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Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions

We consider phaseless inverse scattering for the Schrödinger equation with compactly supported potential in dimension d ≥ 2. We give explicit formulas for solving this problem from appropriate data at high energies. As a corollary, we give also a global uniqueness result for this problem with appropriate data on a fixed energy neighborhood.

Introduction

We consider the Schrödinger equation

-∆ψ + v(x)ψ = Eψ, x ∈ R d , d ≥ 2, E > 0, (1.1) where v ∈ L ∞ (R d ), supp v ⊂ D,
D is an open bounded domain in R d .

(1.2)

For equation (1.1) we consider the classical scattering solutions for some a priori unknown f . In addition, the function f = f (k, l), k, l ∈ R d , k 2 = l 2 = E, arising in (1.3) is the classical scattering amplitude for equation (1.1).

ψ + = ψ + (x, k), x ∈ R d , k ∈ R d , k 2 = E,
In order to find ψ + and f from v one can use, in particular, the Lippmann-Schwinger integral equation

ψ + (x, k) = e ikx + ∫ D G + (x -y, k)v(y)ψ + (y, k)dy, G + (x, k) = -(2π) -d ∫ R d e iξx dξ ξ 2 -k 2 -i0 ,
(1.4) and the formula

f (k, l) = (2π) -d ∫ D
e -ily v(y)ψ + (y, k)dy, (1.5) where x, k, l ∈ R d , k 2 = l 2 = E > 0; see e.g. [BS], [F2].

The scattering amplitude f for equation (1.1) at fixed E is defined on

M E = {k ∈ R d , l ∈ R d : k 2 = l 2 = E}, E > 0.
(1.6)

In addition to f on M E , we consider also f Γ E , where

Γ E = {k = k E (p), l = l E (p) : p ∈ B2 √ E }, k E (p) = p 2 + ( E - p 2 4 ) 1/2 γ(p), l E (p) = - p 2 + ( E - p 2 4 ) 1/2 γ(p), (1.7) B r = {p ∈ R d : |p| < r}, Br = {p ∈ R d : |p| ≤ r}, r > 0, (1.8)
where γ is a piecewise continuous vector-function on R d such that

|γ(p)| = 1, γ(p)p = 0, p ∈ R d .
(1.9)

One can see that (1.11) where Λ ⊆ R + =]0, +∞[. We start with the following inverse scattering problems for equation (1.1) under assumptions (1.2): Problem 1.1. Reconstruct potential v on R d from its scattering amplitude f on some appropriate

Γ E ⊂ M E , dim Γ E = d, dim M E = 2d -2, E > 0, d ≥ 2. (1.10) Let M Λ = ∪ E∈Λ M E , Γ Λ = ∪ E∈Λ Γ E ,
M ′ ⊆ M R + . Problem 1.2. Reconstruct potential v on R d from its phaseless scattering data |f | 2 on some appropriate M ′ ⊆ M R + .
Note that in quantum mechanical scattering experiments (in framework of model described by equation (1.1)) the phaseless scattering data |f | 2 can be measured directly, whereas the complete scattering amplitude f is not accessible for direct measurements. Therefore, Problem 1.2 is of particular interest from applied point of view in the framework of quantum mechanical inverse scattering. However, in the literature much more results are given on Problem 1.1 (see [ABR], [B], [BAR], [ChS], [EW], [E], [ER], [F1], [F2], [G], [HH], [HN], [I], [IN], [Me], [Mo], [Ne], [N1]- [N7], [R], [S], [VW], [WY] and references therein) than on Problem 1.2 (see chapter X of [ChS] and recent works [K1], [K2] and references therein, where in [K1], [K2] some similar problem is considered).

In particular, for Problem 1.1 it is well known that the scattering amplitude f at high energies uniquely determines v via the formulas

v(k -l) = f (k, l) + O(E -1/2 ) as E → +∞, (k, l) ∈ M E , (1.12) v(p) = (2π) -d ∫ D e ipx v(x)dx, p ∈ R d ;
(1.13) see, for example, [F1], [N7].

On the other hand, for Problem 1.2 it is well known that the phaseless scattering data |f | 2 on M R + do not determine v uniquely, in general. In particular, we have that

f y (k, l) = e i(k-l)y f (k, l), |f y (k, l)| 2 = |f (k, l)| 2 , (k, l) ∈ M R + , y ∈ R d , (1.14)
where f is the scattering amplitude for v and f y is the scattering amplitude for v y , where

v y (x) = v(x -y), x ∈ R d , y ∈ R d ;
(1.15) see, for example, Lemma 1 of [N6].

In the present work, in view of the aforementioned nonuniqueness for Problem 1.2 we modify this problem into Problem 1.3 formulated below. Let . . . , n}, (1.16) where f is the initial scattering amplitude for v satisfying (1.2) and f j is the scattering amplitude for

S = {|f | 2 , |f j | 2 , j = 1,
v j = v + w j , j = 1, . . . , n, (1.17) 
where w 1 , . . . , w n are additional a priori known background scatterers such that

w j ∈ L ∞ (R d ), supp w j ⊂ Ω j , Ω j is an open bounded domain in R d , Ω j ∩ D = ∅,
(1.18a)

w j ̸ = 0, w j 1 ̸ = w j 2 for j 1 ̸ = j 2 in L ∞ (R d ), j, j 1 , j 2 ∈ {1, . . . , n}. (1.18b)
Problem 1.3. Reconstruct potential v on R d from the phaseless scattering data S on some appropriate M ′ ⊆ M R + and for some appropriate background scatterers w 1 , . . . , w n .

Note also that Problems 1.1, 1.2, 1.3 can be considered as examples of ill-posed problems; see [LRS] for an introduction to this theory.

Problem 1.3 in dimension d = 1 was, actually, considered in [AS] for n = 1. However, to our knowledge, Problem 1.3 in dimension d ≥ 2 was not yet considered in the literature before the present work.

Results of the present work can be summarized as follows.

First, we give explicit formulas for solving Problem 1.3 in dimension d ≥ 2 for n = 2 and M ′ = Γ Λ defined by (1.7), (1.11) for any unbounded Λ ⊂ R + ; see Theorem 2.1, Remark 3.1 and Corollary 2.1 of Section 2. As an example of Λ for this result one can take

Λ = [E 0 , +∞[, E 0 > 0, or just Λ of Remark 2.1.
Second, we give a global uniqueness result for Problem 1.3 in dimension d ≥ 2 for n = 2 and M ′ = Γ Λ for any bounded infinite Λ ⊂ R + ; see Theorem 2.2 of Section 2. As an example of Λ for this result one can take

Λ =]E 0 -ε, E 0 + ε[, E 0 > 0, ε > 0, E 0 -ε ≥ 0, or just Λ of Theorem 2.2.
In addition, we indicate possible extensions of the aforementioned results to the case n = 1; see Propositions 2.1, 2.2 of Section 2.

The progress of the present work in comparison with the recent works [K1], [K2] includes explicit formulas for phaseless inverse scattering at high energies and no assumption that v ≥ 0. In addition, in the present work we consider inverse scattering from far field phaseless scattering data (and not from near field phaseless scattering data as in [K1], [K2]).

The main statements of the present work are presented in detail in the next section.

Main statements

2.1. Notations and related remarks. Let

û(p) = (2π) -d ∫ R d e ipx u(x)dx, p ∈ R d , (2.1)
where u is a test function on R d . In particular, we consider û = v, ŵj for u = v, w j , j = 1, . . . , n, where v, w j satisfy (1.2), (1.18). Note that if

u y (x) = u(x -y), x, y ∈ R d , (2.2a) then ûy (p) = e ipy û(p), p ∈ R d . (2.2b)
We represent v and ŵj as follows:

v(p) = |v(p)|θ(p), θ(p) = e iα(p) , ŵj (p) = | ŵj (p)|ω j (p), ω j (p) = e iβ j (p) , (2.3)
where p ∈ R d , j = 1, . . . , n.

We consider the following sets:

A y = {p ∈ R d : e 2ipy = 1}, y ∈ R d , (2.4) Z 0 = {p ∈ R d : |v(p)| = 0}, Z j = {p ∈ R d : | ŵj (p)| = 0}, j = 1, . . . , n, (2.5) Y j 1 ,j 2 = {p ∈ R d \(Z j 1 ∪ Z j 2 ) : (ω j 1 (p)) 2 = (ω j 2 (p)) 2 }, 1 ≤ j 1 , j 2 ≤ n, j 1 ̸ = j 2 . (2.6)
We have, in particular, that

A y is closed and M es A y = 0 in R d , y ̸ = 0. (2.7)
Assumptions (1.2) on v imply, in particular, that v is (complex-valued) real-analytic on R d . Therefore:

Z 0 is closed in R d ; M es Z 0 = 0 in R d if v ̸ ≡ 0.
(2.8)

Assumptions (1.18) on w j imply, in particular, that ŵj is (complex-valued) realanalytic on R d and ŵj ̸ ≡ 0, j = 1, . . . , n. Therefore, Z j is closed and M es Z j = 0 in R d , j = 1, . . . , n.

(2.9)

In addition, if

w j (x) = w 0 j (|x -y|), x ∈ R d , for some w 0 j , (2.10)
for some j and some y ∈ R d , then

Z j = {p ∈ R d : |p| ∈ R j }, (2.11)
where R j is a discrete set in R + without accumulation points (except +∞) and R j is independent of y.

In addition, taking into account (2.2), if

w j 2 (x) = w j 1 (x -y), x ∈ R d , j 2 ̸ = j 1 , (2.12)
for some j 1 , j 2 and some y ∈ R d \{0}, then

Y j 1 ,j 2 ⊆ A y .
(2.13)

Results on Problem 1.3 in dimension

d ≥ 2 for n = 2.
Theorem 2.1. Suppose that complex-valued v satisfies (1.2), complex-valued w j satisfies (1.18a), j = 1, 2, d ≥ 2. Then the following formulas hold: andc, ρ are defined by (3.10), (3.11). Suppose, in addition, that w 1 , w 2 satisfy (1.18b) and that

|v j (p)| 2 = lim p=k-l,(k,l)∈M E , E→+∞ |f j (k, l)| 2 for each p ∈ R d , j = 0, 1, 2, (2.14) ||v j (p)| 2 -|f j (k, l)| 2 | ≤ c(D j )N 3 j E -1/2 , p = k -l, (k, l) ∈ M E , E 1/2 ≥ ρ(D j , N j ), j = 0, 1, 2, (2.15) where v 0 = v, f 0 = f , D 0 = D, v j is defined by (1.17) and D j = D ∪ Ω j for j = 1, 2, ∥v j ∥ L ∞ (D j ) ≤ N j , j = 0, 1, 2,
M es Ȳ1,2 = 0 in R d , (2.16)
where Ȳ1,2 denotes the closure of Y 1,2 in R d . Then the following formula holds:

( cos α sin α ) = (sin(β 2 -β 1 )) -1 × ( sin β 2 -sin β 1 -cos β 2 cos β 1 ) ( (2|v|| ŵ1 |) -1 (|v 1 | 2 -|v| 2 -| ŵ1 | 2 ) (2|v|| ŵ2 |) -1 (|v 2 | 2 -|v| 2 -| ŵ2 | 2 )
) ,

(2.17)

α = α(p), |v| = |v(p)|, β j = β j (p), | ŵj | = | ŵj (p)|, j = 1, 2, p ∈ R d \(Z 0 ∪ Z 1 ∪ Z 2 ∪ Ȳ1,2 ),
where α, β 1 , β 2 are defined in (2.3). Theorem 2.1 is proved in Section 3.

Remark 2.1. Formulas (2.14), (2.15) of Theorem 2.1 remain valid with Γ E in place of M E , where Γ E is defined by (1.7). In addition, taking into account (2.9), (2.16) these formulas can be considered as explicit formulas for finding v on

R d from S = {|f | 2 , |f 1 | 2 , |f 2 | 2 } on Γ Λ and background w 1 , w 2 for any Λ = {E j ∈ R + : j ∈ N, E j → ∞ as j → ∞}, (2.18)
where Γ Λ is defined in (1.11).

Corollary 2.1. Let all assumptions of Theorem 2.1 on v and w 1 , w 2 be fulfilled. Let Λ be defined as in (2.18)

. Then S = {|f | 2 , |f 1 | 2 , |f 2 | 2 } on Γ Λ and background w 1 , w 2 uniquely determine v in L ∞ (R d ) via formulas (2.

14), (2.15) and the inverse Fourier transform.

In addition to results of Theorem 2.1, Remark 2.1 and Corollary 2.1 on the explicit reconstruction from phaseless scattering data at high energies, we have also the following global uniqueness result for the case of finite energies:

Theorem 2.2. Let v satisfy (1.2), w 1 , w 2 satisfy (1.18), (2.16), d ≥ 2, and v, w 1 , w 2 be real-valued. Let

Λ = {E j ∈ R + : j ∈ N, E j 1 ̸ = E j 2 for j 1 ̸ = j 2 , E j → E * as j → ∞}, E * > 0. (2.19) Then S = {|f | 2 , |f 1 | 2 , |f 2 | 2 } on Γ Λ and background w 1 , w 2 uniquely determine v in L ∞ (R d ).
Theorem 2.2 is proved in Section 4.

Results for the case n = 1.

Proposition 2.1. If complex-valued v satisfies (1.2), complex-valued w 1 satisfies (1.18a), d ≥ 2, then formulas (2.14), (2.15) hold for j = 0, 1. If, in addition,

w 1 ̸ = 0 in L ∞ (R d ), then cos(α -β 1 ) = (2|v|| ŵ1 |) -1 (|v 1 | 2 -|v| 2 -| ŵ1 | 2 ), α = α(p), |v| = |v(p)|, β 1 = β 1 (p), | ŵ1 | = | ŵ1 (p)|, p ∈ R d \(Z 0 ∪ Z 1 ), (2.20)
where α, β 1 are defined in (2.3). Proposition 2.1 is proved in Section 3.

Proposition 2.2. (A) There are not more than two different complex-valued potentials v satisfying (1.2) with given

S = {|f | 2 , |f 1 | 2 } on Γ Λ and background complex-valued w 1 satisfying (1.18a), w 1 ̸ = 0 in L ∞ (R d )
, where Λ is defined as in (2.18). (B) There are not more than two different real-valued potentials v satisfying (1.2) with given

S = {|f | 2 , |f 1 | 2 } on Γ Λ and background real-valued w 1 satisfying (1.18a), w 1 ̸ = 0 in L ∞ (R d ), where Λ is defined as in (2.19).
Proposition 2.2 is proved in Section 5.

Proofs of Proposition 2.1 and Theorem 2.1

3.1. Preliminaries. Let L ∞ σ (R d ) = {u ∈ L ∞ (R d ) : ∥u∥ σ < +∞}, ∥u∥ σ = ess sup x∈R d (1 + |x| 2 ) σ/2 |u(x)|, σ ≥ 0. (3.1) Note that v, w j , v j ∈ L ∞ σ (R d ) for each σ ≥ 0, (3.2)
where v, w j , v j , j ∈ {1, 2}, are the potentials of Proposition 2.1 and Theorem 2.1. We recall that

∥ < x > -s G + (k) < x > -s ∥ L 2 (R d )→L 2 (R d ) ≤ a 0 (d, s)|k| -1 , k ∈ R d , |k| ≥ 1, for s > 1/2, (3.3)
where G + (k) denotes the integral operator with the Schwartz kernel G + (x -y, k) of (1.4), < x > denotes the multiplication operator by the function (1 + |x| 2 ) 1/2 ; see [E], [J] and references therein. We will use the following detailed version of formula (1.12):

|f (k, l) -v(k -l)| ≤ 2(2π) -d a 0 (d, σ/2)(c 1 (d, σ)∥v∥ σ ) 2 E -1/2 , (k, l) ∈ M E , E 1/2 ≥ ρ 1 (d, σ, ∥v∥ σ ), σ > d, (3.4)
where a 0 (d, s) is the constant of (3.3),

c 1 (d, σ) = ( ∫ R d dx (1 + |x| 2 ) σ/2
) 1/2 , (3.5)

ρ 1 (d, σ, R) = max(2a 0 (d, σ/2)R, 1); (3.6) see formula (2.11) of [N7].

Proof of formulas (2.14), (2.15).

We have that

|v(k -l)| (3.1),(3.5) ≤ (2π) -d ∥v∥ σ (c 1 (d, σ)) 2 , (3.7) ||f (k, l)| 2 -|v(k -l)| 2 | = ||f (k, l)| -|v(k -l)||(|f (k, l)| + |v(k -l)|) ≤ |f (k, l) -v(k -l)|(2|v(k -l)| + |f (k, l) -v(k -l)|), (3.8)
where (k, l) ∈ M E , σ > d. Due to (3.4), (3.7), (3.8), we have that

||f (k, l)| 2 -|v(k -l)| 2 | ≤ 3(2π) -d ∥v∥ σ (c 1 (d, σ)) 2 |f (k, l) -v(k -l)| ≤ 6(2π) -2d a 0 (d, σ/2)((c 1 (d, σ)) 4 (∥v∥ σ ) 3 E -1/2 , (3.9) (k, l) ∈ M E , E -1/2 ≥ ρ 1 (d, σ, ∥v∥ σ ), σ > d. Formulas (2.14), (2.15) follow from (3.9) for v = v j , f = f j and from the possibility of choice of k = k E (p), l = l E (p) as in (1.7) for d ≥ 2. In addition, c(D) = 6(2π) -2d a 0 (d, σ/2)(c 1 (d, σ)) 4 (c 2 (d, σ)) 3 , (3.10) ρ(D, N ) = ρ 1 (d, σ, c 2 (D, σ)N ), (3.11) 
for some fixed σ > d, where

c 2 (D, σ) = sup x∈D (1 + |x| 2 ) σ/2 .
(3.12)

Proof of formula (2.20).

We have that

|v 1 | 2 (1.17) = |v + ŵ1 | 2 (2.3) = ||v|e iα + | ŵ1 |e iβ 1 | = (|v| cos α + | ŵ1 | cos β 1 ) 2 + (|v| sin α + | ŵ1 | sin β 1 ) 2 = |v| 2 + | ŵ1 | 2 + 2|v|| ŵ1 |(cos α cos β 1 + sin α sin β 1 ) on R d .
(3.13) Formula (2.20) follows from (3.13).

3.4. Proof of formula (2.17). Using (3.13) and analogous formula for v2 = v + ŵ2 , we obtain the system

( cos β 1 sin β 1 cos β 2 sin β 2 ) ( cos α sin α ) = ( (2|v|| ŵ1 |) -1 (|v 1 | 2 -|v| 2 -| ŵ1 | 2 ) (2|v|| ŵ2 |) -1 (|v 2 | 2 -|v| 2 -| ŵ2 | 2 ) ) , (3.14) on R d \(Z 0 ∪ Z 1 ∪ Z 2 ).
Formula (2.17) follows from (3.14).

3.5. Final remark. Proposition 2.1 and Theorem 2.1 follow from formulas (2.14), (2.15), (2.20), (2.17) proved in Subsections 3.2, 3.3, 3.4.

Proof of Theorem 2.2

Let ∆ E 0 ,E = {(k, l) ∈ Γ E : k -l ∈ B 2 √ E 0 }, 0 < E 0 ≤ E, (4.1)
where Γ E , B r are defined by (1.7), (1.8). Theorem 2.2 follows from:

(1) the formulas of Theorem 2.1 with

∆ E * ,E in place of M E and |p| < 2 √ E * , (2) the fact that v on B 2 √ E * \(Z 1 ∪ Z 2 ∪ Ȳ1,2 ) uniquely determines v on R d (since v is real-analytic on R d ), and
(3) the results of Lemma 4.1 for v and for v = v + w j , j = 1, 2. 

G + (x, k) = G + 0 (|x|, |k|), x ∈ R d , k ∈ R d \{0}, (4.3)
where G + is the function of (1.4) and G + 0 depends also on d;

(3) the properties that: 

|k E (p)| = E 1/2 for E ∈]p 2 /4, +∞[, p ∈ R d ; E 1/2 is holomorphic in E ∈ C\] -∞, 0]; (E -p 2 /4) 1/2 is holomorphic in E ∈ C\] -∞, p 2 /4]; p ∈ R d ; G + 0 (r, κ) is holomorphic in κ ∈ C for odd d ≥ 3 and in κ ∈ C\] -∞, 0]
ψ + (•, k) ∈ L 2 (D) for each k ∈ R d \{0}
under our assumptions on v.

In connection with basic properties of function G + and basic properties of the Lippmann-Schwinger integral equation (1.4) we refer also to [BS], [F2], [Me]. R d ). Therefore, it remains to consider the case when |v| ̸ ≡ 0.

Proof of Proposition 2.2

Proof of part (A). Due to formulas (

2.14), (2.15) with Γ E in place of M E , we have that S = {|f | 2 , |f 1 | 2 } on Γ Λ uniquely determine |v|, |v 1 | on R d . If |v| ≡ 0, then v = 0 in L ∞ (
Due to (2.8), (2.9), j = 1, and continuity of v, ŵ1 , we can choose 

p ′ ∈ R d , r ′ > 0 such that |v(p)| ̸ = 0, | ŵ1 (p)| ̸ = 0 for p ∈ B p ′ ,r ′ , (5.1) B p ′ ,r ′ = {p ∈ R d : |p -p ′ | < r ′ }. (5.2) Therefore, formula (2.20) for cos(α -β 1 ) holds for each p ∈ B p ′ ,r ′ . If cos(α -β 1 ) ≡ 1 on B p ′ ,r ′ , then α ≡ β 1 (mod 2π) on B p ′ ,r ′ . If cos(α -β 1 ) ≡ -1 on B p ′ ,r ′ , then α ≡ β 1 + π (mod 2π) on B p ′ ,

  specified by the following asymptotics as |x| → ∞:ψ + (x, k) = e ikx + c(d, |k|) e i|k||x| |x| (d-1)/2 f (k, |k|) = -πi(-2πi) (d-1)/2 |k| (d-3)/2 ,(1.3) 

  for even d ≥ 2, where r > 0; (4) the result that (1.4) with k = k E (p) is a Fredholm integral equation of the second kind for ψ + (•, k) ∈ L 2 (D) with holomorphic dependence on the parameter E ∈ C\] -∞, p 2 /4] at fixed p ∈ R d ; (5) the result that (1.4) is uniquely solvable for

  |f (k E (p), l E (p))| 2 is real-analytic in E ∈]p 2 /4, +∞[ for fixed p ∈ R d , where k E (p), l E (p) are defined in (1.7 ); (b) |f | 2 on Γ Λ uniquely determines |f | 2 on ∆ E * ,E for each E ≥ E * ,where Γ Λ , Λ are defined in (1.11), (2.19). Statement (b) of Lemma 4.1 follows from statement (a) of Lemma 4.1 and the property that the accumulation point E * ∈]p 2 /4, +∞[ if p ∈ B 2 Let v satisfy (1.2) and be real-valued. Then f (k E (p), l E (p)) admits holomorphic extension in E to an open N in C, where ]p 2 /4, +∞[⊂ N , at fixed p ∈ R d .

	Lemma 4.1. Let v satisfy (1.2) and be real-valued. Then: E * . In turn, statement (a) of Lemma 4.1 follows from the presentation |f | 2 = f f and from Lemma 4.2. Lemma 4.2. Lemma 4.2 follows from: (1) the integral equation (1.4) for ψ + on D and the presentation (1.5) for f , where k = k E (p), l = l E (p); (a) √ (2) the property that	(4.2)

  r ′ . And in both cases v = |v|e iα is uniquely determined on B p ′ ,r ′ by |v|, |v 1 |, ŵ1 = | ŵ1 |e iβ 1 on B p ′ ,r ′ . Due to continuity of e iα , e iβ 1 on Bp ′ ,r ′ we can choose p ′′ ∈ B p ′ ,r ′ and r ′′ ∈]0, r ′ [ such that -1 < c min ≤ cos(α -β 1 ) ≤ c max < 1 on B p ′′ ,r ′′ (5.3)for some fixed c min , c max . Therefore, due to formula (2.20) for cos(α -β 1 ) and continuity of α, β 1 (mod 2π) on B p ′′ ,r ′′ we have that eitherα = β 1 + arc cos((2|v|| ŵ1 |) -1 (|v 1 | 2 -|v| 2 -| ŵ1 | 2 )) (5.4a) or α = β 1 -arc cos((2|v|| ŵ1 |) -1 (|v 1 | 2 -|v| 2 -| ŵ1 | 2 )) (5.4b) (mod 2π) on B p ′′ ,r ′′ , where arc cos takes values in [0, π]. Therefore, there are not more than two different v = |v|e iα on B p ′′ ,r ′′ with given |v|, |v 1 |, ŵ1 = | ŵ1 |e iβ 1 on B p ′′ ,r ′′ . In turn, v on B p ′′ ,r ′′ uniquely determines v on R d due to real analyticity of v. This completes the proof of part (A) of Proposition 2.2. Proof of part (B). Due to statement (b) of Lemma 4.1 (for v and for v = v + w 1 ), S = {|f | 2 , |f 1 | 2 } on Γ Λ uniquely determine S on ∆ E * ,E . Due to formulas (2.14), (2.15) with ∆ E * ,E in place of M E and |p| < 2 √ E * , we have that S on ∆ E * ,E uniquely determine |v|, |v 1 | on B 2 √ E * . Then in a completely similar way with the proof of part (A) of Proposition 2.2 we obtain that there are not more than two different v on B 2 √ E * with given |v|, |v 1 |, ŵ1 on B 2 uniquely determines v on R d due to real analyticity of v.This completes the proof of part(B).

	√	E * .
		Finally, v on B 2 √	E

*