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REAL HARMONIZABLE MULTIFRACTIONAL STABLE
PROCESS AND ITS LOCAL PROPERTIES

MARCO DOZZI AND GEORGIY SHEVCHENKO

Abstract. A real harmonizable multifractional stable process is

defined, its Hölder continuity and localizability are proved. The

existence of local time is shown and its regularity is established.

Introduction

Fractional processes are one of the main tools for modeling the phe-

nomena of long-range dependence in natural sciences, financial math-

ematics, telecommunication networks etc. Due to the role played by

Gaussian distribution, the most popular and the most intensively in-

vestigated fractional process is the fractional Brownian motion BH , a

centered Gaussian process with the covariance function E
[
BH

t B
H
s

]
=

1
2
(t2H+s2H−|t− s|2H . The parameterH ∈ (0, 1) is called the Hurst pa-

rameter and measures the smoothness of trajectories of the process (it

is approximately the Hölder exponent of the process) and the “depth of

memory” of the process (for H > 1/2 the process exhibits the property

of long-range dependence).

From the point of view of possible applications, there are two main

drawbacks of fractional Brownian motion. The first one comes from the

Gaussian distribution, which has extremely light tails, though many
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data coming from applications are heavy-tailed. The second one is

the homogeneity of increments that does not allow to model processes

having different regularity and different time dependence properties at

different time instances. A related problem is a self-similarity property,

which briefly means that the properties of the process are the same

under each scale. However, the absence of such property is apparent

in many cases and mostly evident in stock price processes: long-term

data is much smoother than wild intraday quotes.

The light tails problem is worked around usually by considering frac-

tional stable processes. In contrast to the Gaussian case, where the co-

variance structure determines whole distribution of a process, so there

is essentially one fractional process, in stable case there are many of

them: linear fractional stable process, harmonizable fractional stable

process, Liouville stable process etc. (See book [10] for an extensive

review of different fractional processes.)

In turn, the homogeneity problem is solved by considering multifrac-

tional processes. Recently, several multifractional extensions of frac-

tional Brownian motion were defined, based on different representations

of the fractional Brownian motion: moving average (linear) multifrac-

tional Brownian motion [8], Volterra multifractional Brownian motion

[9], harmonizable multifractional Brownian motion [1].

In this paper, we consider a process called real harmonizable multi-

fractional stable process which has the both properties of heavy tails

and multifractionality, which can be regarded both as a multifractional

generalization of a harmonizable fractional stable process and as a sta-

ble generalization of harmonizable multifractional Brownian motion,

and can be used to improve models involving either kind of processes.
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Our main interest in this paper is in path properties of this process:

continuity, existence and joint continuity of local times. For fractional

harmonizable stable process continuity was proved in [3] and local times

properties were considered in [11].

The paper is organized as follows. In Section 1 we give necessary

pre-requisites on stable distributions and local times. Section 2 focuses

on path properties of the process considered: almost sure continuity

and localizability. Section 3 is devoted to existence and properties of

local times.

1. Pre-requisites

1.1. Stable random variables and processes. In this paper we fo-

cus only on symmetric α-stable (SαS) random variables with α ∈ (1, 2).

We recall that a random variable ξ is called SαS with a scale parameter

sα if it has a characteristic function

E
[
eiλξ

]
= e−|σλ|α .

An important tool to construct stable random variables is inde-

pendently scattered rotationally invariant complex SαS random mea-

sure with the Lebesgue control measure, which is a complex-valued

σ-additive random measure M = Mα on R defined by the following

properties.

(1) (Rotationally invariant complex SαS) for any Borel set A ⊂ R

and any θ ∈ R the distribution of eiθM(A) is the same as of

M(A), and ReM(A) is SαS with the scale parameter λ(A).

(2) (Independently scattered) for any disjoint Borel setsA1, . . . , An ⊂

[0,∞) the values M(A1), . . . ,M(An) are independent.

(3) For any Borel set A ⊂ R M(−A) =M(A).
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For a function f : R → C such that

(1.1) f(−x) = f(x) for all x ∈ R

and

∥f∥αLα(R) =

∫
R
|f(x)|α dx <∞

it is possible to define a stochastic integral∫
R

f(x)M(dx),

which appears to be a real SαS random variable with the scale param-

eter ∥f∥αLα(R).

In other words, stochastic integral gives an isometry between the

space of SαS real random variables spanned by the measure M with

the norm

∥ξ∥α = c(ξ) = − log E
[
eiξ
]

and the subspace of Lα(R) consisting of functions satisfying (1.1), i.e.

having adjoint values at symmetric points.

We end this subsection with the so-called LePage representation of

processes given as transformations of SαS random measure. For details

see [6, 3].

Assume we have a measurable function f : R+ × R → C such that

for each t ≥ 0 the function f(t, ·) satisfies (1.1) and belongs to Lα(R).

Define a process {Xt, t ≥ 0} by

(1.2) Xt =

∫
R
f(t, x)M(dx).

The next proposition is a slight modification of [4], the proof is

exactly the same as there with a slight adjustment for the property

M(−dx) =M(dx) in our case, so we skip it.
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Theorem 1.1. Let φ be arbitrary probability density on R equivalent

to the Lebesgue measure. Also let {Γk, k ≥ 1}, {ξk, k ≥ 1}, {gj, j ≥ 1}

be three independent sets of random variables, such that

• {Γk, k ≥ 1} is a sequence of arrivals of Poisson process with

unit intensity;

• {ξk, k ≥ 1} is a sequence of independent random variables with

density φ;

• {gk, k ≥ 1} are independent rotationally invariant complex Gauss-

ian with E [ |Re gk|α ] = 1.

Then the process {Xt, t ≥ 0} defined by (1.2) has the same finite-

dimensional distributions as the process

(1.3) X ′
t = CαRe

∞∑
k=1

Γ
−1/α
k φ(ξk)

−1/αf(t, ξk)gk,

where Cα =
(∫∞

0
x−α sinxdx

)1/α
, and this series converges almost surely

for each t.

1.2. Local times. Marco

2. Definition and pathwise properties of real

harmonizable stable process

Let M be an independently scattered rotationally invariant complex

SαS measure on R defined in Subsection 1.1.

Throughout the paper we will denote by C any constant, which does

not depend on any variables, unless otherwise is stated. Of course, C

may change from line to line.
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Recall that a real harmonizable fractional stable process with Hurst

parameter H is defined as

(2.1) ZH(t) =

∫
R

eitx − 1

|x|1/α+H
M(dx).

A multifractional generalization of this definition consists, naturally, in

letting the Hurst parameter depend on t.

Definition 2.1. A real harmonizable multifractional stable process (rhmsp)

with Hurst function H(t) and a stability parameter α is defined as

(2.2) X(t) =

∫
R

eitx − 1

|x|1/α+H(t)
M(dx).

Clearly, X(t) = ZH(t)(t). We assume that 0 < Ĥ = inftH(t) ≤

H(t) ≤ suptH(t) = Ȟ < 1.

2.1. Norm estimates for the increments.

Lemma 2.2. For all H1, H2 ∈ (Ĥ, Ȟ) it holds

∥∥ZH1
t − ZH2

t

∥∥
α
≤ C |H1 −H2| , t ∈ [0, T ].

Proof. Write

∥∥ZH1
t − ZH2

t

∥∥α
α
=

∫
Rd

∣∣eitx − 1
∣∣α |x|−1

∣∣|x|−H1 − |x|−H2
∣∣αdx

≤ C

∫
R
(1 ∧ |x|)α|x|−1| log |x||α(|x|−αH1 ∨ |x|−αH2) |H1 −H2|α dx

= C |H1 −H2|α
(∫

|x|<1

|x|α(1−Ĥ)−1| log |x||αdx+
∫
|x|>1

|x|−1−αȞ | log |x||αdx
)

≤ C |H1 −H2| ,

whence we have the assertion. �
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We assume that H is Hölder continuous with order greater than Ȟ,

i.e., there exists γ > Ȟ s.t. for all t, s ≥ 0

|H(t)−H(s)| ≤ C|t− s|γ.

Lemma 2.3. There exist positive constants C1, C2 > 0 such that for

any H ∈ [Ĥ, Ȟ] one has

C1|t− s|H ≤
∥∥ZH

t − ZH
s

∥∥
α
≤ C2|t− s|H

locally uniformly in s, t.

Proof. Write∥∥ZH
t − ZH

s

∥∥α
α
=

∫
R

∣∣eitx − eisx
∣∣α |x|−1−αHdx ≤ C

∫
R
(1 ∧ |t− s| |x|)α|x|−1−αHdx

= C

(
|t− s|α

∫
|x|<1/|t−s|

|x|α(1−H)−1dx+

∫
|x|>1/|t−s|

|x|−1−αHdx

)
≤ C

(
|t− s|α−α(1−H) + |t− s|αH

)
= C |t− s|αH .

To prove the lower bound, observe that there exist positive constants

c1, c2 such that |eiy − 1| > c1 |y| for |y| < c2 and write∥∥ZH
t − ZH

s

∥∥α
α
≥
∫
|x|<c2/|t−s|

∣∣ei(t−s)x − 1
∣∣α |x|−1−αHdx

≥ C |t− s|α
∫
|x|<c2/|t−s|

|x|α(1−H)−1dx = C |t− s|αH .

�

Lemmata 2.2 and 2.3 imply the following

Proposition 2.4. There exist δ, C1, C2 > 0 s.t. for rhmsp X given by

(2.2) and |t− s| < δ it holds

(2.3) C1 |t− s|Ĥ(t,s) ≤ ∥X(t)−X(s)∥α ≤ C2|t−s|Ȟ(t,s), t, s ∈ [0, T ]

where Ĥ(t, s) = min[t,s]H(u), Ȟ(t, s) = max[t,s]H(u).
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Proof. Let Ȟ(t, s) = H(ť), Ĥ(t, s) = H(t̂).

∥X(t)−X(s)∥α ≤
∥∥∥ZH(t)

t − Z
Ȟ(t,s)
t

∥∥∥
α
+
∥∥∥ZH(t)

s − ZȞ(t,s)
s

∥∥∥
α
+
∥∥∥ZȞ(t,s)

t − ZȞ(t,s)
s

∥∥∥
α

≤
∣∣H(t)−H(ť)

∣∣+ ∣∣H(s)−H(ť)
∣∣+ C|t− s|Ȟ(t,s) ≤ C|t− s|γ + C|t− s|Ȟ(t,s)

Since Ĥ(t, s) < γ, we get the upper bound.

The left had one is proved similarly:

C |t− s|Ĥ(t,s) ≤
∥∥∥ZĤ(t,s)

t − ZĤ(t,s)
s

∥∥∥
α

≤ ∥X(t)−X(s)∥α +
∥∥∥ZH(t)

t − Z
Ĥ(t,s)
t

∥∥∥
α
+
∥∥∥ZH(t)

s − ZĤ(t,s)
s

∥∥∥
α

≤ ∥X(t)−X(s)∥α +
∣∣H(t)−H(t̂)

∣∣+ ∣∣H(s)−H(t̂)
∣∣

≤ ∥X(t)−X(s)∥α + C|t− s|γ.

�

2.2. Hölder continuity of rhmsp. In this subsection we prove a

Hölder continuity of rhmsp. Our argument is a slight modification of

the one found in [3] for harmonizable fractional stable motion.

Theorem 2.5. The rhmsp X has a version, which is almost surely

Hölder continuous of any order κ < Ĥ and moreover almost surely

satisfies

sup
t,s∈[0,T ]
|t−s|<δ

|X(t)−X(s)| = o(δĤ |log δ|1/α+1/2+ε), δ → 0+,

for all T, ε > 0.

Proof. Let T > 0 be fixed and throughout this proof t, s ∈ [0, T ].

We use the LePage representation (1.3). To simplify the notation

we write this representation for the process X itself rather than for its
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version:

Xt = Cα Re
∑
k≥1

Γ
−1/α
k φ(ξk)

−1/αf(t, ξk)gk,

where f(t, x) = (eitx − 1) |x|−1/α−H(t), φ(x) = Kη |x|−1 |log |x||−1−η,

η > 0 is arbitrary but fixed, Kη is a normalizing constant.

Conditionally on Γ and ξ, it has the Gaussian distribution, so

E
[
(Xt −Xs)

2 | Γ, ξ
]
= C2

α

∑
k≥1

Γ
−2/α
k φ(ξk)

−2/α |f(t, ξk)− f(s, ξk)|2 ≤ Ca(u),

where

a(z) =
∑
k≥1

Γ
−2/α
k φ(ξk)

−2/α sup
|t−s|<u

|f(t, ξk)− f(t, ξk)|2 .

Write

sup
|t−s|<u

|f(t, ξk)− f(t, ξk)|2

≤ sup
|t−s|<u

∣∣(eitx − eisx
∣∣ |x|−1/α−H(t) + sup

|t−s|<u

∣∣eisx − 1
∣∣ |x|−1/α

∣∣x−H(t) − x−H(s)
∣∣

≤ C(u |x| ∧ 1) |x|−1/α (|x|−Ĥ ∨ |x|−Ȟ)

+C(|x| ∧ 1) |x|−1/α (|x|−Ĥ ∨ |x|−Ȟ) |log |x|| sup
|t−s|<u

|H(t)−H(s)|

≤ C |x|−1/α (|x|−Ĥ ∨ |x|−Ȟ)
(
(u |x| ∧ 1) + (|x| ∧ 1) |log |x||uγ

)
.

Keeping this estimate in mind, take now the expectation Eξ [ a(z) ] with

respect to the variables ξ only:

Eξ [ a(z) ] ≤ CS(Γ)(I1 + I2),
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where

I1 =

∫
R
|x|−2/α (|x|−2Ĥ ∨ |x|−2Ȟ)(u |x| ∧ 1)2φ1−2/α(x)dx

= 2

∫ ∞

0

x−1(x−2Ĥ ∨ x−2Ȟ)(ux ∧ 1)2 |log x|(1+η)(2/α−1) dx

≤ Cu2Ĥ
∫ ∞

0

z−1(z−2Ĥ ∨ z−2Ȟ)(|z| ∧ 1)2 |log(z/u)|(1+η)(2/α−1) dz

≤ Cu2Ĥ |log u|(1+η)(2/α−1) ,

I2 = u2γ
∫
R
|x|−2/α (|x|−2Ĥ ∨ |x|−2Ȟ)(|x| ∧ 1)2 |log |x||2 φ1−2/α(x)dx

= 2u2γ
∫ ∞

0

x−1(x−2Ĥ ∨ x−2Ȟ)(x ∧ 1)2 |log x|(1+η)(2/α−1)+2 dx ≤ Cu2γ ,

S(Γ) =
∑
k≥1

Γ
−2/α
k <∞ a.a. Γ,

where the last is true owing to the fact that Γj/j → 1, j → ∞, almost

surely by the strong law of large numbers, and 2/α > 1. Therefore

Eξ [ a(z) ] ≤ C(Γ)u2Ĥ |log u|(1+η)(2/α−1)

almost surely.

Define b(z) = u2Ĥ |log u|2(1+η)/α. We have

Eξ

[∑
n≥1

a(2−n)

b(2−n)

]
≤ C(Γ)

∑
n≥1

n−1−η,

so for almost all ξ,Γ we have a(2−n)/b(2−n) → 0, n→ ∞. It is easy to

see that b(2t) ≤ Cb(t), and a(z) is increasing, so from the last conver-

gence we get a(u)/b(u) → 0, u→ 0+, or a(u) = oξ,Γ(u
2Ĥ |log u|2(1+η)/α).

So we have

E
[
(Xt −Xs)

2 | Γ, ξ
]
= oξ,Γ(u

2Ĥ |log u|2(1+η)/α), u→ 0 + .
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Now recall once more that X is Gaussian given ξ and Γ, so by Lemma

1 of [3]

sup
|t−s|<δ

|Xt −Xs| = oω(δ
Ĥ |log δ|1/α+η/α+1/2), δ → 0+,

whence we get the statement of the theorem. �

2.3. Localizability of rhmsp. We start this section by giving Fal-

coner’s notion of localizability.

Definition 2.6. Process X is called H-localizable at a point t with the

local version Y if

(2.4)

{
1

δH
(Xt+δu −Xt), u ≥ 0

}
fdd−→ {Yu, u ≥ 0} , δ → 0 + .

(Here
fdd−→ stands for the convergence of finite-dimensional distribu-

tions.)

It is called strongly H-localisable at a point t if in (2.4) the conver-

gence is in the sense of the distribution on the path space.

Some authors use the term local asymptotic self-similarity for local-

izability, which reflects the fact that the local version Y is an H-self-

similar process.

Theorem 2.7. The rhmsp X is localizable at any point t with local

version being real harmonizable fractional stable process with Hurst pa-

rameter H(t).

Proof. Define

Y δ
t (u) =

1

δH(t)
(X(t+ δu)−X(t)).

We will assume throughout that δ < 1.
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For u1, . . . , un > 0, λ1, . . . , λn ∈ R denote sk = t+ δuk and write

− log E

[
exp

{
i

n∑
k=1

λkY
δ
t (uk)

}]

= − log E

[
exp

{
i

δH(t)

∫
R

1

|x|1/α
n∑

k=1

λk

[eiskx − 1

|x|H(sk)
− eitx − 1

|x|H(t)

]
M(dx)

}]

=

{
1

δαH(t)

∫
R

1

|x|

∣∣∣∣∣
n∑

k=1

λk

[eiskx − 1

|x|H(sk)
− eitx − 1

|x|H(t)

]∣∣∣∣∣
α

dx

}
.

Now estimate the integrand multiplied by |x|:∣∣∣∣∣
n∑

k=1

λk

[eiskx − 1

|x|H(sk)
− eitx − 1

|x|H(t)

]∣∣∣∣∣
α

≤ C
n∑

k=1

|λk|α
∣∣∣∣∣eiskx − 1

|x|H(sk)
− eitx − 1

|x|H(t)

∣∣∣∣∣
α

≤ C
n∑

k=1

|λk|α
(∣∣eiskx − 1

∣∣α ∣∣∣|x|−H(sk) − |x|−H(t)
∣∣∣α + |x|−αH(t)

∣∣eiskx − eitx
∣∣α)

≤ C

n∑
k=1

|λk|α
(
|log |x||α |x|−αθ |H(sk)−H(t)|α (1 ∧ |x|)α + |x|−αH(t) |sk − t|α (1 ∧ |x|)α

)
≤ C

n∑
k=1

|λk|α (|x|−αȞ ∨ |x|−αĤ)(1 ∧ |x|)α
[
|sk − t|αγ |log |x||α + |sk − t|α

]
≤ C

n∑
k=1

|λk|α δαγ
(
|x|α(1−Ĥ) 1I|x|<1 + |x|−αȞ 1I|x|>1

)
(1 + |log |x||α)

≤ Cδαγ
(
|x|α(1−Ĥ) 1I|x|<1 + |x|−αȞ 1I|x|>1

)
(1 + |log |x||α).

We remark that the constants here depend only on α, t, s1, . . . , sn and

λ1, . . . , λn.

Now

1

δαH(t)

1

|x|

∣∣∣∣∣
n∑

k=1

λk

[eiskx − 1

|x|H(sk)
− eitx − 1

|x|H(t)

]∣∣∣∣∣
α

≤ C
(
|x|α(1−Ĥ)−1 1I|x|<1 + |x|−1−αȞ 1I|x|>1

)
(1 + |log |x||α),
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which is integrable over R. Hence by the dominated convergence the-

orem

− lim
δ→0+

log E

[
exp

{
i

n∑
k=1

λkY
δ
t (uk)

}]

=

∫
R

1

|x|
lim
δ→0+

{
1

δαH(t)

∣∣∣∣∣
n∑

k=1

λk

[eiskx − 1

|x|H(sk)
− eitx − 1

|x|H(t)

]∣∣∣∣∣
α

dx

}

=

∫
R

1

|δx|

∣∣∣∣∣
n∑

k=1

λk lim
δ→0+

1

δH(t)

[ei(t+δuk)x − 1

|x|H(t+δuk)
− eitx − 1

|x|H(t)

]∣∣∣∣∣
α

d(δx)

=

∫
R

1

|y|

∣∣∣∣∣
n∑

k=1

λk lim
δ→0+

[eiuky − e−ity/δ

|y|H(t+δuk)
δH(t+δuk)−H(t) − 1− e−ity/δ

|y|H(t)

]∣∣∣∣∣
α

dy

=

∫
R

1

|y|

∣∣∣∣∣
n∑

k=1

λk lim
δ→0+

[eiuky − 1

|y|H(t)
+ (eituk − e−ity/δ)Rδ

]∣∣∣∣∣
α

dy,

where

Rδ =
1

|y|H(t+δuk)
δH(t+δuk)−H(t) − 1

|y|H(t)
=

1

|y|H(t)

[( δ

|y|

)H(t+δuk)−H(t)

− 1
]
.

Estimate∣∣∣∣log ( δ

|y|

)H(t+δuk)−H(t)
∣∣∣∣ ≤ |H(t+ δuk)−H(t)| (|log δ|+ |log |y||)

≤ Cδγ(|log δ|+ |log |y||) → 0, δ → 0 + .

Thus Rδ → 0, δ → 0+.

Finally,

(2.5)

lim
δ→0+

log E

[
exp

{
i

n∑
k=1

λkY
δ
t (uk)

}]
= −

∫
R

1

|y|

∣∣∣∣∣
n∑

k=1

λk

[eiuky − 1

|y|H(t)

]∣∣∣∣∣
α

dy,

which is exactly the logarithm of the characteristic function of ZH(t)(u1), . . . ,Z
H(t)(un),

as required. �

Remark 2.8. By using the same kind of argument as the one used

in the proof of continuity, it is possible to prove tightness of laws of
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processes on the space of continuous paths and whence derive a strong

localizability.

3. Local times for rmhsp

3.1. Properties of the local time. We start this section by showing

the existence and square integrability of a local time.

Proposition 3.1. The rhmsp X has a square integrable local time

L(t, x).

Proof. According to [2], it is enough to check the following “condition

(H)”: there exists ρ > 0 and H ∈ (0, 1) and ψ ∈ L1(R) such that

(3.1) E
[
exp

{
iλ
(
X(t)−X(s)

)} ]
≤ ψ(λ |t− s|H).

But

E
[
exp

{
iλ
(
X(t)−X(s)

)} ]
= exp {− |λ|α ∥X(t)−X(s)∥αα}

≤ exp
{
−C |λ|α ∥t− s∥αĤ(t,s)

}
≤ exp

{
−C |λ|α ∥t− s∥αȞ

}
,

whence we have (3.1) with ψ = exp {−|x|α}, H = Ĥ. �

In order to prove further properties, we need

Definition 3.2 ([7]). A stable random process X is ∥·∥α locally non-

deterministic (LND) on T if

(L1) ∥X(t)∥α > 0 for all t ∈ T;

(L2) ∥X(t)−X(s)∥α > 0 for all sufficiently close distinct s, t ∈ T;

(L3) for any n > 1 there exists Cn s.t. for any t1 < t2 < · · · < tn ∈ T

sufficiently close together one has

(3.2)

∥X(tn)− span {X(t1), . . . , X(tn − 1)}∥α ≥ Cn ∥X(tn)−X(tn−1)∥ .
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In [7] it is shown that the local non-determinism property is equiv-

alent to the property of ∥·∥α locally approximately independent incre-

ments, which consists of properties (L1), (L2) above and

(L3a) for any n > 1 there exists Cn s.t. for any t1 < t2 < · · · < tn ∈ T

sufficiently close together and any a1, . . . , an ∈ R one has

(3.3)

∥∥∥∥∥a1X(t1) +
n−1∑
k=1

ak
(
X(tk+1)−X(tk)

)∥∥∥∥∥
α

≥ Cn

(
∥a1X(t1)∥α +

n−1∑
k=1

∥∥ak(X(tk+1)−X(tk)
)∥∥

α

)
.

Theorem 3.3. For any ε > 0 the rhmsp X is LND on [ε, T ].

Proof. The main difficulty is to prove property (L3) of LND, as prop-

erty (L1) is obvious and property (L2) follows from (2.3).

We proceed in two steps.

Step I. We prove LND for a modification of rmhsp X defined by

(3.4) Y (t) =

∫
R
(1− e−itx)(ix)−H(t)−1/αM(dx),

where

(ix)−K = |x|−K eiπK signx/2.

The Fourier transform of the function fY (t, x) = (1−e−itx)(ix)−H(t)−1/α

(w.r.t. the second variable) on Lα(R) is

(3.5) f̂Y (t, x) =
1

Γ(H(t) + 1/α)

(
(t− x)

H(t)−1/β
+ − (−x)H(t)−1/β

+

)
,

where β = α/(α− 1) is the exponent adjoint to α, see Lemma A.2.

In order to check property (L3) for Y , we have to find a good lower

bound to∥∥∥∥∥Y (tn)−
n−1∑
k=1

ukY (tk)

∥∥∥∥∥
α

=

∥∥∥∥∥fY (tn, ·)−
n−1∑
k=1

ukfY (tk, ·)

∥∥∥∥∥
Lα(R)

.
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It is fortunately given by the Hausdorff-Young inequality:∥∥∥∥∥fY (tn, ·)−
n−1∑
k=1

ukfY (tk, ·)

∥∥∥∥∥
Lα(R)

≥ C

∥∥∥∥∥f̂Y (tn, ·)−
n−1∑
k=1

ukf̂Y (tk, ·)

∥∥∥∥∥
Lβ(R)

≥ C
∥∥∥f̂Y (tn, ·)∥∥∥

Lβ([tn−1,tn])
= C

(
1

Γ(H(t) + 1/α)β

∫ tn

tn−1

(tn − x)βH(t)−1

)1/β

≥ C(tn − tn−1)
H(t) ≥ C ∥X(tn)−X(tn−1)∥α

for tn and tn−1 close enough. (We have used the fact that f̂Y (tk, x)

vanishes on [tn, tn−1] for k < n in the middle, and inequality (2.3) in

the last step.) But it is straightforward to check (see a much stronger

statement below in the Step 2) that

∥X(tn)−X(tn−1)∥α ≥ ∥Y (tn)− Y (tn−1)∥α − C|H(tn)−H(tn−1)|

≥ ∥Y (tn)− Y (tn−1)∥α − C|tn − tn−1|γ ≥ C ∥Y (tn)− Y (tn−1)∥α ,

which gives the desired LND property.

Step 2. Here we show how the property of locally asymptotically

independent increments for Y implies that for X. Denote fX(t, x) =

(eitk+1x − 1) |x|−H(t)−1/α and write for 0 < t1 < t2 < · · · < tn < T and

a1, . . . , an ∈ R (we put t0 = 0 for the sake of simplicity)∥∥∥∥∥
n−1∑
k=1

ak
(
X(tk+1)−X(tk)

)∥∥∥∥∥
α

=

∥∥∥∥∥
n−1∑
k=0

ak
(
fX(tk+1, ·)− fX(tk, ·)

)∥∥∥∥∥
Lα(R)

=

∥∥∥∥∥eiπ(H(t1)+1/α) signx/2

n−1∑
k=0

ak
(
fX(tk+1, ·)− fX(tk, ·)

)∥∥∥∥∥
Lα(R)

≥

∥∥∥∥∥
n−1∑
k=0

ak
(
fY (tk+1, ·)− fY (tk, ·)

)∥∥∥∥∥
Lα(R)

−
n−1∑
k=0

∥∥ak(∆(tk+1, ·)−∆(tk, ·)
)∥∥

Lα(R)

=

∥∥∥∥∥
n−1∑
k=0

ak
(
Y (tk+1)− Y (tk)

)∥∥∥∥∥
α

−
n−1∑
k=0

∥∥ak(∆(tk+1, ·)−∆(tk, ·)
)∥∥

Lα(R)
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where

∆(t, x) = eiπ(H(t1)+1/α) sign x/2fX(t, x)− fY (t, x)

= eiπ signx/(2α)(eiπH(t1) signx/2 − eiπH(t) signx/2)fX(t, x).

Write

∥∆(tk+1, ·)−∆(tk, ·)∥Lα(R)

≤
∥∥(eiπH(tk+1) signx/2 − eiπH(tk) signx/2)fX(tk+1, ·)

∥∥
Lα(R)

+
∥∥(eiπH(tk) signx/2 − eiπH(t1) signx/2)

(
fX(tk+1, ·)− fX(tk, ·)

)∥∥
Lα(R)

≤ C |H(tk+1)−H(tk)| ∥fX(tk+1, ·)∥Lα(R)

+C |H(tk+1)−H(t1)|
∥∥fX(tk+1, ·)− fX(tk, ·)

)∥∥
Lα(R)

≤ C |tk+1 − tk|γ ∥X(tk+1)∥α + C |tk+1 − t1|γ ∥X(tk)−X(tk + 1)∥α

= o
(
∥X(tk+1)−X(tk)∥α

)
, |tn − t1| → ∞.

Thanks to LND property of Y we can write

∥∥∥∥∥
n−1∑
k=0

ak
(
Y (tk+1)− Y (tk)

)∥∥∥∥∥
α

≥
n−1∑
k=0

∥∥ak(Y (tk+1)− Y (tk)
)∥∥

α
,

and similarly to the above we write

∥Y (tk+1)− Y (tk)∥α ≥ ∥X(tk+1)−X(tk)∥α − ∥∆(tk+1, ·)−∆(tk, ·)∥Lα(R)

≥ ∥X(tk+1)−X(tk)∥α − o
(
∥X(tk+1)−X(tk)∥α

)
,
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so finally ∥∥∥∥∥
n−1∑
k=1

ak
(
X(tk+1)−X(tk)

)∥∥∥∥∥
α

≥
n−1∑
k=1

|ak|
(
∥X(tk+1)−X(tk)∥α − o

(
∥X(tk+1)−X(tk)∥α

))

≥ Cn

n−1∑
k=1

|ak|
∥∥(X(tk+1)−X(tk)

)∥∥
α

for |tn − t1| small enough. �

Thanks to [7, Theorem 4.1] and estimates for the norms of increments

of rmhsp X we have the following result.

Theorem 3.4. The local time L(t, x) of the rhmsp X is jointly con-

tinuous in (t, x) for t > 0, moreover, for any κ < (1/Ȟ − 1)/2 it is

κ-Hölder continuous in x.

Appendix A. Fourier transform

In this appendix we compute the Fourier transform which is used by

many authors, however, we were not able to find a rigorous derivation.

Below we define the Fourier transform

f̂(u) =

∫
R
eiuxf(x)dx,

and use the notation x+ = x ∨ 0.

Lemma A.1. For h ∈ (1, 2), t > 0 the Fourier transform of

fh,t(x) = (1− e−itx)(−ix)−h = (1− e−itx) |x|−h eiπh signx/2

is

f̂h,t(u) =
2π

Γ(h)

(
(t− u)h−1

+ − (−u)h−1
+ ).



RHMSP AND ITS LOCAL PROPERTIES 19

Proof. First note that z−h = 1
Γ(h)

∫∞
0
e−vzvh−1dv is analytic for Re z >

0. So it follows from the operational calculus that for any a > 0

vh−1
+

Γ(h)
=

1

2πi

∫ a+i∞

a−i∞
evzz−hdz = − 1

2π

∫ ∞−ai

−∞−ai

e−ivy(−iy)−hdy,

where we have changed the variable z → iy. Plugging v = −u and

v = t− u to this identity, we get

1

Γ(h)

(
(t− u)h−1

+ − (−u)h−1
+ ) =

1

2π

∫ ∞−ai

−∞−ai

eiuy(1− e−ity)(−iy)−hdy,

(A.1)

Now let in this integral y = x − ai, x ∈ R and estimate for a ∈ (0, 1)

the integrand as

(A.2)∣∣eiuy(1− e−ity)(−iy)−h
∣∣ = eau

∣∣1− e−at−itx
∣∣ |y|−h ≤ C(u)(t |x− ai| ∧ 1) |y|−h

= C(u)(t |y|−h+1 ∧ |y|−h) ≤ C(u)(t |x|−h+1 ∧ |x|−h),

which is integrable due to the assumption h ∈ (1, 2). So letting a →

0+ in (A.1) yields the desired result by the dominated convergence

theorem. �

By the Hausdorff-Young inequality (see [5, Theorem 5.7]), for α ∈

[1, 2] the Fourier transform from L1(R) ∩ Lα(R) can be extended to a

bounded linear operator Fα : L
α(R) → Lβ(R), where β = α/(α− 1) is

the exponent adjoint to α. We will call this map a Fourier transform

on Lα(R), and we emphasize once more its boundedness due to the

Hausdorff-Young inequality:

(A.3) ∥Fαf∥Lβ(R) ≤ Cα ∥f∥Lα(R) .

The following lemma is an Lα(R) analogue of Lemma A.1.
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Lemma A.2. For α ∈ (1, 2), h ∈ (1/α, 1+1/α) and t > 0 the Fourier

transform on Lα of

fh,t(x) = (1− e−itx)(−ix)−h = (1− e−itx) |x|−h eiπh signx/2

is

Fαfh,t(u) =
2π

Γ(h)

(
(t− u)h−1

+ − (−u)h−1
+ ).

Proof. Repeat the proof of the previous lemma to inequality (A.2) and

raise it to the power α:∣∣eiuy(1− e−ity)(−iy)−h
∣∣α ≤ C(u)α(t |x|α(1−h) ∧ |x|−αh),

which is integrable for h ∈ (1/α, 1 + 1/α). So the integrands in (A.1)

converge as a→ 0+ in Lα(R) to fh,t(x) by the dominated convergence

theorem, hence by continuity of Fα on Lα(R) we get the statement of

the lemma. �
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