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We investigate lower and upper bounds for the blowup times of a system of semilinear SPDEs. Under certain conditions on the system parameters, we obtain explicit solutions of a related system of random PDEs, which allows us to use a formula due to Yor to obtain the distribution functions of several explosion times. We also give the Laplace transforms at independent exponential times of related exponential functionals of Brownian motion.

Introduction

Existence and nonexistence of global solutions for semilinear parabolic equations was investigated initially by Fujita [START_REF] Fujita | On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations[END_REF], who proved that for a bounded smooth domain D R d , the equation @u(t; x) @t = u(t; x) + u 1+ (t; x); x 2 D;

with Dirichlet boundary condition, where > 0 is a constant, explodes in …nite time for all nonnegative initial values u(0; x) 2 L 2 (D) satisfying R D u(0; x) (x) dx > 1= . Here > 0 is the …rst eigenvalue of the Laplacian on D and the corresponding eigenfunction normalized so that k k L 1 = 1.

In a previous work [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF] we investigated blow-up times of semilinear SPDEs of the prototype du(t; x) = u(t; x) + u 1+ (t; x) dt + u(t; x) dW t ; x 2 D;

(1.1)

with Dirichlet boundary conditions, where fW t g is a standard one-dimensional Brownian motion. We obtained bounds both for the probability of …nite-time blow-up of u(t; x), and for the probability of nonexplosion of u(t; x) in …nite time. In case of = 0, the bounds we found give the result of Fujita quoted above. We refer to [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF] for de…nitions of blow-up times, and for types of solutions of SPDEs. In [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF] it is also shown that the asymptotic behavior of (1.1) is determined to a great extent by the distribution of the exponential functional Z t 0 expf W r ( + 2 =2)rg dr:

Functionals of the above form arise in many applications, specially in Financial and Actuarial Mathematics [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF][START_REF] Geman | Bessel Processes, Asian Options, and Perpetuities[END_REF][START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF] and have been investigated by di¤erent methods and by various authors [START_REF] Bailleul | Une preuve simple d'un résultat de Dufresne[END_REF][START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF][START_REF] Matsumoto | Exponential functionals of Brownian motion, I: Probability laws at a …xed time[END_REF][START_REF] Pintoux | A direct solution to the Fokker-Planck equation for exponential Brownian functionals[END_REF][START_REF] Salminen | Properties of perpetual integral functionals of Brownian motion with drift[END_REF][START_REF] Tehranchi | The distribution of exponential Lévy functionals[END_REF][START_REF] Yor | On Some Exponential Functionals of Brownian Motion[END_REF][START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF].

From the results of [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF] it follows that for initial values of the form u(0; x) = k (x), x 2 D, where k > 0 is a parameter, the explosion time % of (1.1) satis…es % , where = inf t 0 :

Z t 0 expf W r ( + 2 =2
)rg dr 1=( k k k 1 ) ; = inf t 0 :

Z t 0 expf W r ( + 2 =2)rg dr 1=( k R 2 (x) dx ) :
Let us mention that the density of R t 0 expf W r ( + 2 =2)rg dr, t > 0, can be obtained from Yor's formula ( [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF], Ch. 2 and [START_REF] Yor | On Some Exponential Functionals of Brownian Motion[END_REF], Proposition 2; see also [START_REF] Pintoux | A direct solution to the Fokker-Planck equation for exponential Brownian functionals[END_REF]). The upper bound of % was achieved in [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF] by determining the blow-up time of a subsolution of Eq. (1.1), while for the lower bound , a scheme of successive approximations for the mild solution of (1.1) was used.

Our aim in this paper is to obtain lower and upper bounds for the blow-up times of the system of semilinear SPDEs

du 1 (t; x) = [( + V 1 )u 1 (t; x) + u p 2 (t; x)] dt + 1 u 1 (t; x) dW t du 2 (t; x) = [( + V 2 )u 2 (t; x) + u q 1 (t; x)] dt + 2 u 2 (t; x) dW t ; x 2 D; (1.2) 
with Dirichlet boundary conditions u i (0; x) = f i (x) 0; x 2 D and u i (t; x) = 0; t 0; x 2 @D; i = 1; 2:

(1.3)

Here p q > 1 are constants, D R d is a bounded smooth domain, V i > 0 and i 6 = 0 are constants, i = 1; 2, and fW t g, is a standard one-dimensional Brownian motion de…ned on some probability space ( ; F; IP). As in [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF], we are going to consider weak solutions of (1.2)-(1.3).

Below we are going to take the initial values of the form f i = k i for some constants k i > 0, i = 1; 2. Also, we are going to set V i = + 2 i =2, i = 1; 2. These choices make it possible to obtain explicit solutions of a related system of random PDEs, and to use Yor's formula and some extensions of it. Moreover, in contrast with the case treated in [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF], the blow-up times of (1.2) are …nite with probability one; see e.g. [START_REF] Matsumoto | Exponential functionals of Brownian motion, I: Probability laws at a …xed time[END_REF], Prop. 6.4 and [START_REF] Salminen | Properties of perpetual integral functionals of Brownian motion with drift[END_REF], Section 2. For general constants 1 , 2 and p q > 1, we obtain random times , such that , where is the blow-up time of (1.2). Moreover, we show that the distributions of and are given in terms of exponential functionals of the form By adapting a method of Jeanblanc, Pitman and Yor [START_REF] Jeanblanc | The Feynman-Kac formula and decomposition of Brownian paths[END_REF] to our setting, we obtain the Laplace transforms of A ( ) and A ( ) at random times which are exponentially distributed with parameter , for any value of > 0. From this we can derive upper bounds for probabilities of the form IPf g for each > 0. The paper is organized as follows. In Section 2, we use a random transformation of System (1.2) to obtain a related system of random partial di¤erential equations which is useful to obtain lower and upper bounds for . The special case when p 2 1 = q 1 2 =: is dealt with in Section 3; see theorems 1 and 2 below. In this special setting the relevant exponential functional is of the form R t 0 e Wr dr, and the distributions of and can be obtained explicitly from Yor's formula. The semi-linear system without the condition p 2 1 = q 1 2 is studied in sections 4 and 5; see theorems 3 and 5, and Corollary 4. We point out that Theorem 1 is in fact a special case of Theorem 3 and its Corollary 4, and Theorem 2 is a special case of Theorem 5. The reason why we treat the case of Section 3 separately is that the key points of the proofs of theorems 3 and 5 appear more clearly and more simply in the proofs of theorems 1 and 2.

A (t) =
For a system of the form (1.2) with V 1 = V 2 = 0, similar results can be obtained for . However, in this case is given in terms of the solution of a non-homogeneous random Bernoulli equation for which we were not able to …nd an explicit solution.

A system of random PDEs

Let us de…ne for i = 1; 2; v i (t; x) = expf i W t gu i (t; x); t 0; x 2 D:

(2.1) By Ito's formula,

e i Wt = 1 i Z t 0 e i Ws dW s + 2 i 2 Z t 0 e i Ws ds: Putting u i (t; ' i ) = R D u i (t; x)' i (x) dx, i = 1; 2;
where ' i is any smooth function with compact support, we get that a weak solution of (1.2) is given by

u i (t; ' i ) = u i (0; ' i ) + Z t 0 u i (s; ( + V i )' i ) ds + Z t 0 u i j (s; ' i ) ds + i Z t 0 u i (s; ' i ) dW s ; (2.2) 
where fjg = f1; 2gnfig and 1 = p; 2 = q. By applying the integration by parts formula we get that

v i (t; ' i ) := Z D v i (t; x)' i (x) dx = v i (0; ' i ) + Z t 0 e i Ws du i (s; ' i ) + Z t 0 u i (s; ' i ) i e i Ws dW s + 2 i 2 e i Ws ds + e i W: ; u i ( ; ' i ) (t);
where the quadratic variation is given by e i W:

; u i ( ; ' i ) (t) = 2 i R t 0 e i Ws u i (s; ' i ) ds, t 0: Therefore, v i (t; ' i ) = v i (0; ' i ) + Z t 0 v i (s; ( + V i )' i ) ds + Z t 0 e i Ws e j Ws v j i (s; ' i ) ds 2 i 2 Z t 0 e i Ws u i (s; ' i ) ds = v i (0; ' i ) + Z t 0 v i (s; ( + V i )' i ) 2 i 2 v i (s; ' i ) ds (2.3) + Z t 0 e i Ws e j Ws v j i (s; ' i ) ds:
Hence, the vector (v 1 (t; x); v 2 (t; x)) is a weak solution of the system

@v i (t; x) @t = + V i 2 i =2 v i (t; x) + e i Wt e j Wt v j (t; x) i ; v i (0; x) = f i (x); i = 1; 2;
whose integral form is

v i (t; x) = e t(V i 2 i =2) T t f i (x) + Z t 0 e r(V i 2 i =2) T r h e i W t r e j W t r v j (t r; ) i i (x) dr (2.4)
for t 0, and i = 1; 2. Here fT t g is the semigroup of bounded linear operators given by

T t f (x) = E [ f (X t ); t < D j X 0 = x] ; x 2 D;
for all bounded and measurable f : D ! R, where fX t g t 0 is the d-dimensional Brownian motion with variance parameter 2, killed at the time D at which it hits @D. As above, we denote by > 0 the …rst eigenvalue of the Laplacian on D, which satis…es

(x) = (x); x 2 D; (2.5)
being the corresponding eigenfunction, which is strictly positive on D and j @D = 0. Recall that T t = e t , t 0. We are going to assume that is normalized so that R D (x) dx = 1. We write for the blow up time of system (2.4) when the initial values are of the form f 1 = L(1) and f 2 = L(2) for some positive constants L(1) and L(2). Due to (2.1) and to the a.s. continuity of Brownian paths, is also the explosion time of system (1.2) with initial values of the above form.

The case p

2 1 = q 1 2
First we consider Eq. (1.2) with parameters p q > 1; V i = + 2 i 2 ; i = 1; 2; and p 2 1 = q 1 2 =: :

We are going to …nd random times and which are given in terms of the exponential functional A t := R t 0 e Ws ds, t 0, and such that 0 . The density function of A t is given explicitly in [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF], Section 4.

A lower bound for

We are going to obtain a random time which satis…es .

Theorem 1 Assume conditions (3.1), and let the initial values be of the form

f 1 = L(1) and f 2 = L(2) (3.2)
for some positive constants L(1) and L(2). Let be given by = inf ( t 0 :

Z t 0 expf W r g dr min ( 1 (p 1)L p 1 (1)k k p 1 1 ; 1 (q 1)L q 1 (2)k k q 1 1
))

:

Then .

Proof. Let v 1 and v 2 solve (2.4). Then we have

v 1 (t; x) = e t T t f 1 (x) + Z t 0 e (t r) T t r e Wr v p 2 (r; x) dr v 2 (t; x) = e t T t f 2 (x) + Z t 0 e (t r
) T t r e Wr v q 1 (r; x) dr; x 2 D; t 0:

We de…ne the operators R 1 , R 2 by R 1 v(t; x) = e t T t f 1 (x) + Z t 0 e Wr e (t r) (T t r v) p dr; R 2 v(t; x) = e t T t f 2 (x) + Z t 0
e Wr e (t r) (T t r v) q dr; x 2 D; t 0;

where v is any nonnegative, bounded and measurable function. Moreover, on the set t we put

B 1 (t) = 1 (p 1) Z t 0 e Wr e r T r f 1 p 1 1 dr 1 p 1 ; B 2 (t) = 1 (q 1) Z t 0 e Wr e r T r f 2 q 1 1 dr 1 q 1 : Then we have dB 1 (t) dt = e Wt+(p 1) t kT t f 1 k p 1 1 B p 1 (t); B 1 (0) = 1; hence B 1 (t) = 1 + Z t 0 e Wr+(p 1) r kT r f 1 k p 1 1 B p 1 (r) dr;
and similarly,

B 2 (t) = 1 + Z t 0 e Wr+(q 1) r kT r f 2 k q 1 1 B q 2 (r) dr: Let us choose v 0 such that v(t; x) e t T t f 1 (x)B 1 (t) for x 2 D and t < . Then e t T t f 1 (x) R 1 v(t; x) and R 1 v(t; x) = e t T t f 1 (x) + Z t 0 e Wr+ (t r) (T t r v(r; x)) p dr e t T t f 1 (x) + Z t 0 e Wr+ (t r) B 1 (r) p 1 e r(p 1) kT r f 1 k p 1 1 B 1 (r)e r T t r (T r f 1 ) (x) dr = e t T t f 1 (x) 1 + Z t 0 e Wr e r T r f 1 p 1 1 B p 1 (r) dr = e t T t f 1 (x)B 1 (t);
and similarly,

e t T t f 2 (x) R 2 u(t; x) e t T t f 2 (x)B 2 (t)
for all u such that 0 u(t; x) e t T t f 2 (x)B 2 (t). Let us take, for x 2 D and 0 t < ,

u (0) 1 (t; x) = e t T t f 1 (x); u (0) 2 (t; x) = e t T t f 2 (x)
and u

(n) 1 (t; x) = R 1 u (n 1) 2 (t; x); u (n) 2 (t; x) = R 2 u (n 1) 1 (t; x); n 1:
We are going to show that the function sequences fu

(n) 1 g, fu (n) 
2 g are increasing. As a matter of fact,

u (0) 1 (t; x) e t T t f 1 (x) + Z t 0 e Wr+ (t r) T t r u (0) 2 (r; x) p dr = R 1 u (0) 2 (t; x) = u (1) 1 (t; x): Now assume that u (n) 1 u (n 1) 1 and u (n) 2 u (n 1) 2 for some n 1. Then u (n+1) 1 = R 1 u (n) 2 R 1 u (n 1) 2 = u (n) 1 ;
where we have used the monotonicity of R 1 to obtain the above inequality. In the same way is proved the monotonicity of the other sequence. Therefore the limits

v 1 (t; x) = lim n!1 u (n) 1 (t; x); v 2 (t; x) = lim n!1 u (n) 2 (t; x)
exist for x 2 D and 0 t < . In virtue of the monotone convergence theorem we obtain that

v 1 (t; x) = R 1 v 2 (t; x); v 2 (t; x) = R 2 v 1 (t; x); x 2 D; 0 t < ;
and moreover,

v 1 (t; x) e t T t f 1 (x) h 1 (p 1) R t 0 e Wr ke r T r f 1 k p 1 1 dr i 1 p 1 ; v 2 (t; x) e t T t f 2 (x) h 1 (q 1) R t 0 e Wr ke r T r f 2 k q 1 1 dr i 1 q 1 :
The assertion follows by choosing the initial values according to (3.2).

Remark Notice that for general bounded, measurable and positive f i , i = 1; 2, the blow-up time of (1.2) is lower-bounded by the random time inf t 0 :

Z t 0 e Wr ke r T r f 1 k p 1 1 dr (p 1) 1 or Z t 0 e Wr ke r T r f 2 k q 1 1 dr (q 1) 1 ;
which coincides with when the initial values satisfy (3.2).

An upper bound for

We now set ' i = and

V i = + 2 i =2 in (2.
3), i = 1; 2; thus obtaining the system

v i (t; ) = v i (0; ) + Z t 0 e
i Ws e j Ws v j j (s; ) ds; i = 1; 2;

(3.3)
where e j Ws v j i (s; ) = R D e j Ws v j (s; x) i (x) dx and 1 = p, 2 = q. By Jensen's inequality, e j Ws v j i (s; )

Z D e j Ws v j (s; x) (x) dx i = e i j Ws v j (s; ) i ;
which gives @v i (t; ) @t e i Wt e i j Wt v j (t; ) i = e i Wt+ i j Wt v j (t; ) i ; i = 1; 2; j 2 f1; 2gnfig:

In this way, v i (t; ) h i (t), i = 1; 2; where

dh 1 (t) dt = e Wt h 2 (t) p ; dh 2 (t) dt = e Wt h 1 (t) q ; h i (0) = v i (0; ); i = 1; 2; (3.4) and = p 2 1 = q 1 2 . We de…ne E(t) = h 1 (t) + h 2 (t), t 0.
Theorem 2

1. Assume that p = q > 1. Then , where = inf t 0 :

Z t 0
e Ws ds 2 p (p 1) 1 E 1 p (0) :

2. Let p > q > 1, and let A 0 = p q p p q q p q and 0 = 1^(h

2 (0)=A 1=q 0 ) p q ^(2 q E(0) q =A 0 ) (p q)=p .
Assume that 2 q 0 E q (0) p p q 0 A 0 :

(3.5)

Then

, where = inf ( t 0 :

Z t 0 e Ws ds 1 (q 1)E q 1 (0)[2 q 0 p=(p q) 0 A 0 E q (0)] ) : Remark Notice that (3.5) follows from the condition R D f i (x) (x) dx > A 1=q 0 ; i = 1; 2:
Proof. Suppose …rst that p = q > 1. We get from ( Now we assume that p > q > 1. We want to lower-bound the solution components of system (3.4). Our approach to achieve this is an adaptation of the method used in [START_REF] Galaktionov | A parabolic system of quasilinear equations[END_REF], where a deterministic system similar to (1.2) was investigated.

Let us recall Young's inequality (see e.g. [START_REF] Mitrinovic | Analytic inequalities[END_REF]). Let 1 < b < 1 and > 0, and let a = b=(b 1). Then From Young's inequality (3.7) it follows that for any " > 0,

h p 2 (t) "h q 2 (t) " p p q A 0 : (3.8)
Indeed, (3.8) follows from (3.7) by setting b = p=q, y = h q 2 (t), x = , = (p=q) q=p , and using that q < p. We also have 0 h 2 (0) q p p q 0 A 0 0: (3.9)

In fact, if 0 = 1 then 1 (h 2 (0)=A 1=q 0 ) p q , which immediately gives A 0 h q 2 (0). If 0 = (h 2 (0)=A 1=q 0 ) p q then 0 h q 2 (0)

p=(p q) 0 A 0 = (h p 2 (0)=A p=q 0 ) 0 = 0, and if 0 = (2 q E q (0)=A 0 ) (p q)=p we obtain

0 h q 2 (0) p=(p q) 0 A 0 = 2 q E q (0) A 0 " A 0 2 q E q (0) q=p h q 2 (0) A 0 # ;
which together with the inequality (A 0 =(2 q E q (0))) q=p A 0 =h q 2 (0), render that the expression in brackets is lower-bounded by zero.

It follows from (3.4) and (3.8) that

dh 1 (t) dt e Wt 0 h q 2 (t) p p q 0 A 0 ;
and therefore dE(t) dt e Wt h q 1 (t) + 0 h q 2 (t) p p q 0 A 0 :

(3.10)

Setting y 1=q 0 h 2 (t)=h 1 (t) and using again the inequality 1 + y q 2 q (1 + y) q , we see that

h q 1 (t) + 0 h q 2 (t) = h q 1 (t) 1 + 1=q 0 h 2 (t) h 1 (t) q 2 q h 1 (t) + 1=q 0 h 2 (t) q 2 q 0 E q (t)
because 0 1. Plugging this into (3.10) renders dE(t) dt e Wt 2 q 0 E q (t) p p q 0 A 0 :

(3.11)

Due to assumption (3.5) we get E(t) E(0) > 0 for any t 0: Moreover, (3.11) transforms into

dE(t) E q (t) e Wt " 2 q 0 p=(p q) 0 A 0 E(0) q # dt (3.12)
which gives

E q 1 (t) E q 1 (0)
1 (q 1)E q 1 (0)

h 2 q 0 p=(p q) 0 A 0 E q (0) i R t 0 e Ws ds : (3.13)
In this way E(t), and therefore (h 1 (t); h 2 (t)), is going to blow-up earlier than the random time given by = inf 8 < : t 0 :

Z t 0 e Ws ds 1 (q 1)E q 1 (0) h 2 q 0 p=(p q) 0 A 0 E q (0) i 9 =
; :

A more general case

In this section we consider system (1.2) under the assumptions p q > 1 and V i = + 2 i =2, i = 1; 2. Let us again write 1 = p, 2 = q and j 2 f1; 2gnfig. We have from (2.4)

v i (t; x) = e t T t f i (x) + Z t 0 e ( i j i )Wr+ (t r) T t r v j (r; ) i (x) dr; i = 1; 2:
Theorem 3 Assume that p q > 1 and V i = + 2 i =2, i = 1; 2, and let f 1 = L(1) and f 2 = L(2) for some positive constants L(1) and L(2). Let be given by = inf ( t 0 :

Z t 0 e (p 2 1 )Wr dr 1 (p 1)L p 1 (1)k k p 1 1 or Z t 0 e (q 1 2 )Wr 1 (q 1)L q 1 (2)k k q 1 1 ) :
Then .

Proof. Let us de…ne, for i = 1; 2,

R i v(t; x) = e t T t f i (x) + Z t 0 e ( i j i )Wr+ (t r) (T t r v(r; x)) i dr;
and

B i (t) = 1 ( i 1) Z t 0 e ( i j i )Wr+ r kT r f i k i 1 1 dr 1=( i 1)
:

Proceeding in the same way as in the proof of Theorem 1, we get that

v 1 (t; x) = R 1 v 2 (t; x); v 2 (t; x) = R 2 v 1 (t; x)
as long as t and x 2 D. Moreover,

v i (t; x) e t T t f i (x) h 1 ( i 1) R t 0 e ( i j i )Wr ke r T r f i k i 1 1 dr i 1 i 1 = L(i) (x) h 1 ( i 1)L(i) i 1 k k i 1 1 R t 0 e ( i j i )Wr dr i 1 i 1
by our choice of f 1 and f 2 .

Corollary 4 Let the random time 0 be de…ned by

0 = inf t 0 : Z t 0 max n e (p 2 1 )Wr ; e (q 1 2 )Wr o dr min ( 1 (p 1)L p 1 (1)k k p 1 1 ; 1 (q 1)L q 1 (2)k k q 1 1
))

:

Then 0
In order to obtain an upper bound for when p q > 1 and V i = + 2 i =2, i = 1; 2, we …rst notice that a sub-solution for Eq. (3.3) is given by the solution of

dh 1 (t) dt = e (p 2 1 )Wt h 2 (t) p ; dh 2 (t) dt = e (q 1 2 )Wt h 1 (t) q ; h i (0) = v i (0; ); i = 1; 2: (4.1)
Working with system (4.1) as we did with (3.4) in the proof of Theorem 2, we get that dE(t) dt min n e (p 2 1 )Wt ; e (q 1 2 )Wt o 2 q 0 E q (t)

p p q 0 A 0 ; and in case of p = q, dE(t) dt min n e (p 2 1 )Wt ; e (p 1 2 )Wt o 2 p E p (t);
which can be handled using the same method as in the proof of Theorem 2.1. In this way we obtain the following result for the explosion time of system (1.2).

Theorem 5 Let p q > 1.

1. If p = q then , where = inf t 0 :

Z t 0 min n e (p 2 1 )Wr ; e (p 1 2 )Wr o ds 2 p (p 1) 1 E 1 p (0) :
2. If p > q and (3.5) holds true, then where = inf t 0 :

Z t 0 min n e (p 2 1
)Wr ; e (q 1 2 )Wr o dr 1 (q 1)E q 1 (0)

h 2 q 0 p=(p q) 0 A 0 E q (0) i 9 = 
; :

Remark Setting t 0 and

M := 8 > > < > > : (q 1)E q 1 (0)[2 q 0 p=(p q) 0 A 0 E q (0)] 1 ; if p > q, 2 p (p 1) 1 E 1 p (0), if p = q , (4.2) 
we get

IPf tg = IP Z t 0 min n e (p 2 1 )Wr ; e (q 1 2 )Wr o dr M = IP n e R t 0 minfe (p 2 1 )Wr ;e (q 1 2 )Wr g dr e M o e M E h e R t 0 minfe (p 2 1 )
Wr ;e (q 1 2 )Wr g dr i ;

where we used Chebyshev's inequality. A similar estimate for the distribution function of , but involving the functional R t 0 max e (p 2 1 )Wr ; e (q 1 2 )Wr dr, can be obtained using that 0 . The Laplace transforms of the random functionals R 0 max e aWr ; e bWr dr, R 0 min e aWr ; e bWr dr where is an independent exponentially distributed time and a > 0, b > 0 are constants, are given in Theorem 7 below. We want to investigate the functional of Brownian motion A F t de…ned by

A F t = Z t 0 F (W s ) ds = Z t 0 e aWs 1 [0;1) (W s ) + e bWs 1 ( 1;0) (W s ) ds: (5.1)
Let k be an exponentially distributed random variable of parameter k, independent of fW s g, and let g k (!) be the last zero of W : (!) before k (!). Our …rst aim is to calculate the Laplace transform of A F k , which follows from a simple adaptation of the approaches in [START_REF] Jeanblanc | The Feynman-Kac formula and decomposition of Brownian paths[END_REF] and [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF]. In fact, as in [START_REF] Jeanblanc | The Feynman-Kac formula and decomposition of Brownian paths[END_REF] we can write

IE exp A F k = IE h exp n A F g k oi IE h exp n A F k A F g k oi ; (5.2)
and substituting F instead of F in the above equality, where 0, we get an expression for the Laplace transform of A F k in terms of the two expectations in the RHS of (5.2). Let f`tg be the local time at 0 of fW s g, and s := infft 0 : `t > sg the inverse local time. Using formula (2.4) in [START_REF] Jeanblanc | The Feynman-Kac formula and decomposition of Brownian paths[END_REF] we obtain that

IE h exp n A F g k oi = k Z 1 0 dl IE exp k 2 2 l + A F l : (5.3) 
From Corollary 3.4 and Theorem 3.1 in [START_REF] Jeanblanc | The Feynman-Kac formula and decomposition of Brownian paths[END_REF] we know that for general F;

IE exp k 2 2 l + A F l = exp l 2 F + 0 t (k; 0) + l 2 F 0 t (k; 0) ; (5.4) 
where F (k; t) =: u(k; t) is the unique bounded solution of the Sturm-Liouville equation

1 2 U 00 = k 2 2 + F U; U (0) = 1;
and F + := F j IR + , F (z) := F ( z), z 0. In our case F + (z) = e az and F (z) = e bz ; z 0:

The remaining expectation in the RHS of (5.2) can be written as

IE h exp n A F k A F g k oi = k 2 Z 1 0 dt F + (k; t) + F (k; t) ; (5.5) 
see [START_REF] Jeanblanc | The Feynman-Kac formula and decomposition of Brownian paths[END_REF], Corollary 3.2. We are going to calculate the functions 

; t) = K k 0 ( 0 e t ) K k 0 ( 0 ) with k 0 = 4k a 2 ; 0 = 4 a 2 ;
and therefore

2 2 F + (k; t) = v(k; t) = w(k; at=2) = K 4k=a 2 4 e at=2 =a 2 K 4k=a 2 (4 =a 2 ) :
To calculate We now continue with the development of (5.4). We recall from [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF] (pag. 131) that

K k+1 ( ) = K 0 k ( ) + kK k ( ) and I k 1 ( ) = I 0 k ( ) + kI k ( ); (5.8) 
where the derivatives are with respect to : The derivatives of 

2 F + 0 t (k; 0) = K 0 4k=a 2 (4 =a 2 )(a=2)(4 =a 2 ) K 4k=a 2 (4 =a 2 ) = 2 a 0 @ 4k=(a 2 ) 4 =(a 2 ) K 4k a 2 +1 (4 =a 2 ) K 4k=a 2 (4 =a 2 ) 1 A = a 2 4k a 2 (4 =a 2 )K 4k=a 2 +1 (4 =a 2 ) K 4k=a 2 (4 =a 2 ) ! ;
where in the last equality we used (5.8). In a similar way, where R(a; ; k) and S(b; ; k) are given by (5.9).

Corollary 8 Let k be an exponentially distributed random variable of parameter k > 0, independent of fW t g, and let P := minfp 2 1 ; q 1 2g and Q := maxfp 2 1 ; q 1 2g be strictly positive. Then, where M is given by (4.2), and R and S are given by (5.9).

IPf
Proof. From the de…nition of (see Theorem 5) we know that for any s 0,

IPf sg IPf sg = IPfA F s M g;
where A F s is given by (5.1) with a = P and b = Q. Using Chebyshev's inequality as before we get IPfA F s M g e M E expf A F s g . The result follows from (5.11), putting = p 2 and s = k .

Z t 0 e

 0 aWr ^ebWr dr and A (t) = Z t 0 e aWr _ e bWr dr:

= inf t 0 : Z t 0 e

 0 2 p I p (t); I(0) = E(0); whose explosion time is given by Ws ds 2 p (p 1) 1 E 1 p (0) :
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 24242697 =b 2 )(b=2)(4 =b 2 ) I 4k=b 2 (4 =b 2 ) = b =b 2 )I 4k=b 2 1 (4 =b 2 ) I 4k=b 2 (4 =b 2 ) 4k bSubstituting the two expressions above into (5.4) we obtain the following. For all a; b 2 (0; 1), Putting together (5.2), (5.3), (5.5) and Lemma 6 we get the following formulas. Let a; b 2 (0; 1). The Laplace transforms of A F g k a; ; k) + S(b; ; k)) dl = 2k R(a; ; k) + S(b; ; k) ;

Institut Elie Cartan, Université de Lorraine, B.P. 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France. y Centro de Investigación en Matemáticas, Apartado Postal 402, 36000 Guanajuato, Mexico.

Acknowledgement. The authors are grateful to an anonymous referee for valuable comments, and for letting them know about reference [8]. This research was partially supported by the CNRS-CONACyT project grant "Blow-up of parabolic stochastic partial di¤erential equations." The …rst named author acknowledges the hospitality of CIMAT, Guanajuato, and the second and third named authors acknowledge the hospitality of Institut Elie Cartan, Nancy, where part of this work was done. The authors acknowledge the hospitality of Bernoulli Center, EPF Lausanne, during the thematic semester on stochastic analysis.