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We consider stochastic equations of the prototype du(t; x) = u(t; x) + u(t; x) + u(t; x) 1+ dt + u(t; x) dB H t on a smooth domain D IR d , with Dirichlet boundary condition, where > 0, and are constants and fB H t , t 0g is a real-valued fractional Brownian motion with Hurst index H > 1=2. By means of an associated random partial di¤erential equation we estimate the probability of existence of non-trivial positive global solutions.

Introduction and background

In a classical paper [START_REF] Fujita | On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations[END_REF], Fujita proved that for a bounded smooth domain D IR d , the equation @u(t; x) @t = u(t; x) + u 1+ (t; x); x 2 D;

with Dirichlet boundary condition, where > 0 is a constant, explodes in …nite time for all nonnegative initial values u(0; x) 2 L 2 (D) satisfying

Z D u(0; x) (x) dx > 1= 1 : (1) 
Here 1 > 0 is the …rst eigenvalue of the Laplacian on D and the corresponding eigenfunction normalized so that k k L 1 = 1.
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In this paper we consider a stochastic analog of the above equation, namely we investigate the semi-linear SPDE du(t; x) = ( u(t; x) + u(t; x) + G(u(t; x))) dt + u(t; x) dB H t ; t > 0; u(0; x) = f (x) = 0; x 2 D;

(2) u(t; x) = 0; t = 0; x 2 @D;

where G : IR ! IR + is locally Lipschitz and satis…es G(z) Cz 1+ for all z > 0;

(3) C > 0; ; > 0 and are given numbers, fB H t ; t 0g is a one-dimensional fractional Brownian motion with Hurst index H > 1=2 on a stochastic basis ( ; F; P ), and f : D ! IR + is of class C 2 and not identically zero. We assume [START_REF] Borodin | Handbook of Brownian motion -facts and formula, second edition, Probability and its Applications[END_REF] in sections 1 to 3 only; it is replaced by [START_REF] Ouhabaz | Sharp estimates for intrinsic ultracontractivity on C 1;domains[END_REF] in sections 4 and 5.

The results on global solutions of parabolic equations perturbed by an additive or multiplicative time or space-time fractional noise established up to now are su¢cient to state the existence and uniqueness of the variational (weak) and of the mild solution of (2) and the equivalence of both; see Maslowski and Nualart [START_REF] Maslowski | Evolution equations driven by a fractional Brownian motion[END_REF], Nualart and Vuillermot [START_REF] Nualart | Variational solutions for partial di¤erential equations driven by a fractional noise[END_REF], and Sanz and Vuillermot [START_REF] Sanz-Solé | Mild solutions for a class of fractional SPDE's and their sample paths[END_REF], where the integral with respect to B H is understood in the sense of fractional calculus (see e.g. Zähle [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus I[END_REF], [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus II[END_REF]). Let us recall the notions of variational and mild solutions we are going to use here; see [START_REF] Nualart | Variational solutions for partial di¤erential equations driven by a fractional noise[END_REF], [START_REF] Sanz-Solé | Mild solutions for a class of fractional SPDE's and their sample paths[END_REF]. Let 2 (1 H; 1 2 ), t > 0, and let B ;2 ([0; t]; L 2 (D)) be the Banach space of all measurable mappings u : [0; t] ! L 2 (D) endowed with the norm k k ;2 , de…ned by kuk 2

;2 = ess sup

s2[0;t] ku(s; )k 2 ! 2 + Z t 0 ds Z s 0 dr ku(s; ) u(r; )k 2 (s r) +1 2 < 1
where k k 2 is the usual norm in L 2 (D): An L 2 (D) valued random …eld u = fu(t; ); t 0g is a variational solution of (2) on the interval ]0; %[ if, a.s.,

u 2 L 2 ([0; t]; H 1 (D)) \ B ;2 ([0; t]; L 2 (D)) (4) 
for all t < % and if, for every ' 2 H 1 (D) vanishing on @D,

Z D u(t; x)'(x) dx = Z D f (x)'(x) dx + Z t 0 Z D [hru(s; x); r'(x)i R d + u(t; x)'(x) + G(u(s; x))'(x)] dx ds + Z t 0 Z D u(s; x)'(x) dx dB H s P -a.s.
for all t 2 [0; %[. The requirement for u to belong to the B ;2 spaces implies that the integral with respect to B H exists as a generalized Stieltjes integral in the sense of [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus II[END_REF], see [START_REF] Pazy | Semigroups of linear operators and applications to partial di¤erential equations[END_REF], Chapter IV). Let us remark that the proof of the uniqueness of the mild solution and the equivalence of the variational and the mild solutions are carried out in [START_REF] Sanz-Solé | Mild solutions for a class of fractional SPDE's and their sample paths[END_REF] under the conditions H 2 ( 4d+1 4d+2 ; 1) and 2 (1 H; 1 4d+2 ), and for the more general case where B H is a space-dependent fractional Brownian motion. For an approach based on stochastic integrals in the Wick sense we refer to [START_REF] Ohashi | Stochastic evolution equations driven by a fractional white noise[END_REF]. The positivity of the solution of (2) will be addressed in the next section.

Our aim in this communication is to study the blowup behaviour of u by means of the random partial di¤erential equation of section 2 (see (6) below). The case of H = 1=2, in which fB H t g is a standard one-dimensional Brownian motion, was investigated in [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF]. There we obtained estimates of the probability of blowup and conditions for the existence of a global solutions of ( 2) with H = 1=2 and = 0. Following closely the approach in [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF], here we are going to derive the same kind of bounds for the positive solutions of Equation ( 2), in the case H > 1=2 and with a constant drift in the non-random linear part. Moreover, we obtain useful lower and upper bounds , for the explosion time % of (2). We remark that both, the estimates we obtain and the distributions of the random times , , are given in terms of exponential functionals of B H of the form Z t 0 e ( 1 + ) s+ B H s ds and

Z 1 0 e ( 1 + ) s+ B H s ds: (5) 
When H = 1=2 the distribution of the integrals above can be obtained, respectively, from Dufresne's and Yor's formuale [START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF][START_REF] Yor | On Some Exponential Functionals of Brownian Motion[END_REF]. However, to our knowledge such precise results are not presently available for H 6 = 1=2. It remains a challenge to obtain more accurate information on the explosion times of (2).

We describe in sections 3 and 4 the blowup behaviour of the solution v of this random partial di¤erential equation in terms of the …rst eigenvalue and the …rst eigenfunction of the Laplace operator on D. This is done by solving explicitly a stochastic equation in the time variable which is obtained from the weak form of [START_REF] Friedman | Partial di¤erential equations of parabolic type[END_REF]. The solution of this di¤erential equation can be written in terms of integrals of the exponential of fractional Brownian motion with drift. Near the end of the paper, su¢cient conditions for v to be a global solution are given in terms of the semigroup of the Laplace operator using recent sharp results on its transition density. These conditions show in particular that the initial condition f has to be small enough in order to avoid for a given G the blowup of v, as well as a su¢ciently small j j and a su¢ciently big . The results presented here can be used to investigate the blowup behaviour of u for non-linearities satisfying (3) or [START_REF] Ouhabaz | Sharp estimates for intrinsic ultracontractivity on C 1;domains[END_REF].

Weak solutions of a random PDE

In this section we investigate the random partial di¤erential equation

@v @t (t; x) = v(t; x) + v(t; x) + e B H t G(e B H t v(t; x)); t > 0; x 2 D; v(0; x) = f (x); x 2 D; (6) v(t; x) = 0; x 2 @D:
This equation is understood trajectorywise and classical results for partial di¤erential equations of parabolic type apply to show existence and uniqueness of a solution v(t; x) up to eventual blowup (see e.g. Friedman [START_REF] Friedman | Partial di¤erential equations of parabolic type[END_REF] Chapter 7, Theorem 9). Moreover,

v(t; x) = e t S t f (x) + Z t 0 e (t s) S t s e B H s G(e B H s v(s; x) ds; (7) 
and therefore v(t; x) e t S t f (x) 0.

Proposition 1 Let u be a weak solution of (2). Then the function v de…ned by

v(t; x) = e B H t u(t; x); t 0; x 2 D; solves (6). 
Remark 2 Proposition 1 implies in particular that Eq. ( 2) possesses a strong local solution u(t; x). Moreover, u(t; x) 0 due to [START_REF] Fujita | On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations[END_REF].

Proof. By Itô's formula for B H (see e.g. [START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF], Lemma 2.7.1)

e B H t = 1 Z t 0 e B H s dB H s :
We notice that the last integral can be de…ned as a Riemann-Stieltjes integral. Let us write u(t; ') R D u(t; x)'(x) dx: Then the weak solution of (2) can be written as

u(t; ') = u(0; ') + Z t 0 u(s; ') ds + Z t 0 [ u(s; ') + G(u)(s; ')] ds + Z t 0 u(s; ') dB H s :
By applying the integration by parts formula, which is a special case of the 2-dimensional Itô's formula (see [START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF], p. 184), we get Moreover, by self-adjointness of the Laplacian, and the fact that

v(t; ') := Z D v(t; x)'(x) dx = v(0; ') + Z t 0 e B H
'(x) = 0 for x 2 @D, v(s; ') = Z D v(s; x) '(x) dx = Z D v(s; x)'(x) dx = v(s; '):
In what follows % denotes the blowup time of Eq. ( 6). Due to Proposition 1 and to the a.s. continuity of B H : , % is also the explosion time of Eq. ( 2). and is given by

I(t) = e ( 1 + )t v(0; ) Z t 0 e ( 1 + ) s+ B H s ds 1 ; 0 t < ; with := inf t 0 e ( 1 + ) s+ B H s ds 1 v(0; ) : (8) 
It follows that I exhibits …nite time blowup on the event [ < 1]. Due to I 5 v( ; ); is an upper bound for the blowup time of v( ; ). Since by assumption

R D (x) dx = 1, v(t; x) cannot be bounded on [ < 1].
Hence is also an upper bound for the blowup times of v and u.

We subsume the above argumentation into the following corollary.

Corollary 3 The function v(t; ) = R D v(t; x) (x) dx explodes in …nite time on the event [ < 1], hence u(t; x) = e B H t v(t;
x) also explodes in …nite time if < 1, and the blowup times of u and v are the same.

Remark 4 Notice that, from [START_REF] Maslowski | Evolution equations driven by a fractional Brownian motion[END_REF],

P [ = +1] = P Z t 0 e ( 1 + ) s+ B H s ds < 1 v(0; ) for all t > 0 = P Z 1 0 e ( 1 + ) s+ B H s ds 5 1 v(0; ) : (9) 
Assume now that > 1 ; and recall the law of the iterated logarithm for B H (ref: Arc) :

lim inf t!+1 B H t t H p log log t = 1; lim sup t!+1 B H t t H p log log t = +1:
It follows that the integral in eqref diverges. Therefore P [ = +1] = 0 and any nontrivial positive solution of Eq. ( 2) explodes in …nite time a.s.. If < 1 this is not true anymore, and it would be interesting to estimate this probability. As mentioned in the introduction, the law of these integrals is known only in the case H = 1 2 ; i.e. for Brownian motion: After the following remark we consider this case in more detail.

Remark 5 By putting = = 0 we get v = u and, moreover, in [START_REF] Matsumoto | Exponential functionals of Brownian motion. I. Probability laws at …xed time[END_REF] we obtain that

P [ = +1] = 0 or 1 according to R D f (x) (x) dx > 1= 1 or R D f (x) (x) dx 1= 1
, which is a probabilistic counterpart to condition [START_REF] Arcones | On the law of the iterated logarithm for Gaussian processes[END_REF].

For H = 1 2 Itô's formula contains a second order term and the associated random PDE therefore reads (we write W instead of B 1=2 )

@v @t (t; x) = v(t; x) + ( 2 2 )v(t; x) + e Wt G(e Wt v(t; x)); t > 0; x 2 D; v(0; x) = f (x); x 2 D; (10) v(t; x) = 0; x 2 @D:
We get again a di¤erential inequality for v(t; ); and the blowup time of the associated di¤erential equation for I is

~ = inf t 0 Z t 0 e ( 1 + 2 =2 ) s+ Ws ds 1 v(0; ) : (**) Now P [ ~ = +1] = P Z 1 0 e ( 1 + 2 =2 ) s+ Ws ds 5 1 v(0; ) = P Z 1 0 e 2 ^ W ( ) s ds 5 1 v(0; ) ; (11) 
where W We get therefore (see also formula 1.10.4(1) in [START_REF] Borodin | Handbook of Brownian motion -facts and formula, second edition, Probability and its Applications[END_REF])

P [ ~ = +1] = Z 1 v(0; ) 0 h(y)dy;
where

h(y) = ( 2 2 y=2) (2( 1 )+ 2 )= 2 y ((2( 1 ) + 2 )=( 2 )) exp 2 2 2 y :
In this way we have proved the following Proposition. The probability that the solution of (2) (ref: ) with B H replaced by W blows up in …nite time is lower bounded by R +1

1 v(0; ) h(y) dy:

We end this section by reviewing another method to …nd upper estimates of the blowup time of the solution of (2). In cite: BDS it is shown that the formula (**) for ~ can also be found by replacing the random di¤erential inequality (*) by a stochastic di¤erential inequality, whose associated equality can be solved explicitely. A comparison theorem for stochastic di¤erential inequalities is needed for this, and since no such theorem seems to be known at present for inequalities with fractional Brownian motion, we have to restrict ourselves to Brownian motion where these theorems are classical.

Proceeding with the variational solution in section 1 in the same way as with the random PDE ref : Eq3 at the beginning of this section, we get the following stochastic di¤erential inequality

u(t; ) = u(0; ) + Z t 0 [( 1 )u(s; ) + u(s; ) 1+ ] ds + Z t 0 u(s; ) dW s :
The corresponding stochastic di¤erential equation

X t = u(0; ) + Z t 0 [( 1 )X s + X 1+ s ] ds + Z t 0 X s dW s
can be solved explicitely. In fact, by the ansatz Y t = h(X t ) and by Itô's formula, we then get

Y t = Y 0 + Z t 0 [h 0 (Y s )(( 1 )Y s + Y 1+ s ) + 2 2 h 00 (Y s )Y 2 s ] ds + Z t 0 h 0 (Y s )Y s dW s :
The function h can now be chosen in such a way that Y satis…es the linear stochastic di¤erential equation

Y t = Y 0 + Z t 0 (a + bY s )ds + Z t 0 (c + dY s )dW s :
for suitable constants a; b; c; d 2 R: In fact, a comparison of the martingale parts of both representations of Y gives a di¤erential equation for h whose solution is given by h(Y t ) = kY 

X t = Y 1= t = [u(0; ) Y 0 t Y 1 t ] 1= ; (***)
where

Y 0 t = exp[( 1 + 2 =2 ) t W t ]; Y 1 t = Y 0 t Z t 0 exp[ ( 1 + 2 =2 ) s + W s ]ds:
It can easily be seen that (***) yields the same formula for the blowup time of X as (**) for I:

A lower bound for %

We consider again equation ( 6), but we assume that 6 = 0 and that G : IR + ! IR + satis…es G(0) = 0, G(z)=z is increasing and

G(z)
z 1+ for all z > 0;

where and are certain positive numbers. Let fS t , t 0g again denote the semigroup of d-dimensional Brownian motion killed at the boundary of D. Recall the integral form [START_REF] Fujita | On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations[END_REF] of Equation ( 6). We de…ne

F (t) = 1 Z t 0 e B H r ke r S r f k 1 dr 1 ; 0 t < ; (14) 
where

= inf t > 0 : Z t 0 e B H r ke r S r f k 1 dr ( ) 1 : (15) 
Hence

F (0) = 1 and dF dt (t) = e B H t ke t S t f k 1 F 1+ (t);
which implies 

F (t) = 1 + Z t 0 e B H r ke r S r f k 1 F 1+ (r) dr: Let R(V )(t; x) := e t S t f (x) + Z t 0 e B H r e (t
Then e t S t f (x)

R(V )(t; x) and R(V )(t; x) = e t S t f (x) + Z t 0 e B H r e (t r) S t r G(e B H r V r ( )) V r ( ) V r ( ) ! (x) dr e t S t f (x) + Z t 0 e B H r e (t r) S t r G(e B H r F (r)ke r S r f k 1 ) F (r)ke r S r f k 1 V r ( ) ! (x) dr e t S t f (x) + Z t 0 e B H r F 1+ (r)ke r S r f k 1 e (t r) S t r (e r S r f )(x) dr = e t S t f (x) 1 + Z t 0 e B H r F 1+ (r)ke r S r f k 1 dr = e t S t f (x)F (t); (17) 
where to obtain the …rst inequality we used ( 16) and the fact that G(z)=z is increasing, and to obtain the second inequality we used [START_REF] Ouhabaz | Sharp estimates for intrinsic ultracontractivity on C 1;domains[END_REF]. Consequently,

e t S t f (x) R(V )(t; x) e t S t f (x)F (t); 0 t < ; x 2 D: Let v 0 t (x) := e t S t f (x) and v n+1 t (x) = R(v n )(t;
x); n = 0; 1; 2; : : : :

Using induction, one can easily prove that the sequence fv n g is increasing, and therefore the limit

v t (x) = lim n!1 v (n) t (x)
exists for all x 2 D and all 0 t < . The monotone convergence theorem implies v t (x) = Rv t (x) for x 2 D and 0 t < , i.e. the function v t (x) solves (7) on [0; ) D. Moreover, because of ( 17) and ( 14),

v t (x) e t S t f (x) 1 R t 0 e B H r ke r S r f k 1 dr 1= < 1 as long as Z t 0 e B H r ke r S r f k 1 dr < ( ) 1 :
In this way we have proved the following proposition.

Proposition 6

The blowup time of ( 7) is bounded from below by the random variable de…ned in [START_REF] Salminen | Properties of perpetual integral functionals of Brownian motion with drift[END_REF].

Non explosion of v

An immediate consequence of the discussion in the preceding section is the following result.

Theorem 7 Assume that f satis…es Z 1 0 e B H r ke r S r f k 1 dr < 1: (18) 
Then Equation ( 6) admits a global solution v(t; x) that satis…es

0 v(t; x) e t S t f (x) 1 R t 0 e B H r ke r S r f k 1 dr 1 ; t 0: (19) 
When the boundary of D is su¢ciently smooth, it is possible to derive a su¢cient condition for [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus I[END_REF] in terms of the transition kernels fp t (x; y), t > 0g of fS t , t 0g and the …rst eigenvalue 1 and corresponding eigenfunction . We recall the following sharp bounds for fp t (x; y), t > 0g, which we borrowed from Ouhabaz and Wang [START_REF] Ouhabaz | Sharp estimates for intrinsic ultracontractivity on C 1;domains[END_REF].

Theorem 8 Let

> 0 be the …rst Dirichlet eigenfunction on a connected bounded C 1;domain in IR d , where > 0 and d 1, and let p t (x; y) be the corresponding Dirichlet heat kernel. There exists a constant c > 0 such that, for any t > 0, max 1; 1 c t (d+2)=2 e 1 t sup

x;y p t (x; y) (x) (y) 1 + c(1 ^t) (d+2)=2 e ( 2 1 )t ;

where 2 > 1 are the …rst two Dirichlet eigenvalues. This estimate is sharp for both short and long times.

The above theorem is useful in verifying condition [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus I[END_REF]. Let the domain D satisfy the assumptions in Theorem 8, and let the initial value f 0 be chosen so that f (y) KS (y); y 2 D;

(20) where 1 is …xed and K > 0 is a su¢ciently small constant to be speci…ed later on. Arguing as in [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF] we obtain that condition [START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus I[END_REF] is satis…ed provided that " (21) which holds if K in (20) is su¢ciently small. In this way we get the following Theorem 9 Let G satisfy [START_REF] Ouhabaz | Sharp estimates for intrinsic ultracontractivity on C 1;domains[END_REF], and let D be a connected, bounded C 1; -domain in R d , where > 0: If (20) and (21) hold for some > 0 and K > 0, then the solution of Equation ( 7) is global.

K(1 + c)e 1 sup

Remark 10

The integral on the left side of (21) coincides with the corresponding integral in Section 3. If G(z) = z 1+ , the results of this section can be applied also to the solution u of equation (2) because v(t; x) = e B H t u(t; x), t 0, x 2 D:

: 1 + 2 1 (

 121 = s + W s , := ( 1 + 2 =2)= , and ^ := =2. Setting b = = b we get by performing the time change s 7 ! s( ^ ) =2)= > 0; it follows again that P [ ~ = +1] = 0 and any nontrivial positive solution of Eq. (2) with B H replaced by W explodes in …nite time a.s., see also [9], Proposition 6.4, or [15], Section 2. If ^ < 0; it follows from [17] (Chapter 6, Corollary 1.distribution, where Z b is a random variable with law ( b ); i.e. P (Z b 2 dy) = b ) e y y b 1 dy:

d= t c d for any constant k 2 R: 2 + 1 )

 221 By comparing the …nite variation parts of the representations of Y we get We choose d = ; c = 0; b = ( (1+ ) 2 ; a = k and get Y t = X t : With the explicit formula for the solution of the linear equation for Y we get

  It is well-known that is strictly positive on D. Due to Proposition 1 we have that

		v(t; ) = v(0; ) +	Z t	[v(s;	) + v(s; )] ds +	Z t	e B H s G(e B H : v)(s; ) ds:
			0				0
	Moreover,				
				v(s;	) =	1 v(s; );
	and, due to (3),				
		Z					Z
		e B H s G(e B H s v(s; x)) (x) dx	e B H s	v(s; x) 1+ (x) dx:
		D					D
	By Jensen's inequality				
		Z			Z		1+
		v(s; x) 1+ (x) dx		v(s; x) (x) dx	= v(s; ) 1+ ;
		D			D
	and therefore				
	d dt	v(t; ) (				

3 An upper bound for % Without loss of generality, let us assume that C = 1 in (3). Let be the eigenfunction corresponding to the …rst eigenvalue 1 of the Laplacian on D, normalized by R D (x) dx = 1: 1 + )v(t; ) + e B H t v(t; ) 1+ : (*) Hence v(t; ) I(t) for all t 0, where I( ) solves d dt I(t) = ( 1 + )I(t) + e B H s I(t) 1+ ; I(0) = v(0; );
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