quad \gamma>0 \text {. } \tag{3.1}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathrm{G}(x, y) \asymp \rho(x) \rho(y) \mathbf{N}_{2,2}(x, y), \quad \mathrm{P}(x, z) \asymp \rho(x) \mathbf{N}_{\alpha, \alpha}(x, z) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\nabla_{x} \mathrm{G}(x, y)\right| \lesssim \rho(y) \mathbf{N}_{1,1}(x, y), \quad\left|\nabla_{x} \mathrm{P}(x, z)\right| \lesssim \mathbf{N}_{\alpha, \alpha}(x, z) \tag{3.3}
\end{equation*}
$$

for all $(x, y, z) \in \bar{\Omega} \times \bar{\Omega} \times \partial \Omega, \alpha \geq 0$.
Proof of Theorem 1.2 and Theorem 1.4. By (3.2), we have

$$
\begin{aligned}
& \mathbf{G}\left[(\mathbf{P}[\sigma])^{q}\right] \lesssim \mathbf{P}[\sigma]<\infty \text { a.e in } \Omega . \\
& \Longleftrightarrow \\
& \mathbf{N}_{2,2}\left[\left(\mathbf{N}_{2,2}[\sigma]\right)^{q}(\rho(.))^{q+1}\right] \lesssim \mathbf{N}_{2,2}[\sigma]<\infty \text { a.e in } \Omega
\end{aligned}
$$

and

$$
\begin{aligned}
U \asymp \mathbf{G}\left[U^{q}\right]+\mathbf{P}[\sigma] & \Longleftrightarrow U \asymp \rho(.) \mathbf{N}_{2,2}\left[\rho(.) U^{q}\right]+\rho(.) \mathbf{N}_{2,2}[\sigma] \\
& \Longleftrightarrow V \asymp \mathbf{N}_{2,2}\left[(\rho(.))^{q+1} V^{q}\right]+\mathbf{N}_{2,2}[\sigma], V=U(\rho(.))^{-1} .
\end{aligned}
$$

By Proposition 2.7 and 2.8 we have:

$$
\operatorname{Cap}_{I_{\frac{2}{q}}, q^{\prime}}(K) \asymp \operatorname{Cap}_{\mathbf{N}_{2,2}, q^{\prime}}^{q+1}(K \times\{0\}) \forall \text { compact set } K \subset \mathbb{R}^{N-1}
$$

if $\Omega=\mathbb{R}^{N-1} \times(0, \infty)$, and

$$
\operatorname{Cap}_{\frac{2}{q}, q^{\prime}}^{\partial \Omega}(O) \asymp \operatorname{Cap}_{\mathbf{N}_{2,2}, q^{\prime}}^{q+1}(O) \forall \text { compact set } O \subset \partial \Omega
$$

if Ω is a bounded domain. Thanks to Theorem (2.5) with $\omega=\sigma, \alpha=2, \beta=2, \alpha_{0}=q+1$ and proposition 2.6, we get the results.

Proof of Theorem 1.3 and 1.5. By (3.2) and (3.3), we have

$$
\begin{align*}
& \mathrm{G}(x, y) \leq C \rho(x) \rho(y) \mathbf{N}_{1,1}(x, y), \quad\left|\nabla_{x} \mathrm{G}(x, y)\right| \leq C \rho(y) \mathbf{N}_{1,1}(x, y), \tag{3.4}\\
& \mathrm{P}(x, y) \leq C \rho(y) \mathbf{N}_{1,1}(x, z), \quad\left|\nabla_{x} \mathrm{P}(x, z)\right| \leq C \mathbf{N}_{1,1}(x, z), \tag{3.5}
\end{align*}
$$

for all $(x, y, z) \in \Omega \times \Omega \times \partial \Omega$ for some constant $C>0$.
For any $u \in W_{\text {loc }}^{1,1}(\Omega)$, we set

$$
\mathbf{F}(u)(x)=\int_{\Omega} \mathrm{G}(x, y)|u(y)|^{q_{1}-1} u(y)|\nabla u(y)|^{q_{2}} d y+\int_{\partial \Omega} \mathrm{P}(x, z) d \sigma(z)
$$

Using (3.4) and (3.5), we have

$$
\begin{aligned}
& |\mathbf{F}(u)| \leq C \rho(.) \mathbf{N}_{1,1}\left[|u|^{q_{1}}|\nabla u|^{q_{2}} \rho(.)\right]+C \rho(.) \mathbf{N}_{1,1}[|\sigma|], \\
& |\nabla \mathbf{F}(u)| \leq C \mathbf{N}_{1,1}\left[|u|^{q_{1}}|\nabla u|^{q_{2}} \rho(.)\right]+C \mathbf{N}_{1,1}[|\sigma|] .
\end{aligned}
$$

Therefore, we can easily see that if

$$
\begin{equation*}
\mathbf{N}_{1,1}\left[\left(\mathbf{N}_{1,1}[|\sigma|]\right)^{q_{1}+q_{2}}(\rho(.))^{q_{1}+1}\right] \leq \frac{\left(q_{1}+q_{2}-1\right)^{q_{1}+q_{2}-1}}{\left(C\left(q_{1}+q_{2}\right)\right)^{q_{1}+q_{2}}} \mathbf{N}_{1,1}[|\sigma|]<\infty \text { a.e in } \quad \Omega \tag{3.6}
\end{equation*}
$$

holds then \mathbf{F} is the map from \mathbf{E} to \mathbf{E}, where

$$
\mathbf{E}=\left\{u \in W_{l o c}^{1,1}(\Omega):|u| \leq \lambda \rho(.) \mathbf{N}_{1,1}[|\sigma|],|\nabla u| \leq \lambda \mathbf{N}_{1,1}[|\sigma|] \quad \text { a.e in } \Omega\right\}
$$

with $\lambda=\frac{C\left(q_{1}+q_{2}\right)}{q_{1}+q_{2}-1}$.
Assume that (3.6) holds. We denote \mathcal{S} by the subspace of functions $f \in W_{l o c}^{1,1}(\Omega)$ with norm

$$
\|f\|_{\mathcal{S}}=\|f\|_{L^{q_{1}+q_{2}}\left(\Omega,(\rho(.))^{1-q_{2}} d x\right)}+\|\nabla f\|_{L^{q_{1}+q_{2}}\left(\Omega,(\rho(.))^{1+q_{2}} d x\right)}<\infty .
$$

Clearly, $\mathbf{E} \subset \mathcal{S}, \mathbf{E}$ is closed under the strong topology of \mathcal{S} and convex.
On the other hand, it is not difficult to show that \mathbf{F} is continuous and $\mathbf{F}(\mathbf{E})$ is precompact in \mathcal{S}. Consequently, by Schauder's fixed point theorem, there exist $u \in \mathbf{E}$ such that $\mathbf{F}(u)=u$. Hence, u is a solution of (1.13)-(1.20) and it satisfies

$$
|u| \leq \lambda \rho(.) \mathbf{N}_{1,1}[|\sigma|],|\nabla u| \leq \lambda \mathbf{N}_{1,1}[\mid \sigma] .
$$

Thanks to Theorem 2.5 and Proposition 2.7, 2.8, we verify that assumptions (1.12) and (1.20) in Theorem 1.3 and 1.5 are equivalent to (3.6). This completes the proof of the Theorems.

4 Extension to Schrödinger operators with Hardy potentials

We can apply Theorem 2.5 to solve the problem

$$
\left\{\begin{array}{l}
-\Delta u-\frac{\kappa}{(\rho(.))^{2}} u=u^{q} \text { in } \Omega, \\
u=\sigma \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\kappa \in\left[0, \frac{1}{4}\right]$ and $\sigma \in \mathfrak{M}^{+}(\partial \Omega)$.
Let $\mathrm{G}_{k}, \mathrm{P}_{k}$ be the Green kernel and Poisson kernel of $-\Delta-\frac{\kappa}{(\rho(.))^{2}}$ in Ω with $\kappa \in\left[0, \frac{1}{4}\right]$. We have

$$
\begin{aligned}
& \mathrm{G}_{\kappa}(x, y) \asymp \min \left\{\frac{1}{|x-y|^{N-2}}, \frac{(\rho(x) \rho(y))^{\frac{1+\sqrt{1-4 \kappa}}{2}}}{|x-y|^{N-1+\sqrt{1-4 \kappa}}}\right\}, \\
& \mathrm{P}_{\kappa}(x, z) \asymp \frac{(\rho(x))^{\frac{1+\sqrt{1-4 \kappa}}{2}}}{|x-z|^{N-1+\sqrt{1-4 \kappa}}},
\end{aligned}
$$

for all $(x, y, z) \in \bar{\Omega} \times \bar{\Omega} \times \partial \Omega$, see $[6,11,7]$. Therefore, from (3.1) we get

$$
\begin{align*}
& \mathrm{G}_{\kappa}(x, y) \asymp(\rho(x) \rho(y))^{\frac{1+\sqrt{1-4 \kappa}}{2}} \mathbf{N}_{1+\sqrt{1-4 \kappa}, 2}(x, y), \tag{4.1}\\
& \mathrm{P}_{\kappa}(x, z) \asymp(\rho(x))^{\frac{1+\sqrt{1-4 \kappa}}{2}} \mathbf{N}_{\alpha, 1-\sqrt{1-4 \kappa}+\alpha}(x, z), \tag{4.2}
\end{align*}
$$

for all $(x, y, z) \in \bar{\Omega} \times \bar{\Omega} \times \partial \Omega, \alpha \geq 0$. We denote

$$
\mathbf{P}_{\kappa}[\sigma](x)=\int_{\partial \Omega} \mathrm{P}_{k}(x, z) d \sigma(z), \quad \mathbf{G}_{\kappa}[f](x)=\int_{\Omega} \mathrm{G}_{k}(x, y) f(y) d y
$$

for any $\sigma \in \mathfrak{M}^{+}(\partial \Omega), f \in L^{1}\left(\Omega,(\rho(.))^{\frac{1+\sqrt{1-4 \kappa}}{2}} d x\right), f \geq 0$. Then the unique weak solution of

$$
\begin{aligned}
-\Delta u & -\frac{\kappa}{(\rho(.))^{2}} u=f & & \text { in } \Omega, \\
u & =\sigma & & \text { on } \partial \Omega,
\end{aligned}
$$

can be represented by

$$
u(x)=\mathbf{G}_{k}[f](x)+\mathbf{P}_{k}[\sigma](x) \quad \forall x \in \Omega .
$$

As Proof of Theorem 1.2 and Theorem 1.4 we have

$$
\begin{aligned}
& \mathbf{G}_{\kappa}\left[\left(\mathbf{P}_{\kappa}[\sigma]\right)^{q}\right] \lesssim \mathbf{P}_{\kappa}[\sigma]<\infty \text { a.e in } \Omega . \\
& \Leftrightarrow \mathbf{N}_{1+\sqrt{1-4 \kappa}, 2}\left[\left(\mathbf{N}_{1+\sqrt{1-4 \kappa}, 2}[\sigma]\right)^{q}(\rho(.))^{\frac{(q+1)(1+\sqrt{1-4 \kappa})}{2}}\right] \lesssim \mathbf{N}_{1+\sqrt{1-4 \kappa}, 2}[\sigma]<\infty \text { a.e in } \Omega,
\end{aligned}
$$

and

$$
\begin{aligned}
U & \asymp \mathbf{G}_{\kappa}\left[U^{q}\right]+\mathbf{P}_{\kappa}[\sigma] \\
& \Leftrightarrow \quad V \asymp \mathbf{N}_{1+\sqrt{1-4 \kappa}, 2}\left[(\rho(.))^{\frac{(q+1)(1+\sqrt{1-4 \kappa)}}{2}} V^{q}\right]+\mathbf{N}_{1+\sqrt{1-4 \kappa}, 2}[\sigma], V=U(\rho(.))^{-\frac{1+\sqrt{1-4 \kappa}}{2}}
\end{aligned}
$$

Thanks to Theorem 2.5 with $\omega=\sigma, \alpha=1+\sqrt{1-4 \kappa}, \beta=2, \alpha_{0}=\frac{(q+1)(1+\sqrt{1-4 \kappa})}{2}$ and proposition 2.6, 2.7, 2.8, we obtain.
Theorem 4.1 Let $q>1,0 \leq \kappa \leq \frac{1}{4}$ and $\sigma \in \mathfrak{M}^{+}(\partial \Omega)$. Then, the following statements are equivalent

1. The inequality

$$
\begin{equation*}
\sigma(O) \leq C \operatorname{Cap}_{\frac{q+3-(q-1) \sqrt{1-4 \kappa}}{2 q}}, q^{\prime}(O) \tag{4.3}
\end{equation*}
$$

holds for any Borel set $O \subset \mathbb{R}^{N-1}$ if $\Omega=\mathbb{R}^{N-1} \times(0, \infty)$; and

$$
\begin{equation*}
\sigma(O) \leq C \operatorname{Cap}_{\frac{q+3-(q-1) \sqrt{1-4 \kappa}}{2 q}, q^{\prime}}^{\partial \Omega}(O) \tag{4.4}
\end{equation*}
$$

holds for any Borel set $O \subset \partial \Omega$ if Ω is a bounded domain.
2. The inequalities

$$
\begin{equation*}
\mathbf{G}_{\kappa}\left[\left(\mathbf{P}_{\kappa}[\sigma]\right)^{q}\right] \leq C \mathbf{P}_{\kappa}[\sigma]<\infty \text { a.e in } \Omega \tag{4.5}
\end{equation*}
$$

holds.
3. Problem

$$
\left\{\begin{array}{l}
-\Delta u-\frac{\kappa}{(\rho(.))^{2}} u=u^{q} \quad \text { in } \Omega, \tag{4.6}\\
u=\varepsilon \sigma \quad \text { on } \partial \Omega,
\end{array}\right.
$$

has a positive solution for some $\varepsilon>0$.

Moreover, there is a constant $C_{0}>0$ such that if any one of the two statement 1. and 2. holds with $C \leq C_{0}$, then equation 4.6 has a solution u with $\varepsilon=1$ which satisfies

$$
\begin{equation*}
u \asymp \mathbf{P}_{\kappa}[\sigma] . \tag{4.7}
\end{equation*}
$$

Conversely, if (4.6) has a solution u with $\varepsilon=1$, then the two statement 1. and 2. hold for some $C>0$.

References

[1] D. R. Adams, L.I. Heberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wisenschaften 31, Springer-Verlag (1999).
[2] M.F. Bidaut-Véron, L. Vivier, An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana, 16 (1976), N. 3, 2000.
[3] M.F. Bidaut-Véron, C. Yarur Semilinear elliptic equations and systems with measure data: existence and a priori estimates, Advances in Diff. Equ., 7 (2002), 257-296.
[4] M. F. Bidaut-Véron, H. Nguyen Quoc, L. Véron, Quasilinear Lane-Emden equations with absorption and measure data, J. Math. Pures Appl. 102, 315-337 (2014).
[5] C. Fefferman, The uncertainty principle, Bull. Amer. Math.Soc. 9 (1983),129-206.
[6] S. Filippas, L. Moschini, A. Tertikas, Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains. Comm. Math. Phys. 273 (2007), 237-281.
[7] K. T. Gkikas, L. Véron, Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials, arXiv:1410.1176v2 (2014).
[8] A. Gmira, L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J. 64 (1991), 271-324.
[9] N.J. Kalton, I.E. Verbitsky, Nonlinear equations and weighted norm inequality, Trans. Amer. Math. Soc. 351 (1999) 3441-3497.
[10] M. Marcus, T. Nguyen Phuoc, Positive solutions of quasilinear elliptic equations with subquadratic growth in the gradient, arXiv:1311.7519v1 (2013).
[11] M. Marcus, P. T. Nguyen, Moderate solutions of semilinear elliptic equations with Hardy potential, arXiv:1407.3572v1 (2014).
[12] M. Marcus, L. Véron, Removable singularities and boundary trace. J. Math. Pures Appl. 80 (2001), 879-900.
[13] M. Marcus, L. Véron, Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: the subcritical case, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 913-984.
[14] M. Marcus, L. Véron, Nonlinear second order elliptic equations involving measures. De Gruyter Series in Nonlinear Analysis and Applications, 21. De Gruyter, Berlin (2014). xiv+248 pp. ISBN: 978-3-11-030515-9; 978-3-11-030531-9 35-0.
[15] T. Nguyen Phuoc, L. Véron, Boundary singularities of solutions to elliptic viscous HamiltonJacobi equations, J. Funct. An. 263 (2012) 1487D1538.
[16] Quoc-Hung Nguyen, Potential estimates and quasilinear parabolic equations with measure data, 120 pages, submitted.

[^0]: *E-mail address: veronmf@univ-tours.fr
 \dagger E-mail address: hgiangbk@gmail.com
 ${ }^{\ddagger}$ E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
 §E-mail address: Laurent.Veron@lmpt.univ-tours.fr

