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Abstract. Multirobot systems have made tremendous progress in exploration

and surveillance. In that kind of problem, agents are not required to perform a

given task but should gather as much information as possible. However, informa-

tion gathering tasks usually remain passive. In this paper, we present a multirobot

model for active information gathering. In this model, robots explore, assess the

relevance, update their beliefs and communicate the appropriate information to

relevant robots. To do so, we propose a distributed decision process where a robot

maintains a belief matrix representing its beliefs and beliefs about the beliefs of

the other robots. This decision process uses entropy and Kullback-Leibler in a

reward function to access the relevance of their beliefs and the divergence with

each other. This model allows the derivation of a policy for gathering information

to make the entropy low and a communication policy to reduce the divergence.

An experimental scenario has been developed for an indoor information gathering

mission.

1 Introduction

Robotic systems are increasingly used in surveillance and exploration applications. In

the future robots may assist humans and eventually replace them in dangerous areas. In

these particular research fields the main goal of the system is not to reach a given goal

but to gather information. The system needs to create a complete and accurate view

of the situation. This built view may be used afterwards by some agents - human or

artificial - to make some decisions and perform some actions. Therefore the information

gathering system must be able to identify lacking information and take the necessary

steps to collect it. However it is obviously not productive that all the robots in the

system try to collect all possible information, just as it is not possible for the robots to

communicate all the information they have all the time. They should select pieces of

information to collect or to communicate depending on what they already know and

what other agents already know. Developing methods to allow robots to decide how to

act and what to communicate is a decision problem under uncertainty.

Partially Observable Markov Decision Processes (POMDPs) are traditionally used

to deal with this kind of problem, more particularly Decentralized POMDPs (DEC-

POMDPs) that are an extension of POMDPs for multiagent systems. However the clas-

sic POMDP framework is not designed to have information gathering as a target : in-

formation gathering is usually a means of reaching another goal. Some extensions have

been developed for mono-agent systems but the plunge to multi-agent systems has not



been taken. We suggest in this paper a formal definition of the relevance of a piece of

information as well as a new model dedicated to multiagent information gathering that

is able to explore actively its environment and communicate relevant information.

Section 2 presents some background knowledge and other studies that are relevant to

our problem. Section 3 presents the proposed model to do active sensing with a multi-

robot system. It defines a agent-oriented relevance degree and describes the Partially

Observable Markov Decision Process used in the system. Finally, section 4 presents an

implementation of the model on a simple indoor sensing problem.

2 Background and Related Work

Relevance

Agents situated in an environment perceive a huge amount of data and they need to

process those data to extract higher-level features. However the interest of a feature for

an agent depends on several parameters such as the situation, the problem to be dealt

etc. Since it is counterproductive to communicate neither to perform an action to collect

non interesting information, agents need to quantify the importance of a piece of infor-

mation according to the current situation. This degree of importance is the relevance

of information. Borlund [1] defined two types of relevance : system-oriented relevance

and agent-oriented relevance. System-oriented relevance analyzes relevance regarding

a request. The better the match between information and the request, the greater the de-

gree of relevance. System-oriented relevance is used and studied in several Information

Retrieval Systems [3]. Agent-oriented relevance defines a link between information and

an agent’s needs. Information is relevant if it matches a specific need, if it is informative

and useful for an agent which receives it. However the need may not be explicit. Floridi

[4] suggested a base of epistemic relevance and Roussel and Cholvy [5] deepened this

study in the case of BDI agents and multimodal logic. However those studies are based

on propositional logic and are not applicable for reasoning with uncertain knowledge.

Therefore we need to define a relevance theory that may be used in uncertain reasoning.

Active information gathering

Using relevance, an agent is able to decide if a piece of information is interesting or not.

Therefore it is able to perform active information gathering. Active information gath-

ering defines the fact that an agent will act voluntarily to gather information and not

just perceive passively its environment. In this context the agent has to make decisions

in an environment that it cannot perceive completely. One of the best and commonly

used models to deal with that kind of problem is Partially Observable Markov Decision

Process. Some studies have already been carried out to perform active perception us-

ing POMDPs. Ponzoni et al. [6] suggested a mixed criterion for active perception as a

mission to recognize some vehicles. The criterion is based on an entropy function and a

classical reward function to mix active perception and more classical goals of POMDPs.

Meanwhile Araya-Lopez et al. [7] suggested a more general approach to use any reward

function based on belief state in POMDPs. These two approaches proved the feasibil-

ity of such a system where information gathering is the goal. However they are both



mono-agent and are not applicable to a multiagent system. To our knowledge there is

no model of multiagent system for active information gathering.It is obvious that in-

formation gathering would be more efficient if it is done by several agents instead of

a single one. However, it is important that agents are able to coordinate themselves to

make the gathering efficient.

Multiagent active information gathering

The problem of multiagent active information gathering relates to multiagent decision

under uncertainty : a set of agents have to control together a decision process to collect

information. However no agent is able to control the whole process. Different equivalent

frameworks extending POMDPs have been developed to deal with multiagent decision

problems under uncertainty [14].

Solving a multiagent POMDP is a problem NEXP-complete [15]. Even if algo-

rithms and heuristics have be suggested to overcome this complexity [17], those frame-

works are usually not applicable to real problems. To overcome this issue, Spaan et

al. [18] suggested a system based on POMDP to enable a Network Robot System to

classify particular features by acting to get the best information possible. In this study,

the authors decided to model the active information gathering thanks to classifying ac-

tions in order to avoid using a reward function based on entropy, that would increase

the complexity of planning. However Araya-Lopez et al. [7] proved that it is possible

to reuse techniques from the standard POMDP literature with a reward function based

on belief states as would be a reward function using entropy. On top of that, in the sys-

tem suggested by Spaans et al., all the agents have to make the classification steps and

build a complete view of the environment. However, in usual active information gath-

ering problems, it not useful that each agent of the system has this complete view as

long as the system view is complete. Therefore, agents need to communicate with each

others in order to avoid repetitive exploration. Communication in multiagent POMDP

framework is usually assumed to be free and instantaneous. However such assumption

is not possible in real problems. Communication is an action that has a cost and must be

decided. Roth et al. [21] presented an algorithm to take into account the communication

cost in multiagent POMDPs. In this paper, the communication is considered only dur-

ing execution and should improve the performance of the system : if it is useful for the

system, an agent communicates all its history of observations. There is no decision con-

cerning the observations to communicate. Information gathering is once again a means

to reach a goal and not the goal in itself.

3 The model

3.1 Definition of an agent-based relevance

Let’s assume an agent ai situated in an environment E . The environment is modeled as

a set of features of interest. Each feature is described using a random variable Xk which

can take values in its domain DOM(Xk). The agent ai has some beliefs BE
i concerning

the features of interest modeled as probability distributions over the Xk ∈ E .

BE
i,t = {bki,t∀Xk ∈ E}



with bki,t being the probability distribution of agent ai over the variable Xk at time t.

Let’s assume an agent receives observations concerning the features of interest. Possible

observations are the possible values of the random variables Xk : ok ∈ DOM(Xk)
When receiving a new observation, agent ai updates its beliefs according to it :

BE
i,t+1 = update(BE

i,t, ok) [22]

First of all we considered that observations received are true. As a matter of fact,

an observation cannot be relevant if it is a false observation [4]. We discuss this as-

sumption and the way it is used in the decision process in section 3.2. Considering this

assumption, an observation ok is relevant for an agent ai if it matches the following

criteria:

1. agent ai is interested in the subject of the observation ok, that is to say Xk

2. the observation ok is new for agent ai or

3. if the observation ok is not new, it should render agent’s ai beliefs more accurate

The first point is dealt with the way we represent agent’s beliefs : if agent ai is

interested in Xk then Xk is in agent’s ai beliefs. We assume that an observation ok
is new for agent ai if beliefs BE

i,t+1 and BE
i,t are distant from each other. The distance

between two probability distributions is measured by the Kullback-Leibler ratio.

Definition 1. An observation ok is new for agent ai at time t if and only if

DKL(B
E
i,t||B

E
i,t+1) > ǫ (1)

ǫ is a fixed threshold and DKL(B
E
i,t||B

E
i,t+1) is the Kullback-Leibler ratio and defined

by

DKL(B
E
i,t||B

E
i,t+1) =

∑

Xk∈E

n
∑

k=1

bki,t(xk)ln
bki,t(xk)

bki,t+1(xk)
(2)

where bki,t(xk) is the belief of agent ai that the random variable Xk is equals to xk.

To model the accuracy of a belief BE
i,t, we use an entropy measure.

Definition 2. Belief BE
i,t+1 is more precise than belief BE

i,t if and only if

H(BE
i,t+1) < H(BE

i,t) (3)

with H(BE
i,t) = −

∑

Xk∈E

∑n

k=1 bi,t(xk)log(bi,t(xk)).
Given the previous definitions we may define the degree of relevance as shown

below :

Definition 3. The degree of relevance of an observation ok concerning a random vari-

able Xk for an agent ai, noted reli(ok), is given by

reli(ok) = αDKL(B
E
i,t||B

E
i,t+1) + β(H(BE

i,t)−H(BE
i,t+1)) + δ (4)

with BE
i,t+1 = update(BE

i,t, ok), α and β being weights and δ being a translation factor

to ensure the relevance is positive.



3.2 Decision Process for multiagent active information gathering

Let a multiagent system be defined as a tuple < E ,AG,B,D > with

– E being the environment as defined previously

– AG being the set of agents

– D being the set of all agents’ decision functions

D = {Di, ∀i ∈ AG} is the set of all agents’ decision function. Each Di is repre-

sented as a Factored Partially Observable Markov Decision Process (FPOMDP)[24].

Set of actions

We consider two type of actions : look for the value of a particular random variable

(Explore-type actions) and communicate an observation to an agent (Communicate-

type actions):

A = {Exp(Xk), ∀Xk ∈ E}∪
{Comm(o,Ag), ∀o ∈ O, ∀a ∈ AG}

The size of the action set is :

|A| = |AExplore| +|ACommunicate|
= |E| +|O| × |AG|

(5)

Set of observations

In a Partially Observable Markov Decision Process, an agent doesn’t know exactly

the current state of the system. It only receives observations when performing actions,

which are only indications about the current state. So the agent may estimate the current

state from the history of observations it received. When performing an Explore-type

action, the agent receives an observation concerning the random variable it is trying to

sense. Therefore the possible observations are the possible values the random variable

may take, that is to say the domain of the random variable. Therefore the set of all

possible observations from an Explore-type action is:

OExplore = DOM(E) =
⋃

∀Xk∈E

DOM(Xk)

When performing a Communicate-type action the agent receives an observation

stating that the message has been properly sent or not :

OCommunicate = {okMsg, nokMsg}

So the entire set of possible observations is

O = OExplore ∪ OCommunicate =
⋃

∀Xk∈E

DOM(Xk) ∪ {okMsg, nokMsg} (6)



Maintaining a belief state The agent doesn’t know the exact current state of the sys-

tem. It only has observations about it. Therefore it should maintain some beliefs con-

cerning this current state. In the context of multiagent information gathering, an agent

should not only have beliefs about the state of the environment but also about the other

agents. To prevent agents from exploring the same areas and to enable them to choose

the most relevant observation to communicate, they should model the knowledge of

other agents in their own belief state. Thus we defined an extended belief state as fol-

lowing :

Definition 4. Let a extended belief state of an agent ai at time t be defined as following

:

Bi,t = BE
i,t ∪ {Bj,E

i,t , ∀j ∈ {AG\i}} (7)

with BE
i,t = {bi,ki,t , ∀Xk ∈ E} being the beliefs of agent ai concerning the environment

E and Bj,E
i,t = {bj,ki,t , ∀Xk ∈ E} being the beliefs of agent ai concerning the beliefs of

agent aj concerning the environment.

Let’s note that Bj,E
i,t is an approximation of BE

j,t.

To keep an accurate representation of the current state of the system an agent has to

update its beliefs regularly. An update will occur in three cases :

1. the agent receives a new observation from its sensors after an Explore action. It

updates its own beliefs concerning the environment : BE
i,t+1.

2. the agent receives a new observation from agent aj . It updates its own beliefs BE
i,t+1

as well as its beliefs concerning agent aj : Bj,E
i,t+1.

3. the agent sends an observation to agent aj . It updates its beliefs concerning agent

aj : Bj,E
i,t+1.

In all cases the update Bx,E
i,t+1 = update(Bx,E

i,t , ok),ok being the observation received, is

made as usual in Partially Observable Markov Decision Processes :

Bi,t+1(s
′) =

ω(ok, s
′, a)

∑

s∈S
p(s′|s, a)Bi,t(s)

∑

s∈S

∑

s′′∈S
ω(ok, s′′, a)p(s′′|s, a)b

i,k
i,t

(8)

Reward function The best action to perform at a given time is set by a policy. The

optimal policy is computed thanks to the reward function. The reward function defines

the reward an agent may receive by performing action a in state s. However in an

information gathering context we are not interested in reaching some special state of the

system but gathering and communicating relevant observations. Therefore the reward

function is defined on the belief states of the agent and not on the real states of the

system. An agent is rewarded if it collects observations that are relevant for itself and

if it communicates observations that are relevant for other agents. As mentioned in

section 3.1, an observation must be true to be relevant. Since agents only have beliefs

concerning the world, they cannot ensure that an observation is true. However they

should not exchange observations that reinforce their existing beliefs, regardless of their

veracity. Therefore we need to find a compromise between the agent’s belief concerning



the observation and the relevance of this observation. To do so we weight the relevance

of a given observation by the agent’s belief concerning its truth. This belief is given by

the probability of receiving the observation in the state s considered multiplied by the

agent’s belief that the state s is the current state. The reward function is thus defined as

follows:

R(Bi,t, Exp(Xk)) =
∑

s∈S

∑

ok∈O

Bi,t(s)ω(ok, s, a)reli(ok)− CExp(Xk)

R(Bi,t, Comm(ok, aj)) =
∑

s∈S

Bi,t(s)ω(ok, s, a)relj(ok)− CComm(ok,aj)

with CExplore(Xk) and CCommunicate(ok,aj) being the costs of taking the Explore

or Communicate action and Bi,t(s) being the belief of agent ai that state s is the

current state.

Resolution In this POMDP actions are epistemic : they don’t modify the real state of

the system. Therefore it is possible to transform our POMDP into a Belief MDP defined

as a tuple < ∆,A, τ > where :

– ∆ is the new state space. It corresponds directly to the belief state space in the

initial POMDP. ∆ = Bi

– A is the same state of actions as previously defined

– τ is the new transition function

Theorem 1. The transition function τ of the Belief MDP is defined as follows :

τ(Bi,t, a,Bi,t+1) =

{∑

s∈S

∑

ok∈Ut
ω(ok, s, a)Bi,t(s) if Ut 6= ∅

0 otherwise

where Ut = {ok ∈ O | Bi,t+1 = update(Bi,t, ok)} is the set of all observations

enabling the transition from state Bi,t to state Bi,t+1 , ω(ok, st, a) is the observation

function of the POMDP and Bi,t(st) is the belief of agent ai that the current state is st.

Proof. If there is no observation such as

Bi,t+1 = update(Bi,t, ok)}, it is not possible to transfer from belief state Bi,t to

belief state Bi,t+1. Therefore, τ(Bi,t, a,Bi,t+1) = 0. If there exists at least one obser-

vation ok such as Bi,t+1 = update(Bi,t, ok)} we have the following equations :

τ(Bi,t, a,Bi,t+1) = P (Bi,t+1|Bi,t, a)
=

∑

ok∈Ut
P (ok|Bi,t, a)

=
∑

s∈S

∑

ok∈Ut
P (ok|s, a)Bi,t(s)

=
∑

s∈S

∑

ok∈Ut
ω(ok, s, a)Bi,t(s)



The value function corresponding to this Belief MDP is defined as following:

V (Bi,t) = R(Bi,t) + max
a∈A

∫

B′

i,t

τ(Bi,t, a,B
′
i,t)V (B′

i,t) (9)

Using discretization techniques on the probability distributions, we may transform equa-

tion 9 :

V (Bi,t) = R(Bi,t) + max
a∈A

∑

B′

i,t
∈Samples

τ(Bi,t, a,B
′
i,t)V (B′

i,t) (10)

Then, any technique from the literature may be used to solve this belief-MDP [28].

4 Experiments

Simulated Robots The suggested model was implemented on a simple scenario. Two

robots have to explore an environment made of 4 different zones connected to each

other. For each zone, two observations are possible : emptyRoom and notEmptyRoom.

The optimal policy was computed using different ratios to make the compromise be-

tween the Kullback-Leibler ratio and the entropy measure, as well as different proba-

bilities of obtaining a false observation. The system was run 50 times with each set of

parameters. To evaluate the policy, we measured the average number of messages sent

by the robots, the average time needed to get a stable belief state and the number of false

belief states at the end of exploration. We compared those measures with a multirobot

system without communication and with a system in which agents communicate each

observation they received immediately. The results are presented in figure 1.

The linear part of the first two graphs represents the average time to reach a stable

belief state, measured in number of iterations, an iteration being made up of the exe-

cution of an action, the reception of the associated observation and the reception of a

communication message from another agent, if any. The bar part represents the average

number of final states that were partially or totally incorrect. First of all, we notice that

the communicating system (Figure 1a) takes around 18% longer than the explore-only

system (Figure 1b) to reach a stable belief state. We did not measured the time needed

for the fully communicative (Figure 1c) system because it is not meaningful. Indeed

agents are communicating each observation they receive and we consider communica-

tion as a separate action, so this system is much longer that the others. However, we

notice that the number of false end states is reduced with partial and complete com-

munication. In the worst case, that is to say a probability of 70% of receiving a correct

observation after doing an explore action, the system with partial communication re-

duces the average number of false end states by 28%, and the system with complete

communication reduces it by 8%. However it is possible to configure the Kullback-

Leibler / Entropy ratio so that this amount increases to 50% for the system with partial

communication (by considering Kullback-Leibler and Entropy with the same weights).

In the average case, that is to say a probability of 80% of receiving a correct observa-

tion, the average number of false end states is reduced by 72% with our system and by

19% with a complete communication. On top of that, Figure 2a shows that the average



(a) Evaluation of the computed policy with relevant communication

(b) Evaluation of the policy without communication

(c) Evaluation of the fully-communicative policy

Fig. 1: Evalutation of the three policies. The X-Axis represents the different ratios

Kullback-Leibler / Entropy. The three different thresholds correspond to the probability

to obtain a correct observation while doing an explore action



(a) System with partial communication

(b) System with complete communication

Fig. 2: Exploration with µ-troopers

number of messages sent remains almost constant and much lower than the system with

complete communication (Figure 2b).

Those experiments seem to validate the hypothesis that choosing relevant informa-

tion to communicate may improve system performances while reducing the number of

communications.

Real Robots We implemented the model on two µ-troopers in a simple scenario where

two rooms must be explored. In the figure 3a, robot 1 decided to explore room 1 and

robot 2 decided to explore room 2. Since beliefs of robot 2 about the environment

are very accurate and it believes that robot 1 has incorrect beliefs, robot 2 decides to

communicate the observation 0 to robot 1. Robot 1 receives this observation and updates

its beliefs accordingly. This figure presents a case where an agent has approximated

beliefs concerning the beliefs of the other agents. However this approximation does not

prevent the robots from completing the mission and reaching a stable belief state, as

presented on Figure 3b.

5 Conclusion and Prospects

We have introduced a new model of agent-based relevance as well as a decision process

to perform active information gathering with a multiagent system. Each agent computes



(a) Sharing the exploration (b) End of exploration

Fig. 3: Exploration with µ-troopers

the relevance of an observation regarding itself or another agent to decide whether it

should explore a particular zone or communicate this observation. The relevance of an

observation is a compromise between the novelty, modeled by Kullback-Leibler ratio,

and the certainty of an observation, modeled by Entropy measure. Therefore it may be

tuned depending on the environment considered. In a static environment, as presented

in the experiments, the certainty of an observation is more important than its novelty.

However, in a highly dynamic environment, the novelty of an information may be the

most important. The system has been implemented and tested on real robots. Results

show that this approach is more efficient than a fully-communicating system.

The decision process we described focuses on relevance and reasoning on belief

states to perform active information gathering. In the system presented in this paper, an

agent is able to communicate any observation from the observation set if it is relevant.

Therefore, an agent may communicate an observation it has never directly received.

Future works would maintain a history of observations received and allow an agent to

communicate only observations it has previously received. Moreover, the beliefs about

the beliefs of other agents are updated only when there is an explicit communication.

We plan to work on a less naive method : since the same policy is used by all agents,

we may update those beliefs more often by assuming the action taken by other agents.

Finally, future works would consider the integration of the system presented in non-

epistemic POMDPs.
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