N

N

Abstraction of Arrays Based on Non Contiguous
Partitions

Jiangchao Liu, Xavier Rival

» To cite this version:

Jiangchao Liu, Xavier Rival. Abstraction of Arrays Based on Non Contiguous Partitions. 15th
Conference on Verification, Model Checking, and Abstract Interpretation, Jan 2015, Mumbali, India.
pp.282 - 299, 10.1007/978-3-662-46081-8 16 . hal-01095985

HAL Id: hal-01095985
https://hal.science/hal-01095985
Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01095985
https://hal.archives-ouvertes.fr

Abstraction of Arrays
Based on Non Contiguous Partitions *

Jiangchao Liu and Xavier Rival

INRIA, ENS, CNRS, Paris, France,
jliu@di.ens.fr, rival@di.ens.fr

Abstract. Array partitioning analyses split arrays into contiguous parti-
tions to infer properties of cell sets. Such analyses cannot group together
non contiguous cells, even when they have similar properties. In this paper,
we propose an abstract domain which utilizes semantic properties to split
array cells into groups. Cells with similar properties will be packed into
groups and abstracted together. Additionally, groups are not necessarily
contiguous. This abstract domain allows to infer complex array invariants
in a fully automatic way. Experiments on examples from the Minix 1.1
memory management demonstrate its effectiveness.

1 Introduction

Arrays are ubiquitous, yet their mis-use often causes software defects. Therefore,
a large number of works address the automatic verification of array manipulating
programs. In particular, partitioning abstractions [5,11,13] split arrays in sets of
contiguous groups of cells, in order to, hopefully, infer they enjoy similar proper-
ties. A traditional example is that of an initialization loop, with the usual invariant
that splits the array in an initialized zone and an uninitialized region.

However, when cells that have similar properties are not contiguous, these
approaches cannot infer adequate array partitions. This happens for unsorted ar-
rays of structures, when there is no relation between indexes and cell fields. Then,
there are usually relations among cell fields. This phenomenon can be observed in
low-level software, such as operating system services and critical embedded sys-
tems drivers, which rely on static array zones instead of dynamically allocated
blocks [20]. When cells with similar properties are not contiguous, traditional par-
tition based techniques are unlikely to infer relevant partitions / precise array
invariants. Figure 1 illustrates the Minix 1.1 Memory Management Process Table
(MMPT) main structure. The array of structures mproc defined in Figure 1(a)
stores the process descriptors. Each descriptor comprises a field mparent that
stores the index of the parent process in mproc, and a field mpflag that stores the
process status. Figure 1(c) depicts the concrete values stored in mproc to describe
the process topology shown in Figure 1(b) (we show only 8 processes). An element

* The research leading to these results has received funding from the European Research
Council under the FP7 grant agreement 278673, Project MemCAD, and from the
ARTEMIS Joint Undertaking no 269335 (see Article I1.9 of the JU Grant Agreement).

2 Jiangchao Liu and Xavier Rival

1 struct mproc { [: mn| 1 <mpflag

2 unsigned mpflag; mparent = 0

3 int mparent; (1] : fs 1 < mpflag

4. } mproc[24]; mparent =0 |—
(a) Definition of array mproc [2]: init 1 < mpflag

mparent = 0
|:| system process descriptor (3] usrl 1 < mpflag
:] user process descriptor mparent = 2
l:| free slot [4]: usro 1 < mpflag

mparent = 2

nm [5] = free slot mpflag =0
)

6] : usr2 1 < mpflag
mparent = 4
[7) : free slot mpflag = 0

]

(c) A segment of mproc

Fig. 1. Minix 1.1 Memory Management Process Table (MMPT) structure

of mproc is a process descriptor when its field mpflag is strictly positive and a free
slot if it is null. Minix 1.1 uses the three initial elements of mproc to store the descrip-
tor of the memory management service, the file system service and the init process.
Descriptors of other processes appear in arandom order. In the example of Figure 1,
init has two children whose descriptors are in mproc[3] and mproc[4]; similarly,
the process corresponding to mproc([4] has a single child the descriptor of which is in
mproc|[6]. Moreover, Minix assumes a parent-child relation between mm and fs, as
mm has index 0 and the parent field of fs stores 0. To abstract the process table state,
valid process descriptors and free slots should be partitioned into different groups.

Traditional, contiguous partitioning cannot achieve this for two reasons: (1)
the order of process descriptors in mproc cannot be predicted, hence is random in
practice, and (2) there is no simple description of the boundaries between these
regions (or even their sizes) in the program state. The symbolic abstract domain
by Dillig, Dillig and Aiken [8] also fails here as it cannot attach arbitrary abstract
properties to summarized cells.

In this paper, we set up an abstract domain to partition the array into non con-
tiguous groups for process descriptors and free slot so as to infer this partitioning
and precise invariants (Section 2) automatically. Our contributions are:

1. An abstract domain that partitions array elements according to semantic prop-

erties, and can represent non contiguous partitions (Section 3).

2. Static analysis algorithms for the computation of abstract post-conditions

(Sections 4 and Section 5), widening and inclusion check (Section 6).

3. The implementation and the evaluation of the analysis on the inference of
tricky invariants in an excerpt of the Minix 1.1 Memory Management Process

Table (MMPT) and other challenging array examples (Section 7).

Abstraction of Arrays Based on Non Contiguous Partitions 3

Go Gy G
| mx,=2 § 0<ldx <23 $ 0<ldx, <23

Numeric relations:

Szy=1A0<8z <23 A0< Sz, <23

A1 < mpflag, < 63 A mpflag, = 0 A 1 < mpflag, < 63
Amparent, = 0 A 0 < mparent, < 23

Group relations:

m@l‘% A4Go UGy

(a) A concrete state of mproc (b) Abstract state with partition
Fig. 2. A partitioning of mproc based on non contiguous groups

2 Overview

The Minix MMPT requires mproc to permanently satisfy two invariants:

1. Each valid process descriptor has a mparent field, that should store a value
in [0, 23], hence represents a valid index in mproc: this entails the absence of
out-of-bound accesses in process table management functions.

2. The mparent field of any valid process descriptor should be the index of a
valid process descriptor: as a process can only complete its exit phase when
its parent calls wait, failure to maintain a parent for each process could cause
a terminating process to become dangling and never be eliminated.

To verify these invariants, we propose to check that all system calls preserve them.
We design an automatic analysis to verify that, if they are called in a state that
satisfies these invariants, they return in a state that also satisfies them. A concrete
state is displayed in Figure 2(a), and its abstraction is shown in Figure 2(b). Group
0 contains only the process descriptor of init. Group 1 collects all free slots. Group
2 consists of all the valid process descriptors except that of init. The reason why
we split init out into a separate group is that it is often treated in a special manner
by OS routines. We let G; denote the set of indexes of all the elements in group 1.
The abstract state shown in Figure 2(b) ties each group to properties of its
elements. These will be formally defined in Section 3. By the Minix specification,
the elements of group 2 satisfy the following correctness conditions C:
their indexes are in [0, 23], which we note 0 < Idx, < 23 in Figure 2(b);
their flags are in [1, 63] (valid process descriptors have a strictly positive flag),
which we note 1 < m?fﬁg2 < 63;

— their parents are valid indexes, which we note 0 < m}:ﬁrzth < 23;

— their parents are indexes of valid process descriptors, hence are also in group
0 or group 2, which we note m;gral‘c2 <1Go U Ga;

— the size of group 2 is between 0 and 23, which we note 0 < Sz, < 23.

Our abstraction relies on disjoint groups as other array partitioning abstrac-
tions [11,13]. However, our abstraction does not assume each group consists of
a contiguous set of cells. The non-contiguousness of groups is represented by wind-
ing separation lines in Figure 2(b). To characterize groups, our abstraction relies

4 Jiangchao Liu and Xavier Rival

void cleanup(int child){

int parent = mproc[child]|.mparent;
if (parent == 2){

mproc|parent].mpflag = 1;

mproc|child|.mpflag = 0;

for(i =0;i < 24;i++){

if (mproc[i].mpflag > 0)
if(i! = parent)
if (mproc[i].mparent == child)
mproc[i].mparent = 2;

[CXCNOXCXCRC)

® }e{se{,_,}_,_} (b) Effect of cleanup
(a) A simplified excerpt of cleanup

Fig. 3. Minix 1.1 process table management, system function cleanup

not only on constraints on indexes, but also on semantic properties of the cell
contents: while groups 1 and 2 correspond to a similar range, the mpflag values
of their elements are different (0 in group 1 and any value in [1,63] in group 2).
Therefore our abstraction can express both contiguous and non contiguous parti-
tions. In this example, we believe the abstract state of Figure 2(b) is close to the
programmer’s intent, where the array is a collection of unsorted elements.

We now consider the verification of Minix MMPT management procedures.
We focus on cleanup, which turns elements of mproc that describe hanging pro-
cesses into free slots. Figure 3(a) displays an excerpt of a simplified, recursion free
version of cleanup, which is chosen to highlight the analysis difficulties. The call
cleanup(4) in the state of Figure 2(a) will remove process usr0 and falls in that
case; the result is shown in Figure 3(b): process usr2 becomes a child of init,
while the record formerly associated to usrO turns into a free slot.

Function cleanupshould be called in a correct Minix process table state and be
applied to a child process in group 2, which we note child<Gs. Figure 4 overviews
the steps of the automatic static analysis of the excerpt of cleanup. The analysis
proceeds by computing abstract post-conditions and loop invariants [3]. In this
section, we focus on (1) cell materialization, (2) termination of the loop analysis
and (3) removal of unnecessary groups.

From the precondition, fields mparent of all elements in group 2 are indexes in
groups Gy or G2 (abstract state at point @). The test entails mparent is 2 at point
® (corresponding to process init). Combining this, with the fact that group 0
has exactly one element (Sz, = 1) at index 2 (Idx, = 2), the analysis infers that
parent can only be in group 0 (point @). Therefore, the update at point @ affects
a group with a single element, hence, is a strong update, and produces predicate at
point @. However, at that point, the next update is not strong, since mproc[child]
may be any element of group 2, which may have more than one element (it has
at least one element since child < G, thus Sz, > 1). Therefore, our domain ma-
terializes the array element being assigned by splitting group 2 into two groups,
labeled 2 and 3. Both groups inherit predicates from former group 2. Additionally,

Abstraction of Arrays Based on Non Contiguous Partitions 5

Atpoint @ C A child < Ga

At point @ C A child< G2 A parent <Gz U Gy

At point @ C A child< G2 A parent <Gy

At point ® C A child< G2 A parent <Gp A mﬁgo =1

At point @
group 0 group 1 group 2 group 3
S $ 0<ld, <23 § 0<ldg <23
N - relations: 0<Sz, <22 A Sz, =1 A 1< mptlag, < 63
UIEHC TEAtons: A\ npflag, = 0 A 0 < mparent, < 23 A 0 < mparent, < 23
Group relations: child <G5 A mparent, 4Go U G2 UG5 A mparent, <Go U G2 UGs
At pOiIlt ® group 0 group 1 group 2 group 3 group 4
$0<i<ld, <288 -+ § ldx <i
0<iANn0<82z,<22AN0<8z,<22A 1§mﬁg2§63
Numeric relations: Al <mpflag, <63 A0 m}ﬁr?ﬂ:2 <23AN1< m@% <63
A0 < mparent, < 23
i child <G A mparent, <GoUG2 UGs UGy
Group relations: i)
Amparent, <Go U G2 UGy
At p oint ® group 0 group 1 group 3 group 4
dx,=2 § 0<ldx, <23 § 0<ldg<2 § 0<ldg <23
Sz =1AN0<8Sz <22A82;,=1A0<8z, <22
Numeric relations: Ampflag, =1 A mpflag, =0 A mpflag, =0 A 1 <mpflag, <63
A0 < mparent, < 23 A 0 < mparent, < 23 A 0 < mparent, < 23
Group relations: mparent, 4Go U G4 A child<4G3

Fig. 4. Overview of the analysis of cleanup

group 3 has a single element (Sz; = 1), thus the analysis performs a strong update
and generates the abstract state of @.

The analysis of all the statements in the program follows similar principles.
We only discuss the termination of the analysis here, as our abstract domain has
infinite chains (the number of groups is not bounded), hence the analysis of loops
requires a terminating binary widening operator [3]. Widening associates groups
of its inputs with groups of its result (ensuring the number of groups can only
decrease to guarantee termination), and over-approximates group properties. Af-
ter two widening iterations, our analysis produces abstract post-fixpoint @, where
group 1 describes free slots, group 0 describes init, group 3 consists of child
(just cleaned up) and groups 2 (resp., 4) represent valid process descriptors with
indexes greater (resp., lower) than i. Our analysis can also decrease the number
of groups, when some become redundant, e.g., when the analysis proves a group
empty. For instance, the loop fixpoint @ shows that indexes of elements in group
2 are greater than i. Thus, after the loop exit, any element of group 2 should have
an index greater than 24, which implies this group is empty. Hence, this group is
removed, and the analysis produces post-condition @, which entails correctness
condition C (note that group 3, corresponding to child now describes a free slot).

6 Jiangchao Liu and Xavier Rival
3 Abstract domain and abstraction relation

In this section, we formalize abstract elements and their concretization. We de-
scribe the abstraction of the contents of arrays, using numeric constraints, in
Section 3.1. Then, we extend it with relations between groups in Section 3.2.

3.1 The non-contiguous array partition domain

Concrete States. Our domain abstracts arrays of complex data structures. To high-
light its core principle and simplify the formalization, we make two assumptions
on the programs to analyze. First, there is no array access through pointer derefer-
ence (handling them would only require a product with a pointer domain), thus all
array index expressions are of the form a[ex]. Secondly, all variables are either base
type (e.g., scalar) variables (denoted by X) or arrays of structures (denoted by A).
Structures are considered arrays of length 1, and arrays of scalars are considered
arrays of structures made of a single field. A concrete state o is a partial function
mapping basic cells (base variables and fields of array elements) into values (which
are denoted by V). We let N denote non-negative integers and F denote the set of
fields. Thus, the set S of concrete states is defined by S = (A x N x FUX) — V.
More specifically, the set of all fields of elements of array a are denoted by [, and
the set of valid indexes in a is denoted by N,.

Non-contiguous array partition. Our analysis partitions each array into one or
several groups of cells. A group is represented by an abstraction G; of the set of
indexes of its elements, where subscript i identifies the group. We let G denote the
set of group names {G; | ¢ > 0}. An array partition is a function p : A — P(0)
which maps each array variable to a set of groups. We always enforce the con-
straint that groups of distinct arrays should have distinct names, to avoid confu-
sion (Vai,as € A,ar # az = p(ar) N p(az) = 0). To express properties of group
contents, sizes, and indexes, we adjoin numeric abstract values to partition p. This
numeric information is split into a conjunction made of two parts.

First, a global component n® constrains base type variables, group sizes and
group fields. Group fields are marked as summary dimensions [10] in n8, that is as
numeric abstract domain dimensions that account for one or more concrete cell(s),
whereas base type variables and group sizes are non-summary dimension, i.e., each
of them represents exactly one concrete cell.

Second, for each group G, the index Idx; is constrained by a numeric abstract
value n?. This second component is needed because our abstract domain allows
empty groups, and when group G; is empty, Idx, has no value, which is expressed
by n* = L. Intuitively, in the concrete level, Idx, denotes a possibly empty set of
values (an empty group example will be provided in Section 7.2).

To sum up, an abstract element is a pair (p, ﬁ) where 77 is a tuple (n&,n° ...,
n*~1), and p defines k array partitions. Our abstract domain is parameterized by
the choice of a numeric abstract domain N¥, so as to tune the analysis precision
and cost. In this paper, we use the octagon abstract domain [18].

Abstraction of Arrays Based on Non Contiguous Partitions 7

a[0] value = 2
all] value = —110 p(a) = {Go, G1}
a[2] value = 2 Go G1
a[3][value = —120 0<Idx, <4 g 1<Idx, <6
4 = —— ——
a4 value = 8 n®: 2 <valueg <8 A —120 < value; < —100
a[5] value = —100
a[6] value = —100 A Sz, =3 A Sz, =4
(a) Concrete array X (b) Abstract state a*

Fig. 5. An abstraction in our domain

Ezample 1. Figure 5(a) displays a concrete state, with an array of integers a of
length 7 (each cell is viewed as a structure with a single field value). Figure 5(b)
shows an abstraction af = (p, ﬁ)) into two groups Go, G1, where Gq (resp., G1)
contains all cells storing a positive (resp., negative) values. This abstraction reveals
the array stores no value in [—99, 1].

Concretization. A concrete numeric mapping is a function v, mapping each base
type variable to one value, each structure field to a non empty set of values and
each index to a possibly empty set of values. We write v for the concretiza-
tion of numeric elements, which maps a set of numeric constraints 7 into a set
of functions v as defined above. The concretization vy (n) of constraints over
group G; is such that, when n’ = L and v € vy (n'), then v(Idx;) = (. Then,
Tt (N8, n0 o P = e (n8) Ny (n0) .. e (nF1). A waluation is a function
¥ € ¥ = G — P(Z), and interprets each group by the set of indexes it represents
in a given concrete state.

Additionally, we use the following four predicates to break up the definition of
concretization:

def,
P.(¢) <= Va €A Ug,ep@ ¢(Gi) =Na

N (VGi, Gy € p(a),i # j = (Gi) NY(Gy) = 0)

Py (o, v) Ly e X, v(v) =o(v)
Pi(v,9) £5 Va € A, G € pla), ¥(Gy) = v(ldx,) A [1(Gy)| = v(Sz,)

Po(o,,v) L5 Vae A fel., G €pla),je (G oajf) € v(E)

Predicate P (1)) states that each array element belongs to ezactly one group (equiv-
alently, groups form a partition of the array indexes). Predicate Py, (o, v) expresses
that v and o consistently abstract base type variables. Predicate P; (v, ¥) expresses
that v and ¥ consistently abstract group indexes. Last, predicate P.(o, 9, V) states
o and v define compatible abstractions of groups contents.

Definition 1 (Concretization). Concretization yp is defined by:

v (0,) FL {(0,9,0) | v € 9 () A Po() A Pr(o,v) A Pi(,9) A Po(0, 0, v)}

8 Jiangchao Liu and Xavier Rival

3.2 Relation predicates

The abstraction we have defined so far can describe non-contiguous groups of cells,
yet lacks important predicates, that are necessary for the analysis. Let us consider
assignment parent = mproc[child].mparent in cleanup (Figure 3(a)). Numeric
constraints localize child in [0, 23], but this information does not determine pre-
cisely which group does cell mproc[child] belong to. In particular, the analysis will
ignore from that point whether parent is the index of a valid process descriptor or
not. To avoid this imprecision, we extend abstract states with relation predicates,
that express properties such as the membership of the value of a variable in a
group. They are defined by the grammar below:

Definition 2 (Relation predicates).

ru=rAr a conjunction of predicates
true empt
Y
| vaG® where v € X var-index predicate
| £,<G® where f € F,,G; € p(a) content-index predicate
G® :=G*UG,; whereG; € p(a) a disjunction of groups in a
| G; where G; € p(a)

A relation predicate r is a conjunction of atomic predicates. Predicate v<a4G® means
the value of variable v is an index in G*, where G is a disjunction of a set of groups
of array a. Similarly, predicate f; < G® means that all fields £ of cells in group i are
indexes of elements of G2. As an example, if G* = G1 U G3, then v < G* expresses
that the value of v is either the index of a cell in Gy or the index of a cell in G.

Ezample 2. We consider function cleanup of Figure 3(a). The pre-condition for
the analysis of Figure 4 is based on correctness property C, hence partitions mproc
in three groups, thus p(mproc) = {Go, G1,G2}. Additionally, cleanup should be
called on a valid process descriptor different from that of init, hence child should
be in group G2, which corresponds to predicate child<(Gs. Then parent is initial-
ized as the parent of child. Since m@tg <4 Go U Go, parent is a valid process
descriptor index, and the analysis derives parent < Gy U G. Hence, at point @,
the analysis will derive relations r = child< Gy A parent<Go UGy A ...

Similarly, in the else branch of condition if (parent == 2), the analysis derives
that parent < Gs.

Concretization. We now extend the concretization to account for relations. First,
we let ¢ be defined on disjunction of groups, and let (Go U ...UG;) = ¥(Go) U
... U(Gy). We write D? for the set of triples (p, . T).

Definition 3 (Abstract states and their concretization). An abstract state
a* is a triple (p, ﬁ), r) € D¥. The concretization yp: is defined by:
YDt (pa ﬁa T‘) L= {U | 31/]; v, (Ua 1/1, V) € Vaux(pa ﬁ)a T)}
Yaux (D; 7T, true) == vp(p,)
Yaux (0, T, v 4 G) 5= {(0,9,v) € 3 (p,) | o(v) € H(G*)}
Vaux(pa Wa f;< Ga) n= {(071/)7 V) € ’Y[P(pv ﬁ) | Vk € ’l/)(Gz)a U(aa kv f) € ’l/)(Ga)}
'Yaux(pa ﬁ), o A Tl) = Vaux(pa ﬁ, TO) N Vaux(pa ﬁ, rl)

Abstraction of Arrays Based on Non Contiguous Partitions 9

Go Go G Go G
0<1dx, <9 | [0<Idxg <99 $0<ldg <99 | [0<Idx <993 0<Idx, <99
ns : m():() ng : \E]?eg=0/\@l=0 ng : \E]?eg=0/\@l=1
A Sz, = 100 A Szy=99 A Sz =1 A Sz, =100 A Sz, =0
T i<1G() T iQGl T iQG()
(a) af (b) split(a?, i) (c) create(a?)

Fig. 6. Partition splitting and creation in array a from abstract state a*

4 Basic operators on partitions

In this section, we define basic operations on partitions (such as creation and
merge), that abstract transfer functions and operators rely on.

Splitting and creation. Unless specified otherwise, our analysis initially partitions
each array into a single group, with no contents constraint. Additional groups get
introduced during the analysis, by two basic operations:

1. Operator split replaces a group with two groups, that inherit the properties
of the group they replace (also, membership in the old group turns into mem-
bership in the join of the new groups). It is typically applied to materialize a
cell of a given index (in the group bounds) and enable a strong update.

2. Operator create introduces an empty group and is used to generalize abstract
states in join and widening (note any field property is satisfied by the empty
group; the analysis selects properties depending on the context).

Both operators preserve concretization.

Ezample 3. Figure 6(a) defines an abstract state (p, , r) with a single array, fully
initialized to 0, and represented by a single group. Applying operator split to that
abstract state and to index i produces the abstract state of Figure 6(b), where Gy
is a group with exactly one element, with the same constraints Idx and value as
in the previous state. Similarly, Figure 6(c) shows a possible result for create.

Merging groups. Fine partitions with many groups can provide great precision but
may incur increased analysis cost. Therefore, the analysis can also force the fusion
of several groups into one by calling operation merge on a set of groups. This is
performed either as part of join and widening or when transfer functions detect
some groups get assigned similar values.

Ezample 4. Figure 7(a) defines an abstract state a* which describes an array with
two groups. Applying merge to a* and set {0,1} produces the state shown in
Figure 7(b), with a single group and coarser predicates, obtained by joining the
constraints over the contents of the initial groups.

10 Jiangchao Liu and Xavier Rival

Go G Go
0<1dg <99 § 0<ldx, <99 | | o<1, <9
n&: 3 <valuey <5 A value; =1 n&: 1< valueg <5
A Sz,=50 A Sz, =50 A Sz, =100
T i<aGoUG, T i< Go
(a) a* (b) merge(a*,{0,1})

Fig. 7. Merging in abstract state a*

Reduction. Our abstract domain can be viewed as a product abstraction and can
benefit from reduction [4]. In a* = (p, ,), components 7 and 7 may help re-
fining each other. For instance, in Figure 4, the analysis infers at point @ that
parent < Gy U G2 and Idx, = 2. Combining this with the numerical information
derived from test parent == 2, the analysis should derive that parent < Gy (i.e.,
parent is the index of init). Conversely, r may refine the information on e if
child < G2, then group G» has at least one element, thus Sz, > 1.

Such steps are performed by a partial reduction operator reduce, which strength-
ens the numeric and relation predicates, without changing the global concretiza-
tion [4] (the optimal reduction would be overly costly to compute). This reduction
is done lazily: for instance, the analysis will attempt to generate relations between
i and Idx; only when i is used as an index to access the array G; corresponds to.

Basic operations split, create, merge and reduce are sound:

Theorem 1 (Soundness). Ifa? is an abstract state, t an array, G; a group, then
ot (a¥) € ype(split(af, t, G;)) and yp: (create(al, t)) = yp: (a*). Moreover, if S
is a set of groups, vp:(a*) C yp:(merge(a®, t, S)). Similarly, reduce does not
change concretization.

5 Transfer functions

Our analysis of C programs proceeds by forward abstract interpretation [3]. In
this section, we study the abstract transfer functions for tests and assignments.

5.1 Analysis of conditions

In the concrete level, if ex is an expression, test ex? filters out states that do not
let ex evaluate into TRUE. Its concrete semantics can thus be defined as a function
over sets of states, by VS C S, [ex?](S) = {0 € § | [ex](c) = TRUE}.

Intuitively, the abstract interpretation of a test from abstract state af =
(p, T, r) can directly improve the constraints in the numeric component 71, which
can then be propagated into r» by reduce. The numeric test will derive new con-
straints only over non summary dimensions, thus tests over fields of groups that
contain more than one element will not refine abstract values.

Abstraction of Arrays Based on Non Contiguous Partitions 11

When a test involves an array cell as in a[i] == 07, and if the group that
cell belongs to cannot be known precisely, a more precise post-condition can be
derived by performing a locally disjunctive analysis, that applies numeric test to
each possible group, and then joins the abstract states. For instance, if i <Gy UGy,
the analysis will analyze test a[i] == 07 for both i <« Gy and i < G4, join the
results of both tests, and apply operator reduce afterwards. Note that the ab-
stract test operator does not change the partition, thus this join boils down to
applying the abstract join joiny: of numeric abstract domain N* and set inter-
section to relations viewed as sets of atomic relations. The resulting join oper-
ator, limited to cases where both arguments have the same partitioning is de-
fined by join_((p, o, r0), (D, 1, r1)) = (p, joiny; (ﬁ)o, ﬁ)l), roNry). It is sound:
Vie {O’ 1}) Tt (pa ﬁ)i’ Ti) S (joinz((p, ﬁo, TO)’ (pa ﬁla 7”1)))-

Abstract transfer function test is sound in the sense that:

Vo € vp:(a*), [ex] = TRUE = o € ~p: (test(ex, af))

Ezxample 5. We consider the analysis of the code studied in Section 2. At the be-
ginning of the first iteration of the loop, i is equal to 0, so mproc[i] may be in
G1 or in Go. Then, the analysis of test mproc[i].mpflag > 0 will locally create
two disjuncts corresponding to each of these groups. However, in the case of G,
mﬁﬁg1 = 0, thus the numeric test mﬁﬁg1 > 0 will produce abstract value L
denoting the empty set of states. Therefore, only the second disjunct contributes
to the abstract post-condition. Thus, the analysis derives i < G.

5.2 Assignment

Given l-value 1v and expression ex, the concrete semantics of assignment 1v = ex
writes the value of ex into the cell 1v evaluates to. It can thus be defined as a
function over states, by [1v = ex](0) = o[[1v](0) + [ex](o)].

In the abstract level, given abstract pre-condition af = (p, ™,7), an abstract
post-condition for 1v = ex can be done in three steps: (1) materialization of the
memory cell that gets updated, (2) call to assign,; in N* [14], and update of the
relations, and (3) reduction of the resulting abstract state.

Materialization. When 1v denotes an array cell, it should get materialized into a
group consisting of a single cell, before strong updates can be performed on 7 and
r. To achieve this, the analysis computes which group(s) 1v may evaluate into in
abstract state af. If there is a single such group G;, that contains a single cell (i.e.,
Sz; = 1), then materialization is already achieved. If there is a single such group
G, but Sz, may be greater than 1, then the analysis calls split in order to divide
G; into a group of size 1 and a group containing the other elements. Last, when
there are several such groups (e.g., when 1v is a[i] and i < Gy U G1), the analysis
first calls merge to merge all such groups and then falls back to the case where
1v can only evaluate into a single group.

Note that in the last case, the merge of several groups may incur a loss in
precision since the properties of several groups get merged before the abstract

12 Jiangchao Liu and Xavier Rival

Go leR n®: valueg=0A Sz, =99
0 < Idx, < 99 5 0 < Idx, < 99 /\valuelzlA/\&1=1
T i<1G1 Avalue; <Go UG,

Fig. 8. Post-condition of assignment a[i] =1

assignment takes place. We believe this loss in precision is acceptable here. The
other option would be to produce a disjunction of abstract states, yet it would in-
crease significantly the analysis cost and the gain in precision would be unclear, as
programmers typically view those disjunctions of groups of cells as having similar
roles. Our experiments (Section 7) did confirm this observation.

Constraints. New relations can be inferred after assignment operations in two
ways. First, when both sides are base variables, they get propagated: for instance,
if u < Gy, then after assignment v. = u, we get v < G;. Second, when the right
hand side is an array cell as in parent = mproc|[child].mparent in the example
of Section 2, the analysis first looks for relations between fields and indexes such
as m}gralt2 <4 Gy U G2, and propagate them to the l-value. In this phase, the nu-
meric assignment relies on local disjuncts that are merged right after the abstract
assignment, as we have shown in the case of condition tests (Section 5.1).
The abstract transfer function for assignment is sound in the sense that:

Vo € s (a*), o[[1v](0) < [ex](0)] € Yos (assign(a®, 1v, ex))

Ezample 6. We consider a[i] = 1 and abstract the pre-condition shown in Fig-
ure 6(a). The l-value evaluates into an index in Gy, but this group has several
elements, thus it is split, as shown in Figure 6(b). Then, the assignment boils down
to a strong update in (G, and produces the post-condition shown in Figure 8. Note
that reduction strengthens relations with \E]Tel 1Go U Gh.

6 Join, widening and inclusion check

Our analysis proceeds by standard abstract interpretation, and uses widening and
inclusion tests to compute abstract post-fixpoints for loops and abstract join for
control flow union (e.g., after an if statement). All these operators face the same
difficulties: when their inputs do not have a similar of clearly “matching” groups
they have to re-partition the arrays so that precise information can be computed.
We discuss this issue in detail in the case of join.

6.1 Join and the group matching problem

Let us consider two abstract states ag, a§ with the same number of groups for
each array, that we assume to have the same names. Then, the operator join_
introduced in Section 5.1 computes an over-approximation for ag, a%, by joining

Abstraction of Arrays Based on Non Contiguous Partitions 13

Go G1 Go Gy
0<ldg <4 § 1<ldg <6 | | 1<ldg<6 $ 0<ldx, <4
nf: 2<valuey <8 A —120 < value; < —100 ng: —120 < valuep < —100 A 2 < value; < 8
A Sz=3 A Sz, = 4 A Sz, = 4 A Sz, =3
7o : i<Go r1e i1GH
(a) Abstract state a} (b) Abstract state a®
Go G1 Go Gy
| o<lig<6 § o0<ldg <6 | | 1<ldg<6 § 0<ldx, <4
n&: —120 < valueo < 8 A —120 < value; < 8 n€: —120 < valueg < —100 A 2 < value; < 8
A 3<Sp <4 A 3<Sz <4 A Sz, =4 A Sz, =3
T true r: i<Gy
(c¢) Imprecise join result (d) Precise join result

Fig. 9. Impact of the group matching on the abstract join

predicates for each group name, the global numeric invariants and the side rela-
tions. However, this straightforward approach may produce very imprecise results
if applied directly. As an example, we show two abstract states ag and a'i in Fig-
ure 9(a) and Figure 9(b), that are similar up to a group name permutation. The
direct join is shown in Figure 9(c). We note that the exact size of groups and
the tight constraints over value were lost. Conversely, if the same operation is
done after a permutation of group names, an optimal result is found, as shown in
Figure 9(d). This group matching problem is actually even more complicated in

general as ag, a'{ usually do not have the same number of groups.

To properly associate Gy in Figure 9(a) with G; in Figure 9(b), the analysis
should take into account the group field properties. This is achieved with the help
of a ranking function rank : G x G — N, which computes a distance between
groups in different abstract states by comparing their properties: rank(G;, G,)
returns a monotone function of the number of common constraints over the fields
and indexes of G; and G in o and 1. A high value of rank(G;, G,) indicates
G; of ag and G; of a'{ are likely to describe sets of cells with similar properties.

Using the set of rank(G;, G;) values, the analysis computes a pairing <, that
is a relation between groups of ag and groups of a§ (this step relies on heuristics; a
non optimal pairing will impact only precision, but not soundness) and then apply
a group matching which transforms both arguments into “compatible” abstract
states using the following (symmetric) principles:

— if there is no G; such that G; <+ G, then an empty such group is created with
create;

— if G; <+ G; and G; <> G}, then G; is split into two groups, respectively paired
with G; and Gy;

— if G; is mapped only to G, G; is mapped only to G;, and ¢ # j, then one of
them is renamed accordingly.

14 Jiangchao Liu and Xavier Rival

0: if(random()){ Go G
1: ali] = 1; 0<ldx, <99 § 0<Idx, <99
2: } ng : mozo /\@1:1 r: idGoUG,
3: A99 < Sz, <100 A0 <S8z <1
(a) Simple join (b) Join result

Fig. 10. Join of a one group state with a two groups state

After this process has completed, a pair of abstract states are produced that have
the same number of groups, and join_ can be applied. This defines abstract join
operator join. The soundness of join follows from the soundness of join_ (trivial),
and the soundness of split and create:

Theorem 2 (Soundness).

Vaj, ai, s (af) € yos(join(ap, ai)) A voi(af) € vo (join(af, a}))

Example 7. We assume a is an integer array of length 100 and i is an integer vari-
able storing a value in [0,99], and consider the program of Figure 10(a). At the
exit of the if statement, the analysis needs to join the abstract states shown in
Figure 6(a) (that has a single group) and in Figure 8 (that has two groups). We
note that Go in Figure 6(a) has similar properties as Gy in Figure 8, thus they get
paired. Moreover, G; in Figure 8 is paired to no group, so a new group is created
(as in Figure 6(c), and paired to it. At that stage join_ applies, and returns the
abstract state shown in Figure 10(b).

6.2 Widening

The widening algorithm is similar to that of join. The restriction of widening
to compatible abstract states is defined by widen=((p, Wo,ro), (p, Wl,rl)) =
(p, widenw(ﬁo, 71),7"0 N r1) (note that ro,r; are finite sets of relations, and
intersections of finite sets of relations naturally terminates).

The group matching algorithm of Section 6.1 does not ensure termination, as
it could create more and more groups. Therefore widen relies on a slightly mod-
ified group matching algorithm, which will never call split and create. Instead,
it will always match each group of an argument to at least one group of the other
argument, and call merge when two (or more) groups of one argument are paired
with a group of the other. This group matching ensures termination. Therefore,
the resulting widen operator is a sound and terminating widening operator [3].
For better precision, the analysis always uses join for the first abstract iteration
for a loop, and uses widening afterwards.

Abstraction of Arrays Based on Non Contiguous Partitions 15

6.3 Inclusion check

To check the termination of sequences of abstract iterates over loops, and the
entailment of post-conditions, the analysis uses a sound inclusion check operator
is_le: when is _le(a}, a?) returns TRUE, then yp:(a) C vp:(a?).

Like join, such an operator is easy to define on compatible abstract states,
using an inclusion check operator is_ley; for N¥: if is_le n(ﬁo, 71) = TRUE and
71 is included in o (as a set of constraints), then yp: (p, 70,70) € vp: (P, T1,71),
hence we let is_le_ return TRUE in that case.

The group matching algorithm for is_le is different, although it is based on
similar principles. Indeed, it modifies the groups in the left argument so as to con-
struct an abstract state with the same groups as the right argument, using create,
split and merge.

7 Verification of the Minix Memory Management Process
Table and experimental evaluation

We have implemented our analysis and evaluated how it copes with two classes of
programs: (1) the Minix Memory Management Process Table, and (2) academic
examples used in related works, where contiguity of groups is sometimes unneces-
sary for the verification. Our analyzer uses the MemCAD analyzer front-end, and
the APRON [14] implementation of octagons [18].

7.1 Verification of memory management part in Minix

The main data-structure of the Memory Management operating system service of
Minix 1.1 is the MMPT mproc, which contains memory management information
for each process. At start up, it is initialized by function mm init, which creates
process descriptors for mm, fs and init. After that, mproc should satisfy property
C (Section 2). Then, it gets updated by system calls fork, wait and exit, which
respectively create a process, wait for terminated children process descriptors be
removed, and terminate a process. Each of these functions should be called only in
a state that satisfies C, and should return a state that also satisfies C. System calls
wait and exit call the complex utility function cleanup discussed in Section 2,
to reclaim descriptors of terminated processes.

If property C was violated, several critical issues could occur. First, system calls
could crash due to out-of-bound accesses, e.g., when accessing mproc through field
mparent. Moreover, higher level, hard to debug issues could occur, such as the
persistence of dangling processes, that would never be eliminated.

Therefore, we verified (1) that mm_init properly establishes C (with no pre-
condition), and (2) that fork, wait and exit preserve C using our analysis (i.e., the
analysis of each of these functions from pre-condition C returns a post-condition
that also satisfies C). Note that function cleanup was inlined in wait and fork
in a recursion free form (currently not supported by our analyzer), as well as
statements irrelevant to mproc.

16 Jiangchao Liu and Xavier Rival

| Program |LOCs| Verified property |Time(s)|MaX. groups| Description |

mm_init | 26 establishes C 0.092 4 Minix MMPT": mproc init
fork 22 preserves C 0.109 Minix MMPT sys call
exit 68 preserves C 5.41 Minix MMPT sys call
wait 70 preserves C 5.41 Minix MMPT sys call

complex | 21 |Vi€ [0,54],ali] > —1| 0.296
int init| 8 | Vi€ [0, N],al] =0 | 0.025

Example from [5]
Array initialization

W || | | w

Fig. 11. Analysis results (timings measured on Ubuntu 12.04.4, with 16 Gb of RAM, on
an Intel Xeon E3 desktop, running at 3.2 GHz)

Our tool achieves the verification of all these four functions. The results are
shown in the first four lines of the table in Figure 11, including analysis time and
peak number of groups for array mproc.

The analysis of mm _init and fork is very fast. The analysis of exit and wait
also succeeds, although it is more complex due to the intricate structure of cleanup
(which consists of five loops and many conditions) which requires 194 joins. Despite
this, the maximum number of groups remains reasonable (seven in the worst case).

7.2 Application on other cases

We now consider a couple of examples from the literature, where arrays are used
as containers, i.e., where the relative order of groups does not matter for the pro-
gram’s correctness. The purpose of this study is to examplify other examples of
cases our abstract domain is adequate for. Program int _init consists of a simple
initialization loop. Our analysis succeeds here, and can handle other cases relying
on basic segments, although our algorithms are not specific to segments (and are
geared towards the abstraction of non contiguous partitions).

Moreover, Figure 12 shows complex, an excerpt of an example from [5]. The
second example is challenging for most existing techniques, as observed in [5] since
resolving a[index] at line 10 is tricky. As shown in Figure 11, our analysis handles
these two loops well, with respectively 4 and 3 groups.

The invariant of the first initialization loop in Figure 12 is abstract state @ (at
line 4): group G; accounts for initialized cells, whereas cells of Gy remain to be
initialized. The analysis of a[i] = 0; from @ materializes a single uninitialized cell,
so that a strong update produces abstract state @. At the next iteration, and after
increment operation i++4, widening merges G5 with G, which produces abstract
state @ again. At loop exit, the analysis derives Gy is empty as 56 < Idx, < 55.
At this stage, this group is eliminated. The analysis of the second loop converges
after two widening iterations, and produces abstract state @. We note that group
G5 is kept separate, while groups G; and G5 get merged when the assignment at
line 10 is analyzed (Section 5.2). This allows to prove the assertion at line 11.

Abstraction of Arrays Based on Non Contiguous Partitions 17

2 int a[56); state @ Go G
3 for(int i = 0;i < 56;i++){ | i <ldx, <55 503@151’1

@ n€: Szy=56—1i A Sz, =1 A value; =0
4 a[i] = 0; r: i4Go

©]

state @ Go G Go

5 a[55] = random(); [1+1<lax, <558 0<ldx, <i-1 3 ldx, —1
6 for(inti=0;i < 55;i++){ N8 Szy =551 A Sz =iA Sz =1

@ @1 =0A @2 =0
7 int index = 21 % i%55; r: i4Ge
8 int num = random/();]
9 if (num < 0){num = —1;} state @ G G> Gs
10 a[index| = num; | 0<ldx, <54 E 0 < lds, <54 § ldx, =55

nf: Sz, =54 NSz, =1 A Sz; =1
11 assert (Vi € [0, 54], a[i] > —1); —1 < value; A —1 < value,
r: i<GL UG

(a) Test case complex (b) Invariants

Fig. 12. Array random accesses

8 Related work and conclusion

In this paper, we have presented a novel abstract domain that is tailored for arrays,
and that relies on partitioning, without imposing the constraint that the cells of
a given group be contiguous.

Most array analyses require each group be a contiguous array segment. This
view is used both in abstract interpretation based static analysis tools [5,11,13]
and in tools based on invariant generation, model checking and theorem prov-
ing [1,15,16,17,19]. We believe that both approaches are adequate for different
sets of problems: segment based approaches are adequate to verify algorithms
that use array to order elements, such as sorting algorithms, while our segment-
less approach works better to verify programs that use arrays as dictionaries.

Other works target dictionary structures and summarize non contiguous sets
of cells, that are not necessarily part of arrays. In particular, [8,9] seeks for a uni-
fied way to reason about pointers, scalars and arrays. These works are orthogonal
to our approach, as we strive to use properties specific to arrays in order to rea-
son about the structure of groups. Therefore, [8,9] cannot express the invariants
presented in Section 2 for two reasons: (1) the access paths cannot describe the
contents of array elements as an interval or with other numeric constraints; (2)
they cannot express content-index predicates. Similarly, HOO [6] is an effective
abstract domain for containers and JavaScript open objects. As it uses a set ab-
stract domain [7], it has a very general scope but does not exploit the structure of
arrays, hence would sacrifice efficiency in such cases.

Last, template-base methods [2,12] are very powerful invariant generation tech-
niques, yet require user supplied templates and can be quite costly.

18

Jiangchao Liu and Xavier Rival

Our approach has several key distinguishing factors. First, it not only relies on

index relation, but also exploits semantic properties of array elements, to select
groups. Second, relation predicates track lightweight properties, that would not be
captured in a numerical domain. Last, it allows empty groups, which eliminated
the need for any global disjunction in our examples (a few assignments and tests
benefit from cheap, local disjunctions). Finally, experiments show it is effective
at inferring non trivial array invariants with non contiguous groups, and verify a
challenging operating system data-structure.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

20.

F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array
properties. In TACAS, 2014.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis for
combined theories. In VMCAI, 2007.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.
P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, 1979.

P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. In POPL, 2011.

A. Cox, E. Chang, and X. Rival. Automatic analysis of open objects in dynamic
language programs. In SAS, 2014.

A. Cox, E. Chang, and S. Sankaranarayanan. Quic graphs: Relational invariant
generation for containers. In FCOOP, 2013.

I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates.
In ESOP, 2010.

I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using containers.
In POPL, 2011.

D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimension. In TACAS, 2004.

D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. In POPL, 2005.

S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified
logical domains. In POPL, 2008.

N. Halbwachs and M. Péron. Discovering properties about arrays in simple
programs. In PLDI, 2008.

B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static
analysis. In CAV, 2009.

R. Jhala and K. McMillan. Array abstraction from proofs. In CAV, 2007.

L. Kovac and A. Voronkov. Finding loop invariants for programs over array using
a theorem prover. In FASE, 2009.

K. McMillan. Quantified invariant generation using an interpolation saturation
prover. In TACAS, 2008.

A. Miné. The octagon abstract domain. In HOSC, 2006.

M. Seghir, A. Podelski, and T. Wies. Abstraction refinement for quantified array
assertions. In SAS, 2009.

P. Sotin and X. Rival. Hierarchical shape abstraction of dynamic structures in
static blocks. In APLAS, 2012.

