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Abstract. The breadth and depth of heap properties that can be inferred by the
union of today’s shape analyses is quite astounding. Yet, achieving scalability
while supporting a wide range of complex data structures in a generic way re-
mains a long-standing challenge. In this paper, we propose a way to side-step
this issue by defining a generic abstract domain combinator for combining mem-
ory abstractions on disjoint regions. In essence, our abstract domain construction
is to the separating conjunction in separation logic as the reduced product con-
struction is to classical, non-separating conjunction. This approach eases the de-
sign of the analysis as memory abstract domains can be re-used by applying our
separating conjunction domain combinator. And more importantly, this combina-
tor enables an analysis designer to easily create a combined domain that applies
computationally-expensive abstract domains only where it is required.

1 Introduction

While there exist static analyses for the most common data structures such as lists, trees,
or even overlaid lists and trees [10,4,14,11], it is uncommon for static analyses to effi-
ciently support all of these simultaneously. For instance, consider the code fragment of
Fig. 1 that simultaneously manipulates linked lists and trees, iteratively picking some
value from the list and searching for it in the tree. Although verification of the memory
safety and data structures preservation is possible with several tools (e.g. [18,20]), this
will not take into account most efficient data-structure-specific algorithms (e.g. analysis
for linked lists presented in [15] achieves polynomial complexity transfer functions).
On the other hand, using only a linked-list-specific efficient analysis will lead to a dra-
matic loss of precision, as tree features are not supported. The general problem is much
broader than just lists and trees: in real-world programs, it is common to find not only
lists, trees, and overlaid lists and trees, but also buffers, arrays, and other complex heap
structures, and therefore static analysis is either imprecise or inefficient.

Instead of using one monolithic analysis, we propose to combine off-the-shelf data-
structure-specific analyses that reason about disjoint regions of memory. The approach
presented in this paper is in the context of abstract interpretation [6]. Therefore, combin-
ing analyses is realized by a separating combination of memory abstract domains called

⋆ The research leading to these results has received funding from the European Research Council
under the FP7 grant agreement 278673, Project MemCAD and the United States National
Science Foundation under grant CCF-1055066.
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01 : int ∗x = NULL; 10 : while( . . . ){ 24 : r = searchTree(∗x, t);
02 : List ∗h, ∗e; 11 : x = malloc(sizeof(int)); 25 : // do something on r

03 : Tree ∗t, ∗r; 12 : ∗x = e -> data . . .

. . . . . . 30 : }

Fig. 1. A code fragment manipulating simultaneously several data structures

the sub-domains. Combined memory abstract domains describe each disjoint memory
region using one of its sub-domains. We show how separation (i.e. the fact that data
structures do not share cell blocks) can be used to decompose a heterogeneous memory
into several sub-instances that can be handled independently.

This construction increases and eases the abstract domain design capabilities. Com-
bined abstract domains are more extensible and flexible, as a sub-domain can be indi-
vidually added, removed, strengthened, or weakened in the combination. Moreover, it
allows paying the cost of complex algorithms that usually come with expressive abstract
domains only in the memory region that really requires it. On the other hand, simpler
light-weight abstract domains can be used to represent a significant part of the memory
that does not contain complex structures.

Such a combination poses several challenges. Because, even if disjoint in memory,
concrete data structures can still be correlated (e.g. have shared values or pointers to
each other), we need to carefully abstract the interface between memory regions in
the combination. Maintaining a right partitioning (i.e. which memory region should
be abstracted in which sub-domain) during the analysis process is also challenging. For
example, when analyzing a memory allocation, the analysis decides which sub-domains
should handle it. Even though any choice is sound, there are sub-domains more relevant
than others in many cases. This approach has been successfully applied to numerical
domains and made it possible to obtain scalable and precise analyses [3] and reusable
abstract domains [13]. Our proposal brings, in a way, the same improvement to memory
abstract domains. We justify this statement by the following contributions:

– we introduce (Section 2) and formalize (Section 3.2) the separating combination
functor that takes two memory abstract sub-domains matching the signature given
in Section 3.1 and returns a new combined memory abstract domain;

– we define an abstract domain for the interface between memory regions (Section 3.2)
that carefully describes correlations between memory regions;

– we set up the abstract transfer functions (Section 4) that compose abstract transfer
functions of sub-domains and extract information from an abstract interface;

– we give a heuristic for the decision of which sub-domain should handle a newly
allocated block (Section 4.1);

– we evaluate the separating combination functor by an implementation in the Mem-
CAD analyzer (Section 5) and empirically verify that combined analyses remain
efficient and precise while offering greater flexibility.

2 Overview

In this section, we provide an informal description of our combined analysis (formal
details are presented in Sections 3 and 4). We present an abstract interpretation [6]
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based analysis of the code fragment of Fig. 1, using a combination of memory abstract
domains. The analysis goal is to prove memory safety and data structure (lists and trees)
preservation. Fig. 2 shows two abstract memories computed during the analysis.

An abstraction of the memory using several memory abstract domains. The program
manipulates a memory that can be decomposed in three disjoint regions (i) the list
region (denoted L ) containing linked-list nodes (ii) the tree region (denoted T ) con-
taining tree nodes (iii) the region accounting for the rest of the memory that contains
only bounded data structures (denoted B ). This naturally leads to the choice of a sepa-
rating combination of three memory abstract sub-domains M♯

l , M
♯
t, M

♯
b that will reason

respectively about region L , T and B .
Fig. 2(a) shows the combined abstract memory computed by the analysis before line

11. Each thick black bordered boxes (labeled B , L and T ) contains an element m♯
b ∈

M
♯
b, m♯

l ∈ M
♯
l and m

♯
t ∈ M

♯
t called abstract sub-memories. Greek letters that appear

in the sub-memories are called the symbolic names and are used by sub-domains to
internally represent concrete values and heap addresses. The combined abstract memory
represents a set of memories where variable h (resp. e) points to the head (resp. the last
element) of a linked list, variable t points to the root of a tree, variable x is the null
pointer and content of variable r can be any concrete value.

Describing the interface between memory regions is crucial for precision. In partic-
ular, the combined abstract memory should account for (i) pointers from region B to
regions L and T and (ii) sharing of values between cells of different memory regions
such as value v in the last list node and the left tree node from the tree root. The inter-

face abstract domain I♯ (Section 3.2) achieves this by maintaining a set of equalities
between symbolic names of different abstract sub-memories. An equality between two
symbolic names simply means that they represent the same concrete value. For instance,
pointer h crossing the memory regions B and L is represented by (i) β0 representing
the content of cell h in the m♯

b, (ii) λ0 representing the address of the head of the list in
the m♯

l , and (iii) equality β0 = λ0 in the abstract interface. Thus, this combined abstract
memory is a quadruple made of three abstract sub-memories m♯

b ∈ M
♯
b, m

♯
l ∈ M

♯
l and

m
♯
t ∈ M

♯
t and an abstract interface i♯ ∈ I♯. In the two combined abstract memories

shown in Fig. 2, abstract sub-memories are represented in gray inside the thick black
boxes whereas dark blue edges and values depict the abstract interface.

B

L

T

&h &e &x &t &r

β0 β1 0 β2 ⊤b b b

λ0 λ1 λ2
⊤λ1 ⊤ v0. . .b

b

τ0 τ2

τ1

τ1 τ2 ⊤ ⊤

v

. . .

. . .

. . .

. . .

b

b
b b

b b

(a) Abstract memory state before line 11

B

L

T

&h &e &x β3 &t &r

β0 β1 β3 v β2 β4
bb b b

b

λ0 λ1 λ2
⊤λ1 ⊤ v0. . .b

b

τ0 τ2

τ1

τ1 τ2 ⊤ ⊤

v

. . .

. . .

. . .

. . .

b

b
b b

b b

(b) Abstract memory state after line 24

Fig. 2. Two combined abstract memories inferred during the analysis
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Combined analysis. The analysis automatically derives the post-condition shown in
Fig. 2(b) from the pre-condition shown in Fig. 2(a) by composing abstract transfer func-
tions for program statements between line 11 and 24. In the following, we demonstrate
the key features of the combination of memory abstract domains by analyzing the two
program statements at line 11 and 12. In particular, the assignment at line 11 involves a
memory allocation but remains quite simple compared to the assignment at line 12 that
requires post-condition computations to be distributed across sub-memories using the
abstract interface. The first step when analyzing an assignment consists in evaluating

its left and right hand-sides, that is, finding symbolic names representing the address of
the updated cell and the written value (Section 4.2).

The right hand side of the assignment at line 11 contains a memory allocation in-
struction, hence the analysis should decide which sub-domain is the most relevant for
handling it. Indeed, even though any choice is sound for the analysis, a bad decision
could lead to a loss in precision or in efficiency. While the three sub-domains could pre-
cisely handle the memory allocation, M♯

b is expected to be more efficient for handling
bounded data structures. Because of the type passed to malloc, the new cell will likely
never be summarized as part of a list or a tree, m♯

b should therefore handle the memory
allocation. While not complete (C types cannot fully describe the programmer intended
data structure), we find that this simple heuristic works well in practice. In Fig. 2(b),
this sub-memory contains a new cell at abstract address β3 (red background highlights
created cells). The right hand side is evaluated to β3 and evaluation of the left hand
side is trivial and provides a symbolic name that is in m

♯
b so that both are evaluated in

the same sub-memory. Therefore and thanks to the local reasoning principle, the post-
condition can be computed only for abstract sub-memory m

♯
b, using the sound abstract

transfer function provided by M
♯
b. In Fig. 2(b), the cell that correspond to x has been

updated to β3 (green background highlights updated cells).

Computing an abstract post-condition of the assignment at line 12 poses two main
issues. First, the evaluation of its right hand side crosses abstract sub-memories that
involves a mechanism for extracting information from i♯. Secondly, the left and right
hand sides are not evaluated in the same sub-memories. Thus, accurately handling this
assignment requires sound abstract transfer functions for I♯. The right hand side is
evaluated iteratively over its syntax: (i) the content of cell e is evaluated to β1 in m

♯
b

(ii) β1 cannot be resolved as an address of a cell in m
♯
b (iii) equality β1 = λ2 can be

extracted from the abstract interface i♯, that allows the resolution to continue in m
♯
l

(iv) the content of abstract address λ2 at field data is v in m
♯
l . As ∗x is evaluated to

β3 in m
♯
b, the left and right hand sides are evaluated respectively in m

♯
b and m

♯
l . Thus,

the post-condition will be computed (i) in m
♯
b as the written cell is abstracted in this

abstract sub-memory (ii) in i♯ as the written value is not represented in m
♯
b. The cell

whose abstract address is β3 is updated to a fresh symbolic name in m
♯
b, that is then set

to be equal to v in i♯ using the abstract transfer function for I♯.
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3 The separating combination of memory abstract domains

In this section, we first set up a general notion of a memory abstract domain (Sec-
tion 3.1). before introducing the separating combination (Section 3.2). A memory ab-
stract domain M♯ provides a representation for sets of concrete memories. Intuitively,
it consists of a set of predicates describing memory quantified on symbolic names (de-
noted NM♯) that represent concrete values (denoted V). Thus, concretization involves
valuations mapping symbolic names to the value they represent. Once this general no-
tion is formalized, we formally introduce the separating combination as a binary functor
that takes as input two memory abstract domains M♯

1, M♯
2 and returns a new memory

abstract domain M
♯
1 � M

♯
2. The functor can be iteratively applied in order to cope with

more than two memory abstract sub-domains. The combined abstract domain describes
disjoint memory regions using either predicates of M♯

1 or M♯
2. Moreover, correlations

between regions are described by the interface abstract domain I♯ that maintains equal-
ities between symbolic names quantified in different sub-memories.

3.1 Memory abstract domain

Concrete memories. We let A denote the set of concrete addresses, and we assume
addresses to be concrete values (i.e. A ⊆ V). Henceforth, we adopt a standard model
for concrete memories where a concrete memory m is a finite map from addresses to
values. Therefore, the set of concrete memories is defined by M

def
= A ⇀fin V. We let

F = {f, g, . . .} denote the set of valid field names, and we treat them as numerical
offsets so that for a ∈ A and f ∈ F, a + f denotes the address at field f of the block at
address a. As the separating combination is reasoning about disjoint memory region, we
write m1 ⊎m2 for the union of two disjoint memories (i.e. dom(m1) ∩ dom(m2) = ∅,
where dom(mi) denotes the domain of mi as a partial function).

A memory abstract domain is a lattice of abstract memories M♯, together with a
fixed infinite set of symbolic names NM♯ , a concretization function γM♯ and sound ab-
stract transfer functions (detailed in Section 4). An abstract memorym♯ ∈M♯ internally
utilizes symbolic names to represent concrete values. We define the set of valuations
VM♯

def
= NM♯ ⇀fin V. Intuitively, a valuation ν ∈ VM♯ relates symbolic names to con-

crete values when concretizing. Concretization is a function γM♯ : M♯ → P(M× VM♯)
and γM♯(m♯) collects a set of couples (m, ν) ∈ M × VM♯ made of a concrete memory
and a valuation that maps symbolic names quantified in m♯ to concrete values in m.

Example 1 (Bounded structure abstract domain). As a first example, we describe a
memory abstract domain that represents precisely block contents, but is unable to sum-
marize unbounded regions such as list and tree data structures. This memory abstract
domain can be considered an instantiation of M♯

b seen in the overview (Section 2). The
set of symbolic names consists of either symbols for addresses (denoted αa

0 , α
a
1 , . . .) or

symbols for cell contents (denoted βc
0, β

c
1, . . .). Definitions of abstract memories and
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m
♯
b = αa

0 7→ {0 : βc
0} ∗ αa

1 7→ {0 : βc
1} ∗ αa

2 7→ {0 : βc
2} ∗ αa

3 7→ {0 : βc
3} ∗ αa

4 7→ {0 : βc
4}

∧ &h = αa
0 ∧ &e = αa

1 ∧ &x = αa
2 ∧ &t = αa

3 ∧ &r = αa
4 ∧ βc

2 = 0

(a) Abstract memory m
♯
b

&r = 0x...a16

&t = 0x...a12

&x = 0x...a8

&e = 0x...a4

&h = 0x...a0

0x0

0x...d0

0x0

0x...c0

0x...b0

(b) Concrete memory mb

νb : αa
0 7→ 0x...a0 βc

0 7→ 0x...b0
αa
1 7→ 0x...a4 βc

1 7→ 0x...c0
αa
2 7→ 0x...a8 βc

2 7→ 0x0
αa
3 7→ 0x...a12 βc

3 7→ 0x...d0
αa
4 7→ 0x...a16 βc

4 7→ 0x0
(c) Valuation νb : N

M
♯
b

→ V

Fig. 3. Bounded data structure abstract domain: (mb, νb) ∈ γ
M

♯
b

(m♯
b)

0x...c4

0x...c0

0x...e4

0x...e0

0x...b4

0x...b0

666

0x0

13

0x...c0

42

0x...e0

(a) Concrete memory ml

νl : λ0 7→ 0x...b0 λ2 7→ 0x0
λ1 7→ 0x...c0 λ3 7→ 666

(b) Valuation νl : N
M

♯
l

→ V

λ0 λ1 λ2

λ3

λ2 = 0x0

next

data

list list

(c) Abstract memory m
♯
l

Fig. 4. Separating shape graph abstract domain, parameterized by list inductive definition:
(ml, νl) ∈ γ

M
♯
l

(m♯
l )

the concretization function is given by:

m♯ ::= abstract memories γ
M

♯
b
(m♯)

| emp empty memory {([ ], ν) | ν ∈ VM♯}
| αa 7→ {f : βc} memory cell {([ν(αa) + f 7→ ν(βc)], ν) | ν ∈ VM♯}

| m♯
1 ∗ m

♯
2 disjoint memory {(m1 ⊎m2, ν) | ∀i ∈ {1, 2}. (mi, ν) ∈ γ

M
♯
b
(m♯

i)}

| m♯
b ∧ n♯ with constraints {(m, ν) | (m, ν) ∈ γ

M
♯
b
(m♯

b) ∧ ν � n♯}

An abstract memorym♯ consists of a separating conjunction of atomic predicates αa 7→
{f : βc} abstracting a cell at address αa+f of content βc. Fig. 3 shows the abstract sub-
memory m

♯
b depicted in labeled box B in Fig. 2(a) and a pair (mb, νb) that concretizes

it. Properties about values and addresses are expressed in n♯, using a product with a
numerical domain [5]. For instance, a numerical domain enabling linear equalities is
used in Fig. 3(a). Besides, a product with a pointer domain may be used to capture,
for example, aliasing relations. The memory abstract domain of [16] extends this basic
layout (and handles unions, non-fixed cell sizes, etc.).

Example 2 (Separating shape graphs). The separating shape graph abstract domain
of [4] provides a second example of a memory abstract domain. An abstract memory is
a separating conjunction [17] of predicates, which could be either points-to predicates
(depicted as thin edges in Fig. 4(c)) and inductive predicates (depicted as bold edges
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unfold
∨

λ0 = 0x0 λ0 6= 0x0

empλ0 λ0 λ1

λ2

list next

data

list

Fig. 5. List inductive definition rewriting rule

in Fig. 4(c)). Inductive predicates are annotated with inductive definitions supplied as
a parameter of the domain. Thus, depending on the parameterization, this domain may
provide an instantiation for M♯

l or M♯
t in the example of Section 2. Non-parameterizable

abstract domains [10] have a similar layout. A graph containing only points-to edges is
concretized into the disjoint merge of the cells described by each points-to edge. The
concretization of inductive predicates proceeds by unfolding. For instance the inductive
definition for list leads to the unfolding rule shown in Figure 5. As in the previous exam-
ple, a numerical abstract domain should be used in order to express content properties.
Fig. 4(c) presents an instance m

♯
l of the separating shape graph domain parameterized

by a list definition that corresponds to the labeled box L depicted in Fig. 2(a) in the
overview. A pair (ml, νl) that concretizes m♯

l is given in Fig. 4(a) and Fig. 4(b).

3.2 The separating combination

In this section, we assume a pair of memory abstract domains M♯
1,M

♯
2 are fixed, with in-

dependent sets of symbolic namesN
M

♯
1

,N
M

♯
2

and concretization functions γ
M

♯
1

, γ
M

♯
2

. In
the following, we introduce the interface abstract domain before defining the combined
memory abstract domain M

♯
1 � M

♯
2.

Interface abstract domain. We let I♯〈M♯
1,M

♯
2〉 denote the interface abstract domain that

expresses sets of equality relations between symbolic names of M♯
1 and M

♯
2. Intuitively,

an abstract interface is a finite set of pairs representing equalities. Thus, the interface
abstract domain is defined by I♯〈M♯

1,M
♯
2〉

def
= Pfin(NM

♯
1

×N
M

♯
2

) and an abstract interface

i♯ is concretized into a set of pairs of valuations of M♯
1 and M

♯
2 in the following way:

γI♯(i
♯)

def
=

{

(ν1, ν2) ∈ VM♯
1

× V
M

♯
2

| ∀(α1, α2) ∈ i♯. ν1(α1) = ν2(α2)
}

We write I♯ instead of I♯〈M♯
1,M

♯
2〉 when there is no ambiguity about the choice of the

memory abstract sub-domains. We also define a judgment i♯ ⊢ α1 = α2 meaning that
the pair (α1, α2) belongs to the transitive closure of the relation induced by i♯. Thus, it
meets the soundness condition i♯ ⊢ α1 = α2 ∧ (ν1, ν2) ∈ γI♯(i

♯) ⇒ ν1(α1) = ν2(α2).

The separating abstract domain combinator. Combined abstract memories consist of
triples (m♯

1,m
♯
2, i

♯) made of two abstract sub-memories describing disjoint memory
regions and an abstract interface representing correlations between the sub-memories.
Thus, the combined abstract domain is defined by M

♯
1 �M

♯
2

def
= M

♯
1×M

♯
2× I♯〈M♯

1,M
♯
2〉.

We define the set of symbolic names of the combined abstract domain as the disjoint
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m
♯
b = αa

0 7→ {0 : βc
0} ∗ αa

1 7→ {0 : βc
1}

∗ αa
2 7→ {0 : βc

2} ∗ αa
3 7→ {0 : βc

3}
∗ αa

4 7→ {0 : βc
4} ∧ &h = αa

0 ∧ . . . λ0 λ1 λ2

λ3

m
♯
l

λ2 = 0x0

next

data

list list

i♯ =

{(βc
0, λ0) , (β

c
1, λ1)}

(a) Combined abstract memory (m♯
b, m

♯
l , i

♯)

&r = 0x...a16

&t = 0x...a12

&x = 0x...a8

&e = 0x...a4

&h = 0x...a0

0x0

0x...d0

0x0

0x...c0

0x...b0

0x...c4

0x...c0

0x...e4

0x...e0

0x...b4

0x...b0

666

0x0

13

0x...c0

42

0x...e0

(b) Concrete memory mb ⊎ml

νb ⊕ νl : N
M

♯
b
�M

♯
l

−→ V

(M♯
b : α

a
0) 7→ 0x...a0 (M♯

b : βc
0) 7→ 0x...b0

(M♯
b : α

a
1) 7→ 0x...a4 (M♯

b : βc
1) 7→ 0x...c0

(M♯
b : α

a
2) 7→ 0x...a8 (M♯

b : βc
2) 7→ 0x0

(M♯
b : α

a
3) 7→ 0x...a12 (M♯

b : βc
3) 7→ 0x...d0

(M♯
b : α

a
4) 7→ 0x...a16 (M♯

b : βc
4) 7→ 0x0

(M♯
l : λ0) 7→ 0x...b0 (M♯

l : λ2) 7→ 0x0

(M♯
l : λ1) 7→ 0x...c0 (M♯

l : λ3) 7→ 666

(c) Valuation νb ⊕ νl ∈ V
M

♯
b
�M

♯
l

Fig. 6. Combined memory abstract domain: (mb ⊎ ml, νb ⊕ νl) ∈ γ
M

♯
b
�M

♯
l

(m♯
b,m

♯
l , i

♯) as

(mb, νb) ∈ γ
M

♯
b

(m♯
b) (Fig. 3), (ml, νl) ∈ γ

M
♯
l

(m♯
l ) (Fig. 4) and (νb, νl) ∈ γI♯(i

♯)

union of symbolic names of the abstract sub-domains. Formally:

N
M

♯
1
�M

♯
2

def
=

{

(M♯
1 : α1) | α1 ∈ NM

♯
1

}

⊎
{

(M♯
2 : α2) | α2 ∈ NM

♯
2

}

At the combined abstract domain level, (M♯
i : αi) denotes symbolic name αi of the

abstract sub-domain M
♯
i . To define the meaning of a combined abstract memory, we

give a concretization function γ
M

♯
1
�M

♯
2

: M♯
1 � M

♯
2 → P(M × VM♯

1
�M

♯
2

) that derives

from concretization functions γ
M

♯
i
: M♯

i → P(M × VM♯
i
) of the memory abstract sub-

domains. To achieve this, we define a valuation combinator⊕ : V
M

♯
1

×V
M

♯
2

→ V
M

♯
1
�M

♯
2

that puts two valuations aside:

(ν1 ⊕ ν2)(M
♯
1 : α1)

def
= ν1(α1) (ν1 ⊕ ν2)(M

♯
2 : α2)

def
= ν2(α2)

Then, the concretization of a combined abstract memory is given by:

γ
M

♯
1
�M

♯
2

(m♯
1,m

♯
2, i

♯)
def
=

{

(m1 ⊎m2, ν1 ⊕ ν2)
∀i ∈ {1, 2}. (mi, νi) ∈ γ

M
♯
i
(m♯

i)

∧ (ν1, ν2) ∈ γI♯(i
♯)

}

Example 3 (Separating combination of M
♯
b and M

♯
l ). We now consider an instantiation

of the separating combination functor, with the bounded data structure domain M
♯
b (pre-

sented in Example 1) and the list-parameterized separating shape graph domain M
♯
l

(presented in Example 2). Fig. 6(a) presents a combined abstract memory (m♯
b,m

♯
l , i

♯)
that combines abstract sub-memories already presented in Fig. 3(a) and Fig. 4(c) to-
gether with the abstract interface i♯ = {(βc

0, λ0), (β
c
1, λ1)}. We provide a pair (m, ν)

in Fig. 6(b) and Fig. 6(c) concretizing (m♯
b,m

♯
l , i

♯) obtained by combining the concrete
pairs (mb, νb) and (ml, νl) presented in Fig. 3 and Fig. 4. Note that (νb, νl) ∈ γI♯(i

♯)
as νb(βc

0) = νl(λ0) = 0x...b0 and νb(β
c
1) = νl(λ1) = 0x...c0.
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4 Analysis algorithms

We now discuss the inference of invariants in the combined domain. A memory ab-
stract domain M♯ provides for each concrete memory operation f : M → P(M), a
counterpart abstract transfer function f ♯ : M♯ → M♯ that is sound (i.e. ∀(m, ν) ∈
γM♯(m♯). ∀m′ ∈ f(m). ∃ν′ ⊇ ν. (m′, ν′) ∈ (γM♯ ◦ f ♯)(m♯)). Abstract transfer func-
tions may introduce new symbolic names but may not remove nor change the meaning
of existing symbolic names. Hence, a valuation ν′ in the concretization of the post-
condition must extend valuation ν that concretizes the pre-condition. Abstract inter-
preters also require lattice operations (e.g. inclusion checking, widening) to achieve
precise fixed point computations.

In a combined abstract domain, abstract transfer functions should distribute compu-
tations to the sub-memories and the abstract interface, using abstract transfer functions
provided by sub-domains. In this section, we detail this mechanism for abstract trans-
fer functions handling memory allocations (Section 4.1), assignments (Sections 4.2,
and 4.3), and for inclusion checking (Section 4.4).

4.1 Creation of memory cells

Creation of new memory cells occurs either when a block for a new variable is created or
when heap space is allocated at run time (e.g. malloc as at line 11 in Fig. 1). In a memory
abstract domain M♯, this operation is handled by the abstract transfer function newM♯ ,
which is the abstract counterpart of the concrete transfer function new : int ×M →
P(A×M) (defined in a standard way). Intuitively, newM♯ takes as input an integer size
s and an abstract memory m♯

pre and returns a pair consisting of a symbolic name α

representing the address of the allocated block and an abstract memory m
♯
post where

the cell has been created. Therefore, it ensures that, if newM♯(s,m♯
pre) = (α,m♯

post)

and (m, ν) ∈ γM♯(m♯
pre), then the following holds:

(a,m′) ∈ new(s,m)⇒ ∃ν′ ⊇ ν. (m′, ν′) ∈ γM♯(m♯
post) ∧ ν′(α) = a

Creation of memory cells in a combined domain. Because of the separation principle
(Section 3.2), a cell must be represented in exactly one sub-memory in a combined
abstract memory m♯ = (m♯

1,m
♯
2, i

♯). Therefore, we provide two possible definitions
for new

M
♯
1
�M

♯
2

deriving from two symmetric rules NEW1 and NEW2 (NEW2 is shown
in Appendix A.1). Intuitively, the abstract transfer function defined by rule NEW1 (resp.
NEW2) always represents new cells using sub-domain M

♯
1 (resp. M♯

2).

NEW1
new

M
♯
1

(s,m♯
1) = (α1,m

♯
1,post)

new
M

♯
1
�M

♯
2

(s, (m♯
1,m

♯
2, i

♯)) = ((M♯
1 : α1), (m

♯
1,post,m

♯
2, i

♯))

While both choices are sound, some sub-domains are more suitable than others. For
instance, in M

♯
b�M

♯
l , it would be inappropriate to let the allocation of a cell expected to

be summarized as part of a list be done in M
♯
b, where summarization cannot be achieved.
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l (∈ LM♯) ::= α (α ∈ NM♯)
| l · f (l ∈ LM♯ ; f ∈ F)
| ∗r (r ∈ R

M♯)

r (∈ RM♯) ::= l (l ∈ LM♯)
| &l (l ∈ LM♯)
| v (v ∈ V)

(a) Syntax of l-value and r-value expressions

LM♯JαKm♯ = (α, 0)

LM♯JlKm
♯ = (α, f)

LM♯Jl · gKm
♯ = (α, f + g)

RM♯JrKm
♯ = α+ f

LM♯J∗rKm
♯ = (α, f)

LM♯JlKm
♯ = (α, f)

RM♯JlKm
♯ = read M♯(α, f ,m

♯)

LM♯JlKm
♯ = (α, f)

RM♯J&lKm
♯ = α+ f RM♯JvKm

♯ = v

(b) Evaluation rules for l-value and r-value expressions

Fig. 7. Evaluations of l-values LM♯JlK : M♯ → NM♯ ×F and r-values RM♯JrK : M♯ → EM♯ only
rely on the reading operation read

M♯ : N
M♯ × F×M

♯ → E
M♯

If we consider the analysis of the memory allocation at line 11 in Fig. 1, the choice is
guided by C types: the created cell has type int which is not recursive, and thus it
will likely never require summarization. Therefore, the cell creation can be handled
by any sub-memories without any loss in precision. As sub-domain M

♯
b is more light-

weight than M
♯
l in terms of computational cost, it should abstract the new cell. Then,

invoking new
M

♯
b
�M

♯
l

deriving from rule NEW1 to the combined memory of Fig. 6(a)

returns symbolic name (M♯
b : α

a
5) and the following combined abstract memory:

m
♯
b = αa

0 7→ {0 : βc
0} ∗ αa

1 7→ {0 : βc
1}

∗ αa
2 7→ {0 : βc

2} ∗ αa
3 7→ {0 : βc

3}
∗ αa

4 7→ {0 : βc
4} ∗ αa

5 7→ {0 : βc
5}

∧ &h = αa
0 ∧ . . .

λ0 λ1 λ2

λ3

m
♯
l

λ2 = 0x0

next

data

list list

i♯ =

{(βc
0, λ0) , (β

c
1, λ1)}

While not being critical for soundness, such empirical hints are important to avoid either
a loss of precision or a slowdown in the analysis.

4.2 Evaluation of l-value and r-value expressions

We consider the abstract transfer functions handling operations such as assignments and
tests. These operations involve l-values l ∈ LM♯ and r-values r ∈ RM♯ . Their syntax
(shown in Fig. 7(a)) includes classical forms of expressions encountered in a C-like
language (structure fields, dereferences, address of, etc.). In this section, we define a
mechanism for evaluating l-value and r-value expressions. More formally, the evalua-
tion of an l-value l in abstract memory m♯ returns a pair LM♯JlK m♯ = (α, f) consisting
of a symbolic name α and a field f such that α+ f denotes the address represented by l .
Similarly, the evaluation of a r-value r returns an symbolic expression RM♯JrK m♯ = e

that denotes the value represented by r . A symbolic expression e ∈ EM♯ is either of the
form α+ f (where α ∈ NM♯ and f ∈ F) or a concrete value v ∈ V.

Evaluation algorithm. The computation of LM♯J.K and RM♯J.K proceeds by induction
over the expressions syntax as shown in Fig. 7(b), assuming a read operation read M♯ is
provided by memory abstract domain M♯, so as to “extract” the contents of a cell at the
abstract level: partial function read M♯ inputs a symbolic name α representing the base
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address of a concrete block, a field f and an abstract memory state m♯, and returns a
symbolic expression representing the contents of that field. It may also fail to identify
the cell and is then undefined (this may happen in a combined memory abstract domain
when reading a cell in the “wrong” sub-memory). In some memory abstract domains
(such as the separating shape graph domain presented in Example 2), read M♯ may need
to perform unfolding [4] and thus, return a finite set of disjuncts, however this issue is
orthogonal to the present development, so we leave it out here. Overall, it should satisfy
the following soundness condition:

(m, ν) ∈ γM♯(m♯) ∧ read M♯(α, f,m♯) = β + g =⇒ m( ν(α) + f ) = ν(β) + g
(m, ν) ∈ γM♯(m♯) ∧ read M♯(α, f,m♯) = v =⇒ m( ν(α) + f ) = v

Read operation in the combined domain. To read a cell at address ((M♯
1 : α1), f) in

a combined abstract memory (m♯
1,m

♯
2, i

♯), the analysis first attempts to read cell at
address (α1, f) in m

♯
1. Therefore, the read operation derives from the following rule:

READDIRECT1
read

M
♯
1

(α1, f,m
♯
1) = β1 + g

read
M

♯
1
�M

♯
2

((M♯
1 : α1), f, (m

♯
1,m

♯
2, i

♯)) = (M♯
1 : β1) + g

The symmetric rule READDIRECT2 is shown in Appendix A.2. It may turn out that the
cell at address (M♯

1 : α1) is abstracted in sub-memory m
♯
2 in which case rule READ-

DIRECT1 cannot be applied. In fact, by the separation principle (Section 3.2), a cell is
represented in exactly one sub-memory. To cope with this issue, the reading operation
can retrieve the cell by looking for a symbolic name of sub-domain M

♯
2 that is bound

to α1 by the abstract interface. In such cases, the definition of read
M

♯
1
�M

♯
2

follows the
rule:

READACROSS1
read

M
♯
2

(α2, f,m
♯
2) = β2 + g i♯ ⊢ α1 = α2

read
M

♯
1
�M

♯
2

((M♯
1 : α1), f, (m

♯
1,m

♯
2, i

♯)) = (M♯
2 : β2) + g

The symmetric case is handled by rule READACROSS2 shown in Appendix A.2.

Example 4 (An evaluation across sub-memories). We consider the evaluation of the
right hand side e -> data of assignment at line 12 in Fig. 1 on the following combined
abstract memory that is computed by the analysis after assignment at line 11 (assign-
ment is treated in Section 4.3).

m
♯
b = αa

0 7→ {0 : βc
0} ∗ αa

1 7→ {0 : βc
1}

∗ αa
2 7→ {0 : βc

2} ∗ αa
3 7→ {0 : βc

3}
∗ αa

4 7→ {0 : βc
4} ∗ αa

5 7→ {0 : βc
5}

∧ &e = αa
1 ∧ &x = αa

2 ∧ . . . ∧ βc
2 = αa

5

λ0 λ1 λ2

λ3

m
♯
l

λ2 = 0x0

next

data

list list

i♯ =

{(βc
0, λ0) , (β

c
1, λ1)}

First, variable e is replaced by symbolic name (M♯
b : αa

1) denoting its address and its
content is evaluated to (M♯

b : β
c
1). Then, reading cell at address (M♯

b : β
c
1) + data fails

in M
♯
b as the cell is actually abstracted in M

♯
l . Therefore, the reading operation retrieves

that cell at address (M♯
l : λ1) + data, using the equality (βc

1, λ1) ∈ i♯. Finally, the
evaluation ends up with symbolic r-value (M♯

l : λ3).
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4.3 Abstract transfer function for assignment

The analysis requires a set of abstract transfer functions handling operations such as
assignment and test that need to evaluate l-value and r-value expressions [5]. Among
those, the assignment is arguably the most sophisticated one, thus we describe only this
operation here. The classical analysis of assignment l = r shown in [5] proceeds as
follows: (1) the left hand side is evaluated to a pair LM♯JlKm♯ = (α, f) representing
the address of the cell that will be updated; (2) the right hand side is evaluated to a
symbolic expression RM♯JrKm♯ = e representing the written value; and (3) the cell
is updated in the abstract level, using the abstract cell write operation writeM♯ provided
by the memory abstract domain M♯. Intuitively, writeM♯(α, f , e,m♯) returns an abstract
memory where the cell at address α+f has been updated to e. To state the soundness of
this operation, we extend a valuation ν to cope with symbolic expressions in a natural
way by defining ν(α + f)

def
= ν(α) + f and ν(v)

def
= v. Therefore, writeM♯ satisfies the

condition:

(m, ν) ∈ γM♯(m♯) ⇒ ∃ν′ ⊇ ν. (m[ν(α)+f ← ν(e)], ν′) ∈ γM♯(writeM♯(α, f, e,m♯) )

Cell write operation in a combined domain. A simple case occurs when left and right
hand sides are both evaluated in the same sub-memory, in which case the cell write op-
eration simply lifts computation to the corresponding sub-domain. However, a trickier
case occurs when l-value and r-value are evaluated to different sub-memories, such as
((M♯

1 : α1), f) and (M♯
2 : β2) + g. In this case, the cell writing is performed in m

♯
1

as the cell requiring update is abstracted there. However, to avoid losing precision, the
analysis needs a symbolic expression in m

♯
1 to relate the new content. Therefore, two

cases may be encountered:
– β2 is bound to a symbolic name β1 ∈ NM

♯
1

by the abstract interface, in which case
write

M
♯
1
�M

♯
2

is defined following the rule:

WRITEACROSS1
write

M
♯
1

(α1, f, β1 + g,m♯
1) = m

♯
1,post i♯ ⊢ β1 = β2

write
M

♯
1
�M

♯
2

((M♯
1 : α1), f, (M

♯
2 : β2) + g, (m♯

1,m
♯
2, i

♯)) = (m♯
1,post,m

♯
2, i

♯)

– β2 is not bound in the abstract interface, in which case a fresh variable β1 is used
to account for it in m

♯
1. Then write

M
♯
1
�M

♯
2

is defined following the rule:

WRITEACROSSWEAK1
write

M
♯
1

(α1, f, β1 + g,m♯
1) = m

♯
1,post β1 fresh in m

♯
1

write
M

♯
1
�M

♯
2

((M♯
1 : α1), f, (M

♯
2 : β2) + g, (m♯

1,m
♯
2, i

♯)) = (m♯
1,post,m

♯
2, i

♯ ∪ {(β1, β2)})

Example 5 (Assignment across sub-memories). We consider the computation of the
post-condition of assignment ∗x = e -> data at line 12 in Fig. 1, from the pre-
condition shown in Example 4. The left and right hand sides are respectively evaluated
to ((M♯

b : αa
5), 0) and (M♯

l : λ3) (as shown in Example 4). Moreover, there is no sym-
bolic name in m

♯
b bound to λ3 in m

♯
l by the abstract interface. Therefore, write

M
♯
b
�M

♯
l



An abstr. domain combinator for separately conjoining mem. abstr. 13

derives from rule WRITEACROSSWEAK1, and produces the following post-condition:

m
♯
b = αa

0 7→ {0 : βc
0} ∗ αa

1 7→ {0 : βc
1}

∗ αa
2 7→ {0 : βc

2} ∗ αa
3 7→ {0 : βc

3}
∗ αa

4 7→ {0 : βc
4} ∗ αa

5 7→ {0 : γc}
∧ &x = αa

2 ∧ . . . ∧ βc
2 = αa

5

λ0 λ1 λ2

λ3

m
♯
l

λ2 = 0x0

next

data

list list

i♯ =

{(βc
0, λ0) , (β

c
1, λ1)

(γc, λ3)}

4.4 Inclusion checking

Fix-point computations [6] require widening and inclusion checking operators. In this
section, we only detail the algorithm for inclusion checking as the widening algorithm
is similar [5]. At a memory abstract domain M♯ level, the inclusion checking relies
on the abstract comparison operator compare

M♯ that inputs two abstract memories m♯
l

and m♯
r and returns a mapping Φ when it successfully establishes the abstract inclusion

m
♯
l ⊑ m♯

r. Intuitively, the returned mapping relates symbolic names in m♯
r to symbolic

names in m
♯
l that valuations should map to the same value for the inclusion to hold.

More formally, the soundness condition states the following:

compare
M♯(m

♯
l ,m

♯
r) = Φ ∧ (m, ν) ∈ γM♯(m♯

l ) =⇒ (m, ν ◦ Φ) ∈ γM♯(m♯
r)

Inclusion checking in a combined domain. To compare the two combined abstract mem-
ories m

♯
l = (m♯

1,l,m
♯
2,l, i

♯
l) and m♯

r = (m♯
1,r,m

♯
2,r, i

♯
r), the analysis first invokes the

abstract comparisons of the sub-domains respectively on (m♯
1,l,m

♯
1,r) and (m♯

2,l,m
♯
2,r).

When both succeed and thus return Φ1 and Φ2, the analysis checks the inclusion of the
abstract interfaces by: i♯l ⊑

Φ2

Φ1
i♯r ⇐⇒ ∀(α1, α2) ∈ i♯r. i

♯
l ⊢ Φ1(α1) = Φ2(α2).

Therefore, the abstract comparison operator is defined by the following rule:

INCL

compare
M

♯
1

(m♯
1,l,m

♯
1,r) = Φ1 compare

M
♯
2

(m♯
2,l,m

♯
2,r) = Φ2 i

♯
l ⊑

Φ2

Φ1
i♯r

compare
M

♯
1
�M

♯
2

((m♯
1,l,m

♯
2,l, i

♯
l ), (m

♯
1,r,m

♯
2,r, i

♯
r)) = Φ1 ⊕ Φ2

Refinement using initial mappings. While sound, such a definition could lead to a loss
of precision. For some memory abstract domains (such as the separating shape graphs
domain), the abstract comparison operator internally initializes a mapping between sym-
bolic names representing addresses of the same program variable (that valuations should
clearly map to the same value). However, in a combined domain, a sub-memory with no
such symbolic names is plausible (e.g. considerm♯

l in the combined abstract memory of
Fig. 6(a)), and the sub-domain abstract comparison will therefore likely fail to establish
the inclusion. To cope with that issue, the analysis provides an initial mapping as hint
to the unsuccessful abstract comparison, that derives from the relationship inferred by
the successful abstract comparison. More precisely, if compare

M
♯
1

succeeds and returns

Φ1, the initial mapping defined by Φinit
2 (β2,r) = β2,l ⇔ ∃β1,r ∈ NM

♯
1

. i♯r ⊢ β1,r =

β2,r ∧ i
♯
l ⊢ Φ1(β1,r) = β2,l can be passed as optional argument to compare

M
♯
2

.
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Filename MAD #P ∨ t(s) % tCF(s) tSD(s) #R #RA
insert_remove.c I<list> 3 2.09 0.248 basis - 0.174 230 -

(158 LOC) B � I<list> 3 2.09 0.151 60 0.035 0.055 230 16
balancing.c I<tree> 3 2.56 0.501 basis - 0.376 314 -
(188 LOC) B � I<tree> 3 2.56 0.323 64 0.068 0.125 314 72

search_list_tree.c I<list,tree> 5 3.40 0.330 basis - 0.286 172 -
(138 LOC) I<list> � I<tree> 5 3.40 0.364 110 0.031 0.292 172 48

B � I<list,tree> 5 3.40 0.194 59 0.035 0.098 172 70
B � I<list> � I<tree> 5 3.40 0.231 70 0.071 0.113 172 70

Fig. 8. Analysis results (measured on a 2.2 Ghz Intel Core i7 with 8 GB of RAM): MAD is the
memory abstract domain used (B stands for the bounded data structure domain, I<.> stands for
the separating shape graphs domain instantiated with inductive definitions that are either list or
tree, � stands for separating combination of domains), #P is the number of properties proven
by the analysis, ∨ is average number of disjuncts at each program point, t is the total analysis
time in seconds,% is the time of analysis compared to analysis using a monolithic domain, tCF
(resp. tSD) is the time of analysis spent in the combination functor (resp. sub-domains), #R is the
number of read operation calls and #RA is the number of read operations crossing sub-memories.

5 Implementation and empirical evaluation

We test empirically the precision and efficiency of the combined analysis compared to a
monolithic one and describe the results here. The separating combination described in
this paper is implemented in the MemCAD analyzer3. The analysis is fully automatic.
It takes as input C code and the desired structure of the memory abstract domain. The
two analysis variants were applied to a set of over 15 micro-benchmarks, similar to
the code fragment in Fig. 1. We verify memory safety properties, such as the absence
of null pointer dereferences, as well as structural assertions (annotated in the code). In
Fig. 8, we report on some representative analysis results relevant to questions in this
paper. The C programs considered consist of data structure-manipulation routines (e.g.
insertion, deletion, search) for lists and trees either called sequentially or interleaved.
They can all be analyzed using a monolithic domain.

First, we note that importantly the combined analyses retain the same level of preci-
sion as the monolithic analyses in terms of the number of properties that can be proven
(column #P). For each program, the number of properties proven on the first line (mono-
lithic) is the same as the number proven on the subsequent lines (various combinations).
The key part of the combined analysis is the interface between sub-memories. Its neces-
sity is demonstrated by the ratio of read operations that cross the sub-memories in the
combined analyses (column #RA over #R).

Next, we consider the relative efficiency of the various memory abstract domain
combinations with respect to the monolithic version. Regardless of configuration, the
MemCAD analyzer computes for each program point, a finite disjunction of abstract
memories. We first observe that the use of a combined domain does not introduce an
extra combinatorial factor as the number of disjuncts is the same for the monolithic
and the combined analyses (column ∨). To probe into the overhead of our combination
functor, we considered in search_list_tree.c decomposing the memory abstract domain
into list- and tree-specific regions (I<list> � I<tree>). In this case, the list and tree do-

3 http://www.di.ens.fr/~rival/memcad.html
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mains are instantiations of the same generic, parametric separating shape graph domain.
Thus, this instantiation pays for the overhead of the separating combination without the
benefit of an optimized sub-domain. We observe that there is an overhead, but it seems
acceptable given that the separating combination offers the possibility of replacing the
sub-domains with specialized and optimized versions (a ratio of 110%-120% in the two
instances shown here).

The win with our separating combination functor comes from applying it with an
optimized sub-domain. In the variants with B � · · · , we use a bounded data structure

domain to efficiently manage the bounded part of the memory (e.g. the top activation
record in the call stack). This sub-domain is implemented efficiently knowing that it
only needs to abstract bounded data structures. From Fig. 8, we see that separating
out the bounded part of memory into a more efficient specialized domain is highly
effective—noticeably decreasing the overall analysis times despite the overhead of com-
bination (a ratio of around 60% in all cases).

6 Related work

The first important abstract domain combination operation to be introduced is the re-
duced product [7], which has enabled constructing very expressive abstract domains
from simpler ones. Intuitively, a property is decomposed into a conjunction of (possi-
bly radically different) basic properties. This construction was applied to a wide range
of analyzers, including ASTRÉE [3], where a large set of numerical abstract domains
exchange information over a chain of reduced products [8]. The benefit of reduced
product is even greater for libraries of abstractions with a common interface such as
APRON [13]. It was also used to describe the Nelson-Oppen procedure [9].

Our contribution seeks to simplify abstract domain construction, while allowing
greater expressiveness. It exploits separation [17], albeit in a different way than the
numerous shape analyses that exploit it in the definition of their summarization predi-
cates [10,2,4]. In these analyses, separation permits (hopefully all) updates to be han-
dled as strong updates, which is crucial for both precision and efficiency. Our analysis
exploits separation so as to combine independent memory abstract domains, so as to
achieve at least the same precision and better efficiency by delegating the abstraction
of particular data structures to the most appropriate sub-domains. Note that the sub-
domains may (and in all the examples shown in this paper, do) also make use of separa-
tion as the aforementioned analyses. In [23], separation was used to represent distinct
heap regions using heterogeneous abstractions, yet this work relies on code specifica-
tions transformed into sub-problems handled by different abstractions, and proceeds by
verification, although our combinator allows inference of invariants.

Other combinations of abstractions have been proposed so as to enhance memory
analyses. In particular, [14] presents an approach that uses classical conjunction to-
gether with zone variables to relate corresponding regions. Moreover, [11] combines
formulae by distinguishing per-field and per-object separating conjunctions. In [15],
sets of sub-graphs are used to represent properties about non-correlated data structures
and to realize a gain in performance. These analyses are based on problem specific de-
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compositions while our domain combinator is generic, in the sense that it does not make
any assumptions on the way the memory properties are represented in the sub-domains.

In previous work [22], we proposed a reduced product for memory abstractions
as a generic abstract domain combinator. This combinator does not rely on separation
and provides a different form of separation of concerns than our separating combinator:
in [22], sub-domains express a collection of properties of the same structure whereas
the separating conjunction operator combines domains representing distinct structures.
Moreover, we introduced a hierarchical memory abstraction to abstract structures allo-
cated inside other structures [21]; in that work the whole memory is abstracted in the
main domain, and a sub-domain describes nested structures. These combinators are im-
plemented as ML functors in the MemCAD analyzer and can be used together (although
assessing such compositions is beyond the scope of this paper).

7 Conclusion

In this paper, we introduced a combinator for separately conjoining memory abstract do-
mains, enabling composite analyses that are precise, efficient, and flexible. Our proposal
enables a separation of concerns when designing static analyses that need to deal with
complex data structures, as very different domains can be combined to abstract disjoint
memory regions. A natural extension of our study would be to integrate other memory
abstractions, as found in 3-valued logic shape analyses [19,1,12], into our framework.
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A Rules for abstract transfer functions of the combined domains

In this section, we give the rules for defining abstract transfer functions of a combined
memory abstract domain M

♯
1 � M

♯
2, from the abstract transfer functions of memory

abstract sub-domains M♯
1 and M

♯
2.

A.1 Cell creation operation

newM♯ : int×M♯ → NM♯ ×M♯

In a combined domain, the cell creation should be handled by exactly one do-
main (to avoid violating the separation principle). Therefore, depending on which sub-
memory is chosen to account for the new cell, we give two definitions for the cell
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creation operation, that derives from the following rules:

NEW1
new

M
♯
1

(s,m♯
1) = (α1,m

♯
1,post)

new
M

♯
1
�M

♯
2

(s, (m♯
1,m

♯
2, i

♯)) = ((M♯
1 : α1), (m

♯
1,post,m

♯
2, i

♯))

NEW2
new

M
♯
2

(s,m♯
2) = (α2,m

♯
2,post)

new
M

♯
1
�M

♯
2

(s, (m♯
1,m

♯
2, i

♯)) = ((M♯
2 : α2), (m

♯
1,m

♯
2,post, i

♯))

A.2 Read operation

read M♯ : NM♯ × F×M♯ ⇀ EM♯

The read operation (Section 4.2) extracts the content of a cell in the abstract level. In
a combined domain, cell read operation first attempts to extract the content of a cell in
the sub-memory where the symbolic name representing its address belongs. Therefore,
the cell read operation is first defined by the two following rules:

READDIRECT1
read

M
♯
1

(α1, f,m
♯
1) = β1 + g

read
M

♯
1
�M

♯
2

((M♯
1 : α1), f, (m

♯
1,m

♯
2, i

♯)) = (M♯
1 : β1) + g

READDIRECT2
read

M
♯
2

(α2, f,m
♯
2) = β2 + g

read
M

♯
1
�M

♯
2

((M♯
2 : α2), f, (m

♯
1,m

♯
2, i

♯)) = (M♯
2 : β2) + g

However, cell read operation of sub-domains may fail. In such cases, the cell read oper-
ation attempts to retrieve the cell using the abstract interface. It is then defined by the
two rules:

READACROSS1
read

M
♯
2

(α2, f,m
♯
2) = β2 + g i♯ ⊢ α1 = α2

read
M

♯
1
�M

♯
2

((M♯
1 : α1), f, (m

♯
1,m

♯
2, i

♯)) = (M♯
2 : β2) + g

READACROSS2
read

M
♯
1

(α1, f,m
♯
1) = β1 + g i♯ ⊢ α1 = α2

read
M

♯
1
�M

♯
2

((M♯
2 : α2), f, (m

♯
1,m

♯
2, i

♯)) = (M♯
1 : β1) + g

A.3 Cell write operation

writeM♯ : NM♯ × F× EM♯ ×M♯ →M♯

The analysis uses the cell write operation (Section 4.3) to compute post-condition of
assignments. It updates the content of a cell in the abstract level. In a combined domain,
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several cases may be encountered depending on which sub-memory belong the address
of the updated cell and the written content. When both are in the same sub-memory, the
cell writing operation simply lifts the sub-domain operation:

WRITEDIRECT1
write

M
♯
1

(α1, f, β1 + g,m♯
1) = m

♯
1,post

write
M

♯
1
�M

♯
2

((M♯
1 : α1), f, (M

♯
1 : β1) + g, (m♯

1,m
♯
2, i

♯)) = (m♯
1,post,m

♯
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♯)

WRITEDIRECT2
write

M
♯
2

(α2, f, β2 + g,m♯
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♯
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write
M

♯
1
�M

♯
2

((M♯
2 : α2), f, (M

♯
2 : β2) + g, (m♯

1,m
♯
2, i

♯)) = (m♯
1,m

♯
2,post, i

♯)

When the written content is a value v, the cell reading operation is defined by the two
following rules:

WRITEVAL1
write

M
♯
1

(α1, f, v,m
♯
1) = m

♯
1,post

write
M

♯
1
�M

♯
2

((M♯
1 : α1), f, v, (m

♯
1,m

♯
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♯)) = (m♯
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♯
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WRITEVAL2
write

M
♯
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(α2, f, v,m
♯
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♯
2,post
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M

♯
1
�M

♯
2
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♯
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♯
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The four following rules define read operation when the address of the updated cell and
the written value are in different sub-memories.

WRITEACROSS1
write

M
♯
1

(α1, f, β1 + g,m♯
1) = m

♯
1,post i♯ ⊢ β1 = β2

write
M

♯
1
�M

♯
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♯
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1,post,m
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WRITEACROSS2
write

M
♯
2

(α2, f, β2 + g,m♯
2) = m

♯
2,post i♯ ⊢ β1 = β2

write
M

♯
1
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♯
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1 : β1) + g, (m♯
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♯
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WRITEACROSSWEAK1
write

M
♯
1

(α1, f, β1 + g,m♯
1) = m

♯
1,post β1 fresh in m

♯
1

write
M
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WRITEACROSSWEAK2
write
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