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An elliptic semilinear equation with source term and
boundary measure data: the supercritical case

Marie-Frangoise Bidaut-Véron*
Giang Hoang'
Quoc-Hung Nguyen?
Laurent Véron®

Laboratoire de Mathématiques et Physique Théorique,
Université Frangois Rabelais, Tours, FRANCE

Abstract
We give new criteria for the existence of weak solutions to equation with source
term

—Au=u? inQ, u=0 on 9N

where ¢ > 1,  is a either a bounded smooth domain or RY and o € 9T (9Q) is
a nonnegative Radon measure on 0€2. In particular, one of the criteria is expressed
in terms of some Bessel capacities on 02. We also give a sufficient condition for the
existence of weak solutions to equation with source mixed term.

—Au=|u|" 'u|Vu|? inQ, u=0c on N
where q1,92 > 0,q1 + g2 > 1,¢2 < 2, 0 € M(IN) is a Radon measure on ON.

Keywords: Hardy potentials., capacities, quasi-metric, Radon measures, Bessel potentials, Riesz
potentials

MSC2010: 35J60; 35J67; 31B25; 31C15; 31E05

1 Introduction and main results

Let © be a bounded smooth domain in RY or @ = RY := RV~! x (0,00), N > 3, and
g : R x RY i R be a continuous function. In this paper, we study the solvability problem

for ( )
—Au = g(u, Vu) in Q,
{ u=oc on 0, (1.1)

where o € 9MMT(0N) is a nonnegative Radon measure on 9. All solutions are understood
in the usual very weak sense: u € L'(Q), g(u, Vu) € L(), where p(x) is the distance from
z to 9Q when € is bounded, or u € L'(RY N B), g(u, Vu) € LL(RY N B) for any ball B if

Q= Rf, and
B B ¢
/Qu(—Af)d:r = /Qg(u, Vu)édx / do (1.2)
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for any ¢ € C?(Q) N C.(RYN) with ¢ = 0 on 99Q. It is well-known that such a solution u
satisfies

u = Glg(u, Vu)] + Plo] a. e. in Q.

where G[.], P[.], respectively the Green and the Poisson potentials of —A in 2, are defined
from the Green and the Poisson kernels by

Plo](y) /agz P(y,2)do(z), Glg(u,Vu)] /G Y, x)g(u, Vu)(z)dz,

see [14]. The case g(u, Vu) = |u|9"u, ¢ > 1 has been studied by Bidaut-Véron and Vivier
in [3] in case the subcritical case, i.e. 1 < g < %Jri, and 2 is bounded. They proved that
problem (1.1) admits a solution provided that |o|(2) is small enough. Furthermore, they

also proved that for any o € 9T (99) there holds
G[(P[0o])?] < Co(0Q)P[o] in Q. (1.3)

for some constant C' = C(N,q,Q) > 0.

Our main goal is to establish necessary and sufficient conditions for the existence of weak
solution to (1.1) with nonnegative boundary measure date, in the supercritical case, together
with sharp pointwise estimates of solutions. The absorption case, i.e g(u, Vu) = —|u|9" u
has been studied by Gmira and Véron in the subcritical case [7] and by Marcus and Véron
in the supercritical case [12, 13, 14]. The case g(u, Vu) = —|Vu|? has been studied by
Nguyen Phuoc and Véron [15] and extended to the case g(u, Vu) = —|u|P|Vu|? by Marcus
and Nguyen Phuoc [10].

We consider first (1.1) with Q = RV~ x (0,00) and as a consequence of our results
when g(u, Vu) = |u|9 " u, ¢ > 1 (see Theorem 1.2), we prove that if (1.1) has a nonnegative
solution u with o € M, (RN 1), then

r,y g+1

a(B.(y)) < CrV7am (1.4)

for any ball B..(y') in RV~! where C' = C(¢, N) and ¢ > L1 < g < 4 then 0 = 0.

Conversely, if ¢ > N H , do = fdz for some f > 0 which satisfies

2(e+1)

/ firede <o NPT (1.5)
Bi(y)

for some & > 0. Then, there exists a constant Cyp = Cy(N, ¢) such that (1.1) has a nonneg-
ative solution if C' < Cy. The above inequality is an analogue of the classical Fefferman-
Phong condition [5]. In particular, (1.5) holds if f belongs to the Marcinkiewicz space
L<N*1;(q*”,oo(RN71)_

Moreover, we give sufficient conditions for the existence of weak solutions to (1.1) when
g(u, Vu) = [u|"1u|Vul®, q1,q2 >0, g1 + g2 > 1 and ¢ < 2.

To state our results, let us introduce some notations. Various capacities will be used
throughout the paper. Among them are the Reisz and Bessel capacities in RV ! defined
respectively by

Cap; ,S(O)inf{/ fsdy:fZO,Iv*f2xo},
]RN—l

~

Capg. ,(0) = inf {/ fody: f>0,Gy % f > xo} ,
RN-1



for any Borel set O C RV~!, where I,,G,, are the Riesz and the Bessel kernels in RN-1
with order v € (0, N — 1). We remark that

s

Capg, +(0) > Capy, ,(0) > ClOJ'" 7= (1.6)

for any Borel set O C RY¥~! where vs < N — 1 and C is a positive constant. When we
consider equations in a bounded smooth domain © in R we use a specific capacity that we
define as follows: there exist open sets O1, ..., O,, in R diffeomorphisms T} : O; — B1(0)
and compact sets K1, ..., K, in 02 such that

a. Kz-COi,Z?QC UKz
=1

b. T;(0;N9Q) = B1(0) n{zn =0}, T;(0;, N Q) = B1(0) N {zn > 0}.

c. for any x € 0; NN, Jy € O; NIN, d(x,00) = |z — y|.

Clearly, p(T; '(2)) < |zn| for any z = (2/, 2x) € B1(0) N {zy > 0} and |7, (x)| < 1 for any
x € 0; N, here Jr, is the Hessian matrix of 75.

Definition 1.1 Let v € (0, N —1),s > 0. We denote the Capgg—capacity of a compact set
E C 09 by

where T;(ENK;) =T;(ENK;) x {xny = 0}.
Notice that, if vs > N — 1 then there exists C' = C(N,~,s,) > 0 such that
Capgg({x}) >C (1.7)
for all z € 09.
Our first two theorems give criteria for the solvability of problem (1.1) in RY.
Theorem 1.2 Letq > 1 ando € M (RN 1), Then, the following statements are equivalent

1. The inequality

o(K) < CCapy, ,(K) (1.8)

holds for any compact set K C RN—1,

2. The inequality

G [(P[0])Y] £ CP[o] < o0 a.ein RN7! x (0,00) (1.9)
holds.
3. The problem
—Au = ul in RN~ x (0,00),
u(.,0) =¢eo in RN (1.10)

has a positive solution for some & > 0.



Moreover, there is a constant Cy > 0 such that if any one of the two statement 1 and 2 holds
with C' < Cy, then equation (1.10) admits a solution u with ¢ = 1 which satisfies

u = P[o]. (1.11)

Conversely, if (1.10) has a solution u with € = 1, then the two statement 1. and 2. hold for
some C' > 0.

Theorem 1.3 Let q1,q2 > 0,q1 +q2 > 1,q2 < 2 and 0 € MRN1). There exists 6 > 0
such that if the inequality

|o|(K) < 6 Cap; - 7(q1+q2)/(K) (1.12)

q1+42

holds for any Borel set K C RN~ then the problem

—Au = |u|" |Vl in RV=1 x (0, 00),
u=0c in RN-1 (1.13)
has a solution and satisfies
lul < CP[lo]], |Vul < C(p(.))" Pllal). (1.14)
for some a constant C > 0.

In view of (1.6) and assuming do = fdz, we see that if f € LWVOO(RN*) and
(N-1)(g—1) . W-Daita-1)
“—1—= > 1, then (1.8) holds for some C' > 0, if f € L 2=ay (R¥~1) and
% > 1 then (1.12) holds for some C' > 0.

In a bounded smooth domain € we obtain existence results analogous to Theorem (1.2)
and 1.3 provided the specific capacities on 9€) are used instead of the Riesz capacities.

Theorem 1.4 Let ¢ > 1, Q be a bounded open set in RN with 0Q € C? and o € M+ (9N).
Then, the following statements are equivalent:

1. The inequality
o(K) < Ccap%‘fq/ (K) (1.15)

holds for any Borel set K C 0f).

2. The inequalities

G[(P[0]))Y] < CPlo] < o0 a.ein . (1.16)
holds.
3. The problem
Aw — 01 .
Nl o, (117

admits a positive solution for some ¢ > 0.

Moreover, there is a constant Cy > 0 such that if any one of the two statement 1. and 2.
holds with C < Cy, then equation 1.17 has a solution u with € = 1 which satisfies

u =< P[o]. (1.18)

Conversely, if (1.17) has a solution u with ¢ = 1, then the two statements 1. and 2. hold
for some C > 0.



Theorem 1.5 Let q1,q2 > 0,q1 +q2 > 1,q2 < 2, Q be a bounded open set in RN with
00 € C? and o € M,(0KY). There exists § > 0 such that if

oN
lo|(K) < 5Capq211qq22 1(q1+q2),(K) (1.19)
holds for any Borel set K C 90Q when  is a bounded, then problem
—Au = |u|1 " u|Vul|® i Q,
{ u=oc on 01, (1.20)

has a solution and satisfies (1.14).

2 Integral equations

Let X be a metric space and v € 9MMT(X). Let K be a Borel positive kernel function
K: X x X — (0,00] such that K is symmetric and satisfies a quasi-metric inequality, i.e
there is a constant C' > 1 such that for all z,y we have

m;w§C<K&a+KéwQ'

We define the quasi-metric d by
1

K(z,y)’

and by B,(x) = {y € X: d(x,y) < r} the open d-ball of radius r > 0 and center z.
For w € MT(X), we define the potentials Kw and K f by

d(z,y) =

Kulo) = [ Klep)daly), K@) = [ Kn)f@avt)
X X
and for ¢ > 1, the capacity Capg , in X by
Capk,q (E) = inf {/ g7dv:g>0,K"g> XE}
X

for any Borel set E C X. The following result is proved by Kalton and Verbitsky in [9].

Theorem 2.1 Let ¢ > 1 and v,w € M (X) such that

/%MQSC/TMQ (2.1)
0 S S 0 s s

" v(Bs(y)) ds " v(Bs(2)) ds
yeslBlﬂlf()m)/o S s = C/O s s’ (2.2)

for any v > 0,2 € X, where C > 0 is a constant. Then the following statements are
equivalent:

1. The equation u = K"u? + cKw has a solution for some € > 0.

2. The inequality
/ (Kwg)%do < Csw(E) (2.3)
E

holds for any Borel set E C X, wg = xgw.



3. For any Borel set E C X, there holds

w(E) < Oy Capyg  (E). (2.4)

4. The inequality
K" (Kw)?! < O4Kw < 00 v — a.e. (2.5)
holds.

Let Q be either RN =1 x (0,00) or Q a bounded domain in RY with a C? boundary 9Q. We

set X =Q. For 0 < a < B < N, we denote

1

e P (e gl o)y WSS 20

Na,ﬂ(‘ra y) = |

Lemma 2.2 N, g is symmetric and satisfies the quasi-metric inequality.

Proof. Clearly, N, s is symmetric. Now we check the quasi-metric inequality associated to
N, s and X = Q. For any z, z,y € Q such that = # y # 2z, we have
o =y NI S — 2V [z — NP
P TR —
NQ,ﬁ(z,Z) Na,ﬁ(z7y)

Since |p(z) — p(y)| < |z — y|, so

o =y (p(2))* + |z — Y1V P (p(y)* S le =y (minfp(z), p(y) ) + [ —y[V I
S (lz = 21" 7 4 |2 =y [V =P) (min{p(2), p(y) N + |z — 2 V4 4 |2 —yVIHe
= ((p(@)) e = 2N 4 | — 2V 7PF) 4+ ((p(y)) ]z — 91V 7 + |z — |V TIH)
1 1

S + ;
Na”(-}(lﬂ, Z) Na,B(zay)
Thus,
1 < 1 n 1
Naqﬁ(z’y) Na 5(1‘,2) Na,g(z,y)
[
Lemma 2.3 If dv(x) = xa(p(x))*dz with ag > 0, then (2.1) and (2.2) hold.
Proof. It is easy to see that for any z € 2, s >0
327%3(,@) NQ CBy(z) C Bs(z)NQ, (2.7)
with S = min{s N—ha, sﬁ(p(x))fﬁ} and B, (z) = © when s > 2%(diam(ﬂ))N.
We show that for any 0 < s < 8diam(Q2), z € Q
v(Bs(z)) < (max{p(x),s})*sV. (2.8)

Indeed, take 0 < s < 8diam(f), x € Q. There exists ¢ = £(Q) € (0,1) and x, € Q such that
Bes(zs) C Bs(x) N and d(zs,00) > es.

() 110 < 5 < 22 5o for any y € By(z), ply) = plx). Thus, w(By(x)) = (p(x))°°|B,(x) 0
Q| =< (d(x, 02))0sN.

(b) If s > @. Since p(y) < p(x) + |z — y| < 5s for any y € By(x), v(Bs(z)) < sVHao



(b.1) If s < 4p(x), we have

V(By(@) 2 V(B (2)) = (pla))0 N 2 sV

(b.2) If s > 4p(z). We have for any y € B.,/2(xs), p(y) > —|y — xs| + p(xs) > €5/2. It
follows

v(Bs(x)) 2 v(Besya(s)) 2 s,

at1)(N—B+ta _
Thus, for any 0 < s < o N )(diam(Q))N’ﬁJra, z € Q we have

v(Bs(z)) = (max{p(z), min{s "=, s 77 (p(x)) " ¥7 }})°0
x (min{s ™=, 577 (p(x)) " 77}

_2otN . 1
_ | sve if p(z) < s¥57,

(p(a)* " F5 577 i pla) 2 7,

(a+1)(N—B+a)

and v(B,(2)) = v(Q) < (diam(Q))* N if s > 2 N5 (diam(Q))N P+ We get,
, (diam(2))*o 8= if p > (diam(Q))N Ao,

/ v(Bs (x))% = e . if r € ((p(x))N=P+e (diam(2))N-P+e],
' (p(@))™ " ¥20 77 if 7 € (0, (p(a)N P,

, (2.1) holds. It remains to check (2.2). For any z € Q and r > 0, clearly, if r >

So
2(p(z))N =P+ we have

" u(Bs(y)) d agii-a
sup / v(Bs()) ds < min{rﬁj—éla, (diam(Q))>o+P—a},
y€B(z) Jo S S

we obtain

/T V(By(y) ds / v (B, (2)) ds

sup — —
yEB, (z) s s s s
1 N—-B+a -
If0 < r < 1(p(x)N =P+, we have B, (z) C Brﬁ(p(m))*lﬁﬂ (z) and p(x) =< p(y) for all
[URS Brﬁ(p(x))fm (z), thus
" U(By(y)) d " U(B,(y)) d
sup / v(Bs(y)) ds < sup v(Bs(y)) ds
z S S S o S S
yEEn (@) 70 ly—a|<r B (pla)) " FF 70
= sup (ply))™~ 575
ly—al<r 7 (p(2)) N7
= (pa)) ™ F55rves
[l o
= ; .
Therefore, (2.2) holds. ]

Definition 2.4 For ay > 0,0 <a < 8 < N and s > 1, we define Capol\‘fa’ﬂ’s by

Cap®, (E) = inf { [ (pta e s g 0.Nuslalo)] 2 xE}

for any Borel set E C Q.



Cleally, we have
1P =

for any Borel set E C €. Furthermore we have by [1, Theorem 2.5.1],

1/s
(Cape,, o(B)) " = sup {w(B) - € M (B), [N slelll o ooty <1} (29)
for any compact set E C €, where s’ is the conjugate exponent of s.
Thanks to Lemma 2.2 and 2.3 , we can apply Theorem 2.1 to obtain.
Theorem 2.5 Let w € MT(Q), ap >0,0<a < B <N and q> 1. We set

Nmahwxw:/;N@ﬁ@awdv@>

and N glf] := Naglfdz] if f € L, (), f > 0. Then the following statements are

loc
equivalent:
1. The equation u = Nq g[u?(p(.))*°] + eNgq,glw] has a solution for some ¢ > 0.
2. The inequality

| (Noplesl)(ola)) de < ContB) (2.10)

holds for any Borel set E C Q, wg = wxEg.
3. The inequality
w(K)<Cy Cap%"aﬂ’q, (K) (2.11)
holds for any compact set K C Q
4. The inequality
Nos [(Naslw])? (0())™] < CiNoslo] < 00 aein Q (2.12)
holds.

To apply the previous theorem we need the following result.

Proposition 2.6 Letq > 1, v,w € MT(X). Suppose that A1, As, By, Ba : X x X + [0, +00)
are Borel positive Kernel functions with A1 < Ao, By < Bs. Then, the following statements
are equivalent:

1. The problem uw = A{u? +eBiw v—a.e has a position for some € > 0.
2. The problem u = A§uf 4+ e Bow v—a.e has a position for some ¢ > 0.
3. The problem u < AYu? 4+ eByw v—a.e has a position for some ¢ > 0.

4. The problem u 2 A{u? + eBiw v—a.e has a position for some ¢ > 0.

Proof. We only prove that 4 implies 2. Suppose that there exist ¢; > 0,69 > 0 and a
position Borel function u such that

Alu? + ggBiw < cyu.

Taken ¢y > 0 with Ay < 941, By < coB. We consider u,4+1 = Ajul + Eo(clcg)_q%lng
1
and ug = 0 for any n > 0. Clearly, u,, < (¢1¢2)” aTu for any n and {u,} is nondecreasing.

Thus, U = lim u, is a solution of U = A§UY + 60(0102)_0%1B2w. n
n— o0

The following results provide some relations between the capacities Cap%”a s and the

Riesz capacities on RY~! which allow to define the capacities on 9.



Proposition 2.7 Assume that Q = RV~ x (0,00) and let ag > 0 such that —1 + s'(1 +
—B)<apg<—1+5(N—p5+a). There holds

Capy, , (K x {0}) < Cap,; o (K) (2.13)

B*"“*’ﬂi/_l*]
Jor any C()mpac se C 5

Proof. Thanks to [1, Theorem 2.5.1] and (2.9), we get (2.13) from the following estimate:
for any p € MH(RVN1)

|[Na,sln® 5{zz\7:0}]||LS'(Q,(p(.)))“0dz) = ||Ig,a+at;7,+1,1 [:LL]HLS’(]RNfl) (2.14)

where I, [u] is the Riesz potential of g in RN=1 i.e

R T

with B/ (y) is a ball in RV =1, We have

’

: * du(2) )
No gl @ drpp=0r]ll5 o o / / / — X0 dz ydx’
No. sl @ Oten =0l (@ o000 = ry-1.Jo RN-1 (|2 —z|2+x ) "

> ( )) dr ag /
drydx'.
/]RN 1/0 (/IN = ﬁJra r NG
Notice that
(% p(BL) dr\T P u(BL(a) dr\T
/0 </IN T N—Bra rydry > ; . TN Bta N dr N

/
S

[ uB @)\ den
> /O |

N—ﬂ+a—a05—/+l TN
TN

X

Thus, using Holder’s inequality, we obtain

(B A\, /°° /°° ar\* /°° u(BLa)) \"dr
— e — d < a7 — L St o SV VA =0y
‘/O <‘/IN T'N_B"l‘a r :L'N 1‘ T r TN TN7ﬁ+a727i’ T :CN :CN
i
_C/ / (Nﬂ-i—oz—)—) %wzvo dry
A [T a0t u(BL()) \* dr
=<, /oxN dN(ﬁ 0
c/ (=) " dr
PN— ﬁ+ # r
Thus,

v) " dr
(SIS N [ >A<// (4) T

It implies (2.14) from [4, Theorem 2.3]. |

1/s’

(2.15)



Proposition 2.8 Let Q C RY be a bounded domain a C? boundary. Assume ag > 0 and
—1+sd(14+a—-p)<ay<—-1+5(N—p+a). Then there holds

Capy , (B) < Capg?a+a27/+17175(E) (2.16)

for any compact set E C 90Q C RV.

Proof. Let K1, ..., K,, be as in definition 1.1. We have
Cap | [(E) =Y Capl | (ENK;)
i=1

for any compact set E C 0f). By definition 1.1, we need to prove that

Capgy , J(ENK;) = Capg JLG(ENK)) Yi=1,2,..,m. (2.17)

,a+303#,1

We can show that for any w € 9 (9Q) and i = 1, ...,m, there exists w; € M (T3 (K;)) with
Tz(Kz) = E(Kz) X {.’L‘N = 0} such that

wz(O) - W(Tiil(o X {0}))

for all Borel set O C T;(K;), its proof can be found in [1, Proof of Lemma 5.2.2]. Thanks
to [1, Theorem 2.5.1], it is enough to show that for any ¢ € {1,2,...,m} there holds

||N04,B[XKiw]||L5/(Q,(p(.)))“0dm) = ||G5,a+ag7,+l,1[wi]||Ls/(RN71)a (2.18)
where G [w;] (0 <y < N —1) is the Bessel potential of w; in RN~! i.e
Goloile) = [ | Golo—n)duilo)

Indeed, we have

T )0 de) = /Q </K ﬁ%) (p(x))*dz
[ ([ =2 Y a2 ey
/om (/K | | oo \Jxk, | |

<[ ([ %) (o)) d + (w(FD)*

Here we used |z — z| < 1 for any € Q\O;, z € K;.
We get by using a change of variable

/OmQ (/K %) (p(z))*dx + (w(K;))*

Lrore ([ 7o) o ) 1 )y + (1)

i

dw(z) )S/ ) S /
= - YN dy + (w(K3))® with y = (¥, yn),
/Bl(om{mw} </K ly = Ti(z)|N=F+e ) 7N

[Naslwxx]

10



since [T, ' (y) — 2| < |y — Ty(2)|, I (T, 1 (y)] =< 1 and p(T; ' (y)) = yn for all (y,2) €
T;(0; N Q) x K;. From the definition of w;, we have

1 ¢ ,
dW(Z)> Yn'dy + (w(K;))?
/Bl(O)ﬁ{CEN>O} <»/I(1 - i(z)lN—ﬂ-i-Oz

’

1 ’ ,
= — = dwi(§) | YN dyndy' + (W(K;))®
/Bl(o)m{zN>0} </Ti(Ki) (ly — &>+ yZQV)N o ) N

’

wiBUY) dr\ _
— — yNdyndy'  with R = diam(Q).
/IRN 1 / (/mln{yN R} rN=—fB+o  p N

As in the proof of Proposition 2.7, we also obtain

’

wiBLy)) dr\
——— | YN dyndy
\/]RN 1/ ([ﬂln{yN,R} rN=fta g N
/ /QR( wi(B.(y ’))H)S &
RN-1 N—-B+a— T

Therefore, we get (2.18) from [4, Theorem 2.3]. |

To end this section, we give the following property which will be usefull in the sequel.

Proposition 2.9 Let 0 < a < < N,s > 1 and o > % > 0. For any p € M+ (Q) there
holds

[ ptayemtmiendute) < Cangy, () (2.19)
for any compact set K C ) provided that
u(E) < C Capg, ,(E) (2.20)
if Q is a bounded domain, and
u(E) < C Capy, (E) (2.21)

if @ =RN=1 x (0,00), for any compact set E C Q, here C is a constant. Where Gg,15 are
the Bessel kernel, Riesz kernel of order B in RY and Capg,,s: Capy, , are (Gg, s), (I, s)-
capacities, see [1].

Proof. For a compact set F C ) we have
Capa, +(E) = sup { (@(E))* : w € M (E), Gl ey < 1}
Capy, o(E) = sup { (W(E))" : w € M (B, [Tsfe] | porgany <1}

Thanks to [1, Theorem 3.6.2] or [4, Theorem 2.3], we have for any w € M, (Q2),

, dw(y) )s/
Gslw]||3 . Z/( —=— | dxz,
1Gallllz ®Y) o \Ja |z —yN-F

if © is a bounded domain, and

, dw(y) s
alellfemy 2 [ ([ 2280
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if @ = RV~1 x (0,00). Thus, taking a compact set K C €2, from (2.20) and (2.21) we get

for any € > 0

P N {zz p(a)** =70 > e}) S (w(E N {z: pla)* @~ E7D% > e}))e,

for any w € MH (K N {x : p(z)**= (=D > 1) such that

dw(y) )
— 7 de < 1.
/Q ( Qlr— y|N_B ~

From (2.22), and using the Minkowski inequality we get

ot dute) = [ e deduta)
K K JO
= [ 0 o s playeee > e
0

S /;o(w KN e ple)© (=% > c}))de

(
([ storaut) .

/K/)(SC)”*(S’”‘“du(w)S (wo(K))* with duwo(x) = p(a)*~+ duw(x).

IN

from which it follows

Moreover, from (2.23) we have

’

1 S
(] ) i
0 < o |z —y|N-Bp(y)*~

1 S
Z [200) dw dzx
/Q </“ |z — yIN =P max {|z —yl, p(x), p(y)}* O<y)>

’

p(z)+ s
- /Q </ﬂ o — yIN =P max {|z — yl, p(x), p(y)}" dwO(y)) e
= ||[Na,s[wo]|

Therefore, we get (2.19).

L*' (Q,(p(.))0da)"

3 Proof of the main results

We denote

Plo](z) = /6 Pa2)do(s). Glol(w) = [ Glayduly

for any o € M(IN), u € M(2). Then the unique weak solution of

—Au=p in 0
u=o0 on 012,

can be represented by

u(z) = Glo](z) + Plo](z) Yz €.

12
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We recall below some well-know estimates for the Green and the Poisson kernels.

1 M@MM}

|z —y|N=2" |z —y|V

G(z,y) < min {

p(x)

P = ———
(z,2) |z — 2|V
and
rly) . lz — vl 1
|VIG(z5y)| 5 min 15 9 |VIP(1'5’Z)| 5
= yl¥ p(x)p(y) & — 2|V

for any (x,y,2) € Q x Q x 99, see [3]. Since |p(z) — p(y)| < |x — y| we have

max {p(z)p(y), |z — y|*} < max {|z — y|, p(z), p(y)}* .

Thus,
. eyl )\ _ 2=yl "
mm{L< pum@) }“(mwﬂsz@%mwb” for =0
Therefore,
G(.y) < p(@)p(y)Nas(x,), P(z,2) < p(x)Noa(z, 2)
and

IVaG(z,y)| S p(y)N11(z,y),  [VoP(2,2)| £ Naal(z,2)
for all (x,,2) € QA x 2 x 0, a > 0.
Proof of Theorem 1.2 and Theorem 1.4. By (3.5), we have

G[(P[o])Y] £ Plo] <0 a.ein Q.
<~
Na [(N272[U])q (P(-))q+1] S Napgfo] < oo a.ein €,

and

U = GU") + Plo] <= U = p()Nalp(.)U?] + p(.)Ns.2o]

<=V = Nop[(p(.)) V] + Naoplo], V =U(p(.)) .

By Proposition 2.7 and 2.8 we have:
Capy, o(K) = CaqutZ,q, (K x {0}) V compact set K c RV™!
if @ =RY~1 x (0,00), and

Cap%?q, (0) < CaquJ;l%q, (O) V compact set O C 9N

(3.2)

(3.3)

if Q is a bounded domain. Thanks to Theorem (2.5) with « = 2,8 = 2,0 = ¢ + 1 and

proposition 2.6, we get the results.

Proof of Theorem 1.3 and 1.5. Thanks to Theorem 2.5 and Proposition 2.7, 2.8, we

have only to prove that there exist § > 0 such that, if

N [(Noallo ) (p()" 1| < 0N1aflo]] < o0 acin €,

13
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then problem (1.20) has a solution u and it satisfies
lul < Cp()N1a[loll; [Vu| < CNyf|of].
By (3.5) and (3.6), we have

Go(z,y) < Cp(z)p(y)N1,1(2,y), [VaGolz,y)| < Cp(y)Nu1(z,y) (3.8)
Po(z,y) < Cp(y)Ni1(x,2), |VisPo(z,z)| <CNy1(z,2) (3.9)

for all (x,y,2) € Q x Q x 9N for some constant C > 0.

q1+q2—1
Suppose that (3.7) holds with § = %. Let S be the subspace of functions
f € Wh(Q) with norm

loc

I[flls = 1flpar+az (@, (p())r-2dz) + IV Fl| Lar+aa (9, (p(.)) 1402 d0) < 00

Put
E={ueS:|u <Ap()Nii[lo]], IVu| <ANj.[lo|]] aein Q},

with A = Slate),
Clearly, E is closed under the strong topology of S and convex.
For any u € E, set

F(u)(x) = ﬂ G (&, ) ()|~ ()| Vuly)| = dy + /a P(a,2)do(2)
Using (3.8) and (3.9), we have

[F(u)] < Cp()Nw1 [ul™ [Vul®p()] + Cp(. )N [lo]],
[VF(u)] < CNpy [Jul® [Vl p(.)] + CNy i [|o])

. . 1 5—1 q1+tga—1
Su:ce lu| < Ap()N11[|o]], [Vu| < ANy 1[|o|] and (3.7) holds with 6 = W, we
ge

[F(u)] < Ap(ONwa(loll, [VE(u)] < ANyao]].

Thus, F is the map from E to E. It is not difficult to show that F is continuous and F(FE) is
precompact in §. Consequently, by Schauder’s fixed point theorem, there exist u € E such
that F(u) = u. Hence, u is a solution of (1.20) and it satisfies

lul < Ap()Nwa[lof), [Vu] < ANy [|o].

This completes the proof of the Theorems. [

4 Extension to Schrodinger operators with Hardy po-
tentials

Let G, Py be the Green kernel and Poisson kernel of —A — =5 in  with € [0,1]. We
have

Nierr
o 1 (p(x)p(y)) =
Gu(z,y) = mm{ [ — YN 2" g — | N1V Tk
P(rz) = L)
kA=) = |zfz|N71+\/m
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for all (z,y,2) € Q x Q x 99, see [6, 11, 7]. Therefore, from (3.4) we get

1+V1—-4k

Gi(z,y) < (p(x)p(y) ™ 2 Ny, i—gma(®,y) (4.1)
and
Po(,2) = (p(@) % Nu i yrarsa(®2), (4.2)

for all (z,y,2) € Q x Q x 9Q, a > 0. We denote

P, [o](x) = /6 Pl )do(2), Gulpla) = / Gz y)duly)

for any o € M(IN), u € M(Q).
Thus, as Proof of Theorem 1.2 and Theorem 1.4 we have

G, [(Pxlo])Y] S Pilo] <00 a.ein Q.

(a+D)(A+VT=1r)
2

& Ny, =50 {(Numg[a])q (p(.)) SN g=mmelo] <00 aein

and

U = G.[U7) + Py[o]

(a+D(1+vT=Tr) 14T=n
2

& V=N =aslel) VA4 Ny =t 20, V= Ulp() "2

Thanks to Theorem (2.5) with dw(z) = (p(z)) "2 du(z) + do(z) € MHQ), o = 1 +

VI— 4k, 8 = 2,00 = WHIIVIZIN 40 g proposition 2.6, 2.7, 2.8 where o € 9T (9Q) and
w € MT(Q), we obtain

Theorem 4.1 Letq > 1,0 < k < % and o € M (9Q) and p € MT(Q). Then, the following
statements are equivalent

1. The inequality

1+vT=dr (a+1)(+VI=ar)
/K(/)(J?)) = du(z) < C'CapN1+ 1f4~,2v‘1’ (K), (4.3)

holds for any compact set K C Q and

o(0) < C Cap; (0) (4.4)

q+3—gq—2;z¢maq’
holds for any Borel set O C RN=! jf Q = RN=1 x (0,00); and
o(0) < O Car'ly o nvrm , (O) (45)
holds for any Borel set O C 02 if Q is a bounded domain.
2. The inequalities

x [(Pylo])?] < CPlo] < 0 a.ein Q, (4.6)

G
G, [(Gi[u)T] € CGilpu] < 00 aein Q, (4.7)

holds.
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3. Problem
{ —Au— ZEpu=ultep inQ,

4.
u=co on OS2, (4.8)

has a positive solution for some e > 0.
Moreover, there is a constant Cy > 0 such that if any one of the two statement 1. and
2. holds with C' < Cy, then equation 4.8 has a solution u with € = 1 which satisfies

u < Gglu] + Pglo]. (4.9)

Conversely, if (4.8) has a solution u with e = 1, then the two statement 1. and 2. hold for
some C > 0.

Remark 4.2 By Proposition 2.9, (4.3) holds if

u(E) < CCapg, () (4.10)
when ) is a bounded domain,

u(E) < C Capy, , (E) (4.11)
when Q = RV~ x (0,00), for any compact set E C Q, for some small constant C.

We can solve problem (4.8) with distributional data:

(4.12)

—Au — (())QU—|u| Ly + div(F) +p in Q,
u=0c on 0.

Theorem 4 3 Letq>1,0< k< 1 and o € M(ON) and pn € M(Q) and F € L}, (Q). Set
H(z) = xa(z UQ V,Gk (:I: Y). (y)dy| There exists 0 > 0 such that if

() < 6 Cap, o (K), [ H(@)1de < 5 Cap, , (). (413)

01(0) < & Cap; (0) (4.14)

a+3—(¢—1)VT—4r 4
2q

hold for any compact sets K C RN, O C RN~ when Q = RN~! x (0,00); and

(K) < 6Capg, ,(K). [ H(a)do < 6Capg, (), (4.15)
01(0) < 3 Capl iy norme ,(O) (4.16)

hold for any compact set K C RN, O C 9Q when §Q is bounded, then problem (4.12) has a
solution and satisfies

29 (@19 + Gulli) + Pl + . (4.17)

|uf <
q—

Proof of Theorem 4.3. Thanks to Theorem 4.1 and Proposition 4.2, conditions (4.13),
(4.14), (4.15) and (4.16)

G [(P.[|o]))?] < CPllo|]] < 0 a.ein Q, (4.18)
G [(Gullul))*] < CGllul] <00 aein Q, (4.19)
G, [(GL[V])!] < CG,lv] <0 aein Q. (4.20)
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where dv(z) = H(x)?dz and C' ~ §9~1.Thus, we need to show that (4.12) has a solution
for some small constant C. Consider the sequence {uy }n>1 C L9(€2) of functions defined by
u; = 0 and

Upy1 =0 on 0f,
for any n > 1. We have
wnir(2) = | Gl n)lun I o)y = [V, Go)- Py
+/ G (z,y)du(y) +/ P.(z,2)do(2).
Q a0
So,
[un+1| < Gullun|?] + Gullp]] + Prllof] + H,
|Un+2 - Un+1| < an[(|un+1|q71 + |un|q71) |un+1 - Un” n>1
q
Assume (4.18), (4.19) and (4.20) hold with € < (=5 )" 717, then
49-1q
unl < — (Gu[v] + Gu[lul] + Pylloll) + H V2 1. (4.22)

Indeed, clearly, we have (4.22) when n = 1. Now assume that (4.22) is true with n = m,

that is,

49-1q
-1

|| < (Grlv] + Gillpl] + Pillol]) + H.
So,
[um+1| < Grllum|?] + Gullpl] + Pyllol] + H

< g (ﬁ; f) (Gul(Gult)] + Gol(Gallul) ] + G (P[] )

+ 4G HY) + G[lul] + Poflof] + H

<401 (A;_ ! ) C(Galv] + Gullull + Pullol)) + 497 Golv] + Giellul] + Pollo]] + H
< i’
<

(GulV] + Gul|pl] + Pkllol]) + H.

So, (4.22) is also true with n = m + 1. Thus, (4.22) is true for all n > 1.
Next, arguing by induction we can show that

[tnt1 — un| < Cob™ 2 (Gu[v] + Gallul] + Prllo]]) n>2 (4.23)

qg—1

with Cp = ¢497! (4;%11(1)‘1 (C+1),b=g397" (qu)q_l C.

a
Hence, if C' < (ﬁffq) SQ*I%q—l) then b < 1 and (4.22) holds and w, converges to u =

Uz + ZZOZQ(un—i-l — up) a.e. Moreover,
Goll[tm1|T g1 — [m|T  up|] = 0 ae

Clearly, u is solution of (4.12) and satisfies (4.17). This completes the proof of Theorem 4.3.
[
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