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Real harmonizable multifractional stable process and its local properties

Introduction

Fractional processes are one of the main tools for modeling the phenomena of long-range dependence in natural sciences, financial mathematics, telecommunication networks etc. Due to the role played by Gaussian distribution, the most popular and the most intensively investigated fractional process is the fractional Brownian motion B H , a centered Gaussian process with the covariance function E

[

B H t B H s ] = 1 2 (t 2H +s 2H -|t -s| 2H .
The parameter H ∈ (0, 1) is called the Hurst parameter and measures the smoothness of trajectories of the process (it is approximately the Hölder exponent of the process) and the "depth of memory" of the process (for H > 1/2 the process exhibits the property of long-range dependence).

From the point of view of possible applications, there are two main drawbacks of fractional Brownian motion. The first one comes from the Gaussian distribution, which has extremely light tails, though many data coming from applications are heavy-tailed. The second one is the homogeneity of increments that does not allow to model processes having different regularity and different time dependence properties at different time instances. A related problem is a self-similarity property, which briefly means that the properties of the process are the same under each scale. However, the absence of such property is apparent in many cases and mostly evident in stock price processes: long-term data is much smoother than wild intraday quotes.

The light tails problem is worked around usually by considering fractional stable processes. In contrast to the Gaussian case, where the covariance structure determines whole distribution of a process, so there is essentially one fractional process, in stable case there are many of them: linear fractional stable process, harmonizable fractional stable process, Liouville stable process etc. (See book [START_REF] Samorodnitsky | Stable non-Gaussian random processes: stochastic models with infinite variance[END_REF] for an extensive review of different fractional processes.)

In turn, the homogeneity problem is solved by considering multifractional processes. Recently, several multifractional extensions of fractional Brownian motion were defined, based on different representations of the fractional Brownian motion: moving average (linear) multifractional Brownian motion [START_REF] Peltier | Multifractional Brownian motion: definition and preliminary results[END_REF], Volterra multifractional Brownian motion [START_REF] Ralchenko | Path properties of multifractal Brownian motion[END_REF], harmonizable multifractional Brownian motion [START_REF] Benassi | Gaussian processes and pseudodifferential elliptic operators[END_REF].

In this paper, we consider a process called real harmonizable multifractional stable process which has the both properties of heavy tails and multifractionality, which can be regarded both as a multifractional generalization of a harmonizable fractional stable process and as a stable generalization of harmonizable multifractional Brownian motion, and can be used to improve models involving either kind of processes.

Our main interest in this paper is in path properties of this process: continuity, existence and joint continuity of local times. For fractional harmonizable stable process continuity was proved in [START_REF] Kôno | Hölder continuity of sample paths of some selfsimilar stable processes[END_REF] and local times properties were considered in [START_REF] Xiao | Properties of local nondeterminism of Gaussian and stable random elds and their applications[END_REF].

The paper is organized as follows. In Section We recall that a random variable ξ is called SαS with a scale parameter

s α if it has a characteristic function E [ e iλξ ] = e -|σλ| α .
An important tool to construct stable random variables is independently scattered rotationally invariant complex SαS random measure with the Lebesgue control measure, which is a complex-valued σ-additive random measure M = M α on R defined by the following properties.

(1) (Rotationally invariant complex SαS) for any Borel set A ⊂ R and any θ ∈ R the distribution of e iθ M (A) is the same as of M (A), and Re M (A) is SαS with the scale parameter λ(A).

(2) (Independently scattered ) for any disjoint Borel sets A 1 , . . . , A n ⊂ [0, ∞) the values M (A 1 ), . . . , M (A n ) are independent.

(3) For any Borel set

A ⊂ R M (-A) = M (A).
For a function f : R → C such that

(1.1) f (-x) = f (x) for all x ∈ R and ∥f ∥ α L α (R) = ∫ R |f (x)| α dx < ∞ it is possible to define a stochastic integral ∫ R f (x)M (dx),
which appears to be a real SαS random variable with the scale parameter ∥f ∥ α L α (R) . In other words, stochastic integral gives an isometry between the space of SαS real random variables spanned by the measure M with the norm

∥ξ∥ α = c(ξ) = -log E [ e iξ ]
and the subspace of L α (R) consisting of functions satisfying (1.1), i.e.

having adjoint values at symmetric points.

We end this subsection with the so-called LePage representation of processes given as transformations of SαS random measure. For details see [START_REF] Marcus | Characterizations of almost surely continuous pstable random Fourier series and strongly stationary processes[END_REF][START_REF] Kôno | Hölder continuity of sample paths of some selfsimilar stable processes[END_REF].

Assume we have a measurable function f : R + × R → C such that for each t ≥ 0 the function f (t, •) satisfies (1.1) and belongs to L α (R).

Define a process {X t , t ≥ 0} by (1.2)

X t = ∫ R f (t, x)M (dx).
The next proposition is a slight modification of [START_REF] Kôno | Self-similar stable processes with stationary increments[END_REF], the proof is exactly the same as there with a slight adjustment for the property M (-dx) = M (dx) in our case, so we skip it. • {ξ k , k ≥ 1} is a sequence of independent random variables with density φ;

• {g k , k ≥ 1} are independent rotationally invariant complex Gauss- ian with E [ |Re g k | α ] = 1.
Then the process {X t , t ≥ 0} defined by (1.2) has the same finitedimensional distributions as the process

(1.3) X ′ t = C α Re ∞ ∑ k=1 Γ -1/α k φ(ξ k ) -1/α f (t, ξ k )g k ,
where Let M be an independently scattered rotationally invariant complex SαS measure on R defined in Subsection 1.1.

C α = (∫ ∞ 0 x -α sin xdx ) 1/α ,
Throughout the paper we will denote by C any constant, which does not depend on any variables, unless otherwise is stated. Of course, C may change from line to line.

Recall that a real harmonizable fractional stable process with Hurst parameter H is defined as

(2.1) Z H (t) = ∫ R e itx -1 |x| 1/α+H M (dx).
A multifractional generalization of this definition consists, naturally, in letting the Hurst parameter depend on t.

Definition 2.1. A real harmonizable multifractional stable process (rhmsp)

with Hurst function H(t) and a stability parameter α is defined as

(2.2) X(t) = ∫ R e itx -1 |x| 1/α+H(t) M (dx).
Clearly,

X(t) = Z H(t) (t). We assume that 0 < Ĥ = inf t H(t) ≤ H(t) ≤ sup t H(t) = Ȟ < 1.
2.1. Norm estimates for the increments.

Lemma 2.2. For all

H 1 , H 2 ∈ ( Ĥ, Ȟ) it holds Z H 1 t -Z H 2 t α ≤ C |H 1 -H 2 | , t ∈ [0, T ]. Proof. Write Z H 1 t -Z H 2 t α α = ∫ R d e itx -1 α |x| -1 |x| -H 1 -|x| -H 2 α dx ≤ C ∫ R (1 ∧ |x|) α |x| -1 | log |x|| α (|x| -αH 1 ∨ |x| -αH 2 ) |H 1 -H 2 | α dx = C |H 1 -H 2 | α (∫ |x|<1 |x| α(1-Ĥ)-1 | log |x|| α dx + ∫ |x|>1 |x| -1-α Ȟ | log |x|| α dx ) ≤ C |H 1 -H 2 | ,
whence we have the assertion.

We assume that H is Hölder continuous with order greater than Ȟ, i.e., there exists γ > Ȟ s.t. for all t, s ≥ 0

|H(t) -H(s)| ≤ C|t -s| γ . Lemma 2.3. There exist positive constants C 1 , C 2 > 0 such that for any H ∈ [ Ĥ, Ȟ] one has C 1 |t -s| H ≤ Z H t -Z H s α ≤ C 2 |t -s| H locally uniformly in s, t.
Proof. Write

Z H t -Z H s α α = ∫ R e itx -e isx α |x| -1-αH dx ≤ C ∫ R (1 ∧ |t -s| |x|) α |x| -1-αH dx = C ( |t -s| α ∫ |x|<1/|t-s| |x| α(1-H)-1 dx + ∫ |x|>1/|t-s| |x| -1-αH dx ) ≤ C ( |t -s| α-α(1-H) + |t -s| αH ) = C |t -s| αH .
To prove the lower bound, observe that there exist positive constants c 1 , c 2 such that |e iy -1| > c 1 |y| for |y| < c 2 and write 

Z H t -Z H s α α ≥ ∫ |x|<c 2 /|t-s| e i(t-s)x -1 α |x| -1-αH dx ≥ C |t -s| α ∫ |x|<c 2 /|t-s| |x| α(1-H)-1 dx = C |t -s| αH . Lemmata 2.
(2.3) C 1 |t -s| Ĥ(t,s) ≤ ∥X(t) -X(s)∥ α ≤ C 2 |t -s| Ȟ(t,s) , t, s ∈ [0, T ]
where

Ĥ(t, s) = min [t,s] H(u), Ȟ(t, s) = max [t,s] H(u). Proof. Let Ȟ(t, s) = H( ť), Ĥ(t, s) = H( t). ∥X(t) -X(s)∥ α ≤ Z H(t) t -Z Ȟ(t,s) t α + Z H(t) s -Z Ȟ(t,s) s α + Z Ȟ(t,s) t -Z Ȟ(t,s) s α ≤ H(t) -H( ť) + H(s) -H( ť) + C|t -s| Ȟ(t,s) ≤ C|t -s| γ + C|t -s| Ȟ(t,s)
Since Ĥ(t, s) < γ, we get the upper bound.

The left had one is proved similarly:

C |t -s| Ĥ(t,s) ≤ Z Ĥ(t,s) t -Z Ĥ(t,s) s α ≤ ∥X(t) -X(s)∥ α + Z H(t) t -Z Ĥ(t,s) t α + Z H(t) s -Z Ĥ(t,s) s α ≤ ∥X(t) -X(s)∥ α + H(t) -H( t) + H(s) -H( t) ≤ ∥X(t) -X(s)∥ α + C|t -s| γ .

Hölder continuity of rhmsp. In this subsection we prove a

Hölder continuity of rhmsp. Our argument is a slight modification of the one found in [START_REF] Kôno | Hölder continuity of sample paths of some selfsimilar stable processes[END_REF] for harmonizable fractional stable motion.

Theorem 2.5. The rhmsp X has a version, which is almost surely

Hölder continuous of any order κ < Ĥ and moreover almost surely

satisfies sup t,s∈[0,T ] |t-s|<δ |X(t) -X(s)| = o(δ Ĥ |log δ| 1/α+1/2+ε ), δ → 0+,
for all T, ε > 0.

Proof. Let T > 0 be fixed and throughout this proof t, s ∈ [0, T ].

We use the LePage representation (1.3). To simplify the notation we write this representation for the process X itself rather than for its version:

X t = C α Re ∑ k≥1 Γ -1/α k φ(ξ k ) -1/α f (t, ξ k )g k , where f (t, x) = (e itx -1) |x| -1/α-H(t) , φ(x) = K η |x| -1 |log |x|| -1-η , η > 0 is arbitrary but fixed, K η is a normalizing constant.
Conditionally on Γ and ξ, it has the Gaussian distribution, so

E [ (X t -X s ) 2 | Γ, ξ ] = C 2 α ∑ k≥1 Γ -2/α k φ(ξ k ) -2/α |f (t, ξ k ) -f (s, ξ k )| 2 ≤ Ca(u),
where

a(z) = ∑ k≥1 Γ -2/α k φ(ξ k ) -2/α sup |t-s|<u |f (t, ξ k ) -f (t, ξ k )| 2 . Write sup |t-s|<u |f (t, ξ k ) -f (t, ξ k )| 2 ≤ sup |t-s|<u (e itx -e isx |x| -1/α-H(t) + sup |t-s|<u e isx -1 |x| -1/α x -H(t) -x -H(s) ≤ C(u |x| ∧ 1) |x| -1/α (|x| -Ĥ ∨ |x| -Ȟ ) +C(|x| ∧ 1) |x| -1/α (|x| -Ĥ ∨ |x| -Ȟ ) |log |x|| sup |t-s|<u |H(t) -H(s)| ≤ C |x| -1/α (|x| -Ĥ ∨ |x| -Ȟ ) ( (u |x| ∧ 1) + (|x| ∧ 1) |log |x|| u γ ) .
Keeping this estimate in mind, take now the expectation E ξ [ a(z) ] with respect to the variables ξ only:

E ξ [ a(z) ] ≤ CS(Γ)(I 1 + I 2 ),
where

I 1 = ∫ R |x| -2/α (|x| -2 Ĥ ∨ |x| -2 Ȟ )(u |x| ∧ 1) 2 φ 1-2/α (x)dx = 2 ∫ ∞ 0 x -1 (x -2 Ĥ ∨ x -2 Ȟ )(ux ∧ 1) 2 |log x| (1+η)(2/α-1) dx ≤ Cu 2 Ĥ ∫ ∞ 0 z -1 (z -2 Ĥ ∨ z -2 Ȟ )(|z| ∧ 1) 2 |log(z/u)| (1+η)(2/α-1) dz ≤ Cu 2 Ĥ |log u| (1+η)(2/α-1) , I 2 = u 2γ ∫ R |x| -2/α (|x| -2 Ĥ ∨ |x| -2 Ȟ )(|x| ∧ 1) 2 |log |x|| 2 φ 1-2/α (x)dx = 2u 2γ ∫ ∞ 0 x -1 (x -2 Ĥ ∨ x -2 Ȟ )(x ∧ 1) 2 |log x| (1+η)(2/α-1)+2 dx ≤ Cu 2γ , S(Γ) = ∑ k≥1 Γ -2/α k < ∞ a.a. Γ,
where the last is true owing to the fact that Γ j /j → 1, j → ∞, almost surely by the strong law of large numbers, and 2/α > 1. Therefore

E ξ [ a(z) ] ≤ C(Γ)u 2 Ĥ |log u| (1+η)(2/α-1)
almost surely.

Define b(z) = u 2 Ĥ |log u| 2(1+η)/α . We have

E ξ [ ∑ n≥1 a(2 -n ) b(2 -n ) ] ≤ C(Γ) ∑ n≥1 n -1-η , so for almost all ξ, Γ we have a(2 -n )/b(2 -n ) → 0, n → ∞. It is easy to see that b(2t) ≤ Cb(t)
, and a(z) is increasing, so from the last conver-

gence we get a(u)/b(u) → 0, u → 0+, or a(u) = o ξ,Γ (u 2 Ĥ |log u| 2(1+η)/α ). So we have E [ (X t -X s ) 2 | Γ, ξ ] = o ξ,Γ (u 2 Ĥ |log u| 2(1+η)/α ), u → 0 + .
Now recall once more that X is Gaussian given ξ and Γ, so by Lemma Proof. Define

1 of [3] sup |t-s|<δ |X t -X s | = o ω (δ Ĥ |log δ| 1/α+η/α+1
Y δ t (u) = 1 δ H(t) (X(t + δu) -X(t)).
We will assume throughout that δ < 1.

For u 1 , . . . , u n > 0, λ 1 , . . . , λ n ∈ R denote s k = t + δu k and write

-log E [ exp { i n ∑ k=1 λ k Y δ t (u k ) } ] = -log E [ exp { i δ H(t) ∫ R 1 |x| 1/α n ∑ k=1 λ k [ e is k x -1 |x| H(s k ) - e itx -1 |x| H(t) ] M (dx) } ] = { 1 δ αH(t) ∫ R 1 |x| n ∑ k=1 λ k [ e is k x -1 |x| H(s k ) - e itx -1 |x| H(t)
] α dx } .

Now estimate the integrand multiplied by |x|:

n ∑ k=1 λ k [ e is k x -1 |x| H(s k ) - e itx -1 |x| H(t) ] α ≤ C n ∑ k=1 |λ k | α e is k x -1 |x| H(s k ) - e itx -1 |x| H(t) α ≤ C n ∑ k=1 |λ k | α ( e is k x -1 α |x| -H(s k ) -|x| -H(t) α + |x| -αH(t) e is k x -e itx α ) ≤ C n ∑ k=1 |λ k | α ( |log |x|| α |x| -αθ |H(s k ) -H(t)| α (1 ∧ |x|) α + |x| -αH(t) |s k -t| α (1 ∧ |x|) α ) ≤ C n ∑ k=1 |λ k | α (|x| -α Ȟ ∨ |x| -α Ĥ )(1 ∧ |x|) α [ |s k -t| αγ |log |x|| α + |s k -t| α ] ≤ C n ∑ k=1 |λ k | α δ αγ ( |x| α(1-Ĥ) 1I |x|<1 + |x| -α Ȟ 1I |x|>1 ) (1 + |log |x|| α ) ≤ Cδ αγ ( |x| α(1-Ĥ) 1I |x|<1 + |x| -α Ȟ 1I |x|>1 ) (1 + |log |x|| α ).
We remark that the constants here depend only on α, t, s 1 , . . . , s n and

λ 1 , . . . , λ n . Now 1 δ αH(t) 1 |x| n ∑ k=1 λ k [ e is k x -1 |x| H(s k ) - e itx -1 |x| H(t) ] α ≤ C ( |x| α(1-Ĥ)-1 1I |x|<1 + |x| -1-α Ȟ 1I |x|>1 ) (1 + |log |x|| α ),
which is integrable over R. Hence by the dominated convergence theorem

-lim δ→0+ log E [ exp { i n ∑ k=1 λ k Y δ t (u k ) } ] = ∫ R 1 |x| lim δ→0+ { 1 δ αH(t) n ∑ k=1 λ k [ e is k x -1 |x| H(s k ) - e itx -1 |x| H(t) ] α dx } = ∫ R 1 |δx| n ∑ k=1 λ k lim δ→0+ 1 δ H(t) [ e i(t+δu k )x -1 |x| H(t+δu k ) - e itx -1 |x| H(t) ] α d(δx) = ∫ R 1 |y| n ∑ k=1 λ k lim δ→0+ [ e iu k y -e -ity/δ |y| H(t+δu k ) δ H(t+δu k )-H(t) - 1 -e -ity/δ |y| H(t) ] α dy = ∫ R 1 |y| n ∑ k=1 λ k lim δ→0+ [ e iu k y -1 |y| H(t) + (e itu k -e -ity/δ )R δ ] α dy,
where

R δ = 1 |y| H(t+δu k ) δ H(t+δu k )-H(t) - 1 |y| H(t) = 1 |y| H(t) [( δ |y| ) H(t+δu k )-H(t) -1 ] . Estimate log ( δ |y| ) H(t+δu k )-H(t) ≤ |H(t + δu k ) -H(t)| (|log δ| + |log |y||) ≤ Cδ γ (|log δ| + |log |y||) → 0, δ → 0 + . Thus R δ → 0, δ → 0+. Finally, (2.5) 
lim δ→0+ log E [ exp { i n ∑ k=1 λ k Y δ t (u k ) } ] = - ∫ R 1 |y| n ∑ k=1 λ k [ e iu k y -1 |y| H(t)
] α dy, which is exactly the logarithm of the characteristic function of Z H(t) (u 1 ), . . . ,Z H(t) (u n ), as required.

Remark 2.8. By using the same kind of argument as the one used in the proof of continuity, it is possible to prove tightness of laws of processes on the space of continuous paths and whence derive a strong localizability. Proof. According to [START_REF] Boufoussi | Path properties of a class of locally asymptotically self similar processes[END_REF], it is enough to check the following "condition (H)": there exists ρ > 0 and H ∈ (0, 1) and

Local times for rmhsp

ψ ∈ L 1 (R) such that (3.1) E [ exp { iλ ( X(t) -X(s) )} ] ≤ ψ(λ |t -s| H ). But E [ exp { iλ ( X(t) -X(s) )} ] = exp {-|λ| α ∥X(t) -X(s)∥ α α } ≤ exp { -C |λ| α ∥t -s∥ α Ĥ(t,s) } ≤ exp { -C |λ| α ∥t -s∥ α Ȟ } , whence we have (3.1) with ψ = exp {-|x| α }, H = Ĥ.
In order to prove further properties, we need 

Definition 3.2 ([7]). A stable random process X is ∥•∥ α locally non- deterministic (LND) on T if (L1) ∥X(t)∥ α > 0 for all t ∈ T; (L2) ∥X(t) -X(s)∥ α > 0
∥X(t n ) -span {X(t 1 ), . . . , X(t n -1)}∥ α ≥ C n ∥X(t n ) -X(t n-1 )∥ .
In [START_REF] Nolan | Local nondeterminism and local times for stable processes[END_REF] it is shown that the local non-determinism property is equivalent to the property of ∥•∥ α locally approximately independent increments, which consists of properties (L1), (L2) above and (L3a) for any n > 1 there exists C n s.t. for any

t 1 < t 2 < • • • < t n ∈ T
sufficiently close together and any a 1 , . . . , a n ∈ R one has

(3.3) a 1 X(t 1 ) + n-1 ∑ k=1 a k ( X(t k+1 ) -X(t k ) ) α ≥ C n ( ∥a 1 X(t 1 )∥ α + n-1 ∑ k=1 a k ( X(t k+1 ) -X(t k ) ) α ) . Theorem 3.3. For any ε > 0 the rhmsp X is LND on [ε, T ].
Proof. The main difficulty is to prove property (L3) of LND, as property (L1) is obvious and property (L2) follows from (2.3).

We proceed in two steps.

Step I. We prove LND for a modification of rmhsp X defined by (3.4)

Y (t) = ∫ R (1 -e -itx )(ix) -H(t)-1/α M (dx),
where

(ix) -K = |x| -K e iπK sign x/2 .
The Fourier transform of the function f Y (t, x) = (1-e -itx )(ix) -H(t)-1/α (w.r.t. the second variable) on L α (R) is

(3.5) f Y (t, x) = 1 Γ(H(t) + 1/α) ( (t -x) H(t)-1/β + -(-x) H(t)-1/β + ) ,
where β = α/(α -1) is the exponent adjoint to α, see Lemma A.2.

In order to check property (L3) for Y , we have to find a good lower bound to

Y (t n ) - n-1 ∑ k=1 u k Y (t k ) α = f Y (t n , •) - n-1 ∑ k=1 u k f Y (t k , •) L α (R)
.

It is fortunately given by the Hausdorff-Young inequality: 

f Y (t n , •) - n-1 ∑ k=1 u k f Y (t k , •) L α (R) ≥ C f Y (t n , •) - n-1 ∑ k=1 u k f Y (t k , •) L β (R) ≥ C f Y (t n , •) L β ([t n-1 ,tn]) = C ( 1 Γ(H(t) + 1/α) β ∫ tn t n-1 (t n -x) βH(t)-1 ) 1/β ≥ C(t n -t n-1 ) H(t) ≥ C ∥X(t n ) -X(t n
∥X(t n ) -X(t n-1 )∥ α ≥ ∥Y (t n ) -Y (t n-1 )∥ α -C|H(t n ) -H(t n-1 )| ≥ ∥Y (t n ) -Y (t n-1 )∥ α -C|t n -t n-1 | γ ≥ C ∥Y (t n ) -Y (t n-1 )∥ α ,
which gives the desired LND property.

Step 2. Here we show how the property of locally asymptotically independent increments for Y implies that for X. Denote f X (t, x) = (e it k+1 x -1) |x| -H(t)-1/α and write for 0 < t 1 < t 2 < • • • < t n < T and a 1 , . . . , a n ∈ R (we put t 0 = 0 for the sake of simplicity)

n-1 ∑ k=1 a k ( X(t k+1 ) -X(t k ) ) α = n-1 ∑ k=0 a k ( f X (t k+1 , •) -f X (t k , •) ) L α (R) = e iπ(H(t 1 )+1/α) sign x/2 n-1 ∑ k=0 a k ( f X (t k+1 , •) -f X (t k , •) ) L α (R) ≥ n-1 ∑ k=0 a k ( f Y (t k+1 , •) -f Y (t k , •) ) L α (R) - n-1 ∑ k=0 a k ( ∆(t k+1 , •) -∆(t k , •) ) L α (R) = n-1 ∑ k=0 a k ( Y (t k+1 ) -Y (t k ) ) α - n-1 ∑ k=0 a k ( ∆(t k+1 , •) -∆(t k , •) ) L α (R)
where

∆(t, x) = e iπ(H(t 1 )+1/α) sign x/2 f X (t, x) -f Y (t, x)
= e iπ sign x/(2α) (e iπH(t 1 ) sign x/2 -e iπH(t) sign x/2 )f X (t, x).

Write

∥∆(t k+1 , •) -∆(t k , •)∥ L α (R) ≤ (e iπH(t k+1 ) sign x/2 -e iπH(t k ) sign x/2 )f X (t k+1 , •) L α (R) + (e iπH(t k ) sign x/2 -e iπH(t 1 ) sign x/2 ) ( f X (t k+1 , •) -f X (t k , •) ) L α (R) ≤ C |H(t k+1 ) -H(t k )| ∥f X (t k+1 , •)∥ L α (R) +C |H(t k+1 ) -H(t 1 )| f X (t k+1 , •) -f X (t k , •) ) L α (R) ≤ C |t k+1 -t k | γ ∥X(t k+1 )∥ α + C |t k+1 -t 1 | γ ∥X(t k ) -X(t k + 1)∥ α = o ( ∥X(t k+1 ) -X(t k )∥ α ) , |t n -t 1 | → ∞.
Thanks to LND property of Y we can write

n-1 ∑ k=0 a k ( Y (t k+1 ) -Y (t k ) ) α ≥ n-1 ∑ k=0 a k ( Y (t k+1 ) -Y (t k ) ) α ,
and similarly to the above we write

∥Y (t k+1 ) -Y (t k )∥ α ≥ ∥X(t k+1 ) -X(t k )∥ α -∥∆(t k+1 , •) -∆(t k , •)∥ L α (R) ≥ ∥X(t k+1 ) -X(t k )∥ α -o ( ∥X(t k+1 ) -X(t k )∥ α ) , so finally n-1 ∑ k=1 a k ( X(t k+1 ) -X(t k ) ) α ≥ n-1 ∑ k=1 |a k | ( ∥X(t k+1 ) -X(t k )∥ α -o ( ∥X(t k+1 ) -X(t k )∥ α ) ) ≥ C n n-1 ∑ k=1 |a k | ( X(t k+1 ) -X(t k ) ) α for |t n -t 1 | small enough.
Thanks to [7, Theorem 4.1] and estimates for the norms of increments of rmhsp X we have the following result.

Theorem 3.4. The local time L(t, x) of the rhmsp X is jointly continuous in (t, x) for t > 0, moreover, for any κ < (1/ Ȟ -1)/2 it is κ-Hölder continuous in x.

Appendix A. Fourier transform

In this appendix we compute the Fourier transform which is used by many authors, however, we were not able to find a rigorous derivation.

Below we define the Fourier transform

f (u) = ∫ R e iux f (x)dx,
and use the notation x + = x ∨ 0.

Lemma A.1. For h ∈ (1, 2), t > 0 the Fourier transform of

f h,t (x) = (1 -e -itx )(-ix) -h = (1 -e -itx ) |x| -h e iπh sign x/2 is f h,t (u) = 2π Γ(h) ( (t -u) h-1 + -(-u) h-1 + ).
Lemma A.2. For α ∈ (1, 2), h ∈ (1/α, 1 + 1/α) and t > 0 the Fourier transform on L α of f h,t (x) = (1 -e -itx )(-ix) -h = (1 -e -itx ) |x| -h e iπh sign x/2 is F α f h,t (u) = 2π Γ(h)

( (t -u) h-1 + -(-u) h-1 + ).
Proof. Repeat the proof of the previous lemma to inequality (A.2) and raise it to the power α:

e iuy (1 -e -ity )(-iy) -h α ≤ C(u) α (t |x| α(1-h) ∧ |x| -αh ), which is integrable for h ∈ (1/α, 1 + 1/α). So the integrands in (A.1) converge as a → 0+ in L α (R) to f h,t (x) by the dominated convergence theorem, hence by continuity of F α on L α (R) we get the statement of the lemma.

3. 1 .Proposition 3 . 1 .

 131 Properties of the local time. We start this section by showing the existence and square integrability of a local time. The rhmsp X has a square integrable local time L(t, x).

Theorem 1.1. Let

  φ be arbitrary probability density on R equivalent to the Lebesgue measure. Also let {Γ k , k ≥ 1}, {ξ k , k ≥ 1}, {g j , j ≥ 1}

	be three independent sets of random variables, such that
	• {Γ k , k ≥ 1} is a sequence of arrivals of Poisson process with
	unit intensity;

  for all sufficiently close distinct s, t ∈ T;(L3) for any n > 1 there exists C n s.t. for anyt 1 < t 2 < • • • < t n ∈ T

	sufficiently close together one has
	(3.2)

  -1 )∥ α for t n and t n-1 close enough. (We have used the fact that f Y (t k , x) vanishes on [t n , t n-1 ] for k < n in the middle, and inequality (2.3) in the last step.) But it is straightforward to check (see a much stronger statement below in the Step 2) that

Proof. First note that z -h = 1 Γ(h) ∫ ∞ 0 e -vz v h-1 dv is analytic for Re z > 0. So it follows from the operational calculus that for any a > 0

where we have changed the variable z → iy. Plugging v = -u and v = t -u to this identity, we get 1 Γ(h)

Now let in this integral y = x -ai, x ∈ R and estimate for a ∈ (0, 1) the integrand as

which is integrable due to the assumption h ∈ (1, 2). So letting a → 0+ in (A.1) yields the desired result by the dominated convergence theorem.

By the Hausdorff-Young inequality (see [START_REF] Lieb | [END_REF]Theorem 5.7]), for α ∈ [START_REF] Benassi | Gaussian processes and pseudodifferential elliptic operators[END_REF][START_REF] Boufoussi | Path properties of a class of locally asymptotically self similar processes[END_REF] the Fourier transform from L 1 (R) ∩ L α (R) can be extended to a bounded linear operator F α : L α (R) → L β (R), where β = α/(α -1) is the exponent adjoint to α. We will call this map a Fourier transform on L α (R), and we emphasize once more its boundedness due to the Hausdorff-Young inequality:

The following lemma is an L α (R) analogue of Lemma A.1.