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Abstract—Vehicle localization is the primary information
needed for advanced tasks like navigation. This information
is usually provided by the use of Global Positioning System
(GPS) receivers. However, the low accuracy of GPS in urban
environments makes it unreliable for further treatments. The
combination of GPS data and additional sensors can improve the
localization precision. In this article, a marking feature based
vehicle localization method is proposed, able to enhance the lo-
calization performance. To this end, markings are detected using
a multi-kernel estimation method from an on-vehicle camera. A
particle filter is implemented to estimate the vehicle position with
respect to the detected markings. Then, map-based markings are
constructed according to an open source map database. Finally,
vision-based markings and map-based markings are fused to
obtain the improved vehicle fix. The results on road traffic
scenarios using a public database show that our method leads
to a clear improvement in localization accuracy.

I. INTRODUCTION

Vehicle localization plays a fundamental and critical role in
Intelligent Transportation System (ITS) because it is the prior
task for higher level operations. Various methods have been in-
troduced to improve the accuracy of the results using different
additional sensors [1]. Before digital map is considered, most
of the localization methods rely on Global Navigation Satellite
System (GNSS) and Inertial Navigation System (INS). In [2],
only GNSS position is depended, the positioning problem
is formulated as a Bayesian inference problem in a factor
graph. In [3], GPS and INS signals are integrated because INS
continues to estimate vehicle positions when GPS signals are
lost in certain conditions.

With the development of cartography, digital maps are
integrated into vehicle navigation. Map-based methods mainly
contain two parts, map-matching algorithm and vehicle local-
ization method. Map-matching [4] aims to locate the vehi-
cle position on the map, by fusing both map features (i.e.
geometrical and topological information) and data collected
from vehicle (i.e. GPS, direction, road shapes, velocities).
Particle filter is commonly used in map-matching [5]. Vehicle
localization part uses map information to adjust vehicle loca-
tion. Common methods in vehicle localization include Kalman
Filter [6][7], Extended Kalman Filter (EKF) [8], optimization
algorithm [9], and methods relying on interval analysis [10]. In
[11], multi-object localization is performed to improve vehicle
localization.

Lane marking based localization is regarded as one branch
of map-based localization. On one hand, marking based meth-

ods introduce vision into localization, fusing image cues to
help localization. On the other hand, most map-based local-
ization methods adopt only the topological and geometrical
information of the map, while in lane marking based local-
ization, map information are adequately utilized, i.e., number
of lanes, lane width and road type. In [12], traffic signs (i.e.
arrows, pedestrian crossings and markings) from both vision
source and map source are compared to provide a translation
vector from vision space to map space. Vehicle location is then
adjusted according to this vector. In [7], all markings from both
offline maps and visions at a stop intersection are compared
using particle filter to estimate vehicle position. In [6], belief
theory combines several criteria to implement map-matching.
A Kalman filter, combining the vehicle poses and selected map
segments together, are designed to estimate vehicle coordinate.
In [8], a full-state EKF, including located markings and GPS
signals with error model, is adopted to locate vehicle fix.

Most existing papers on marking based localization require
high-accuracy digital maps, including the precise locations of
all the lane markings. Even all the traffic signs on the road
surface are needed in some publications. High-accuracy digital
maps help to improve localization results. However, these maps
are specially customized, which is time-consuming when con-
structing and range-limited when adopting. Meanwhile, only
simple road situations are considered in remaining methods,
for instance, one direction way without multi-lane.

In this paper, a marking feature based vehicle localization
method is proposed, aiming at a wide applied range and
accurate localization. The main idea is to extract and fit
vision-based and map-based markings to optimize vehicle
position. In Section II, lane markings are detected through
image processing and parameter estimation. Section III designs
a particle filter to adjust rough GNSS positions using lane
marking model. This particle filter can be considered as a first
adjusting on rough vehicle positions. In Section IV, the road
segment is estimated using multi-criterion estimation, the map-
based lane markings of current state are then determined from
an open source map database. In Section V, vehicle location is
estimated according to fusing both vision-based lane markings
and map-based lane markings, using a multi-kernel estimation
method. Finally, Section VI presents experimental results.

II. LANE MARKING DETECTION

In this section, images from on-vehicle camera are pro-
cessed to extract road marking features. Marking model pa-



rameters are then estimated using a multi-kernel method. This
lane marking detection method has been demonstrated in [13].

A. Image Processing
The input images are processed through Inverse Perspective

Mapping (IPM). This translation provides vertical and paral-
leled lane markings in Bird Eye’s View (BEV) space, which
greatly facilitates marking detection strategies. A second order
derivative filter along the horizontal direction is applied to
process BEV images where lane markings are nearly vertical.
To eliminate the remaining outliers, a cell-based blob algo-
rithm, improved from [14], is introduced. By the end of image
processing part, a binary image is produced.

B. Parameter Estimation
A parabola: x = c + d · y + e · y2 is chosen as the

marking model in BEV space. The marking initialization step
determines the zero order component c. The first and second
order components d and e are estimated through an improved
multi-kernel based method with hierarchical weights.

Marking initialization step aims to determine the zero order
components cl and cr of left and right markings together
using a parametric Gaussian model based method. To this
end, the intersections of both lane markings at x-axis in
BEV images are estimated using multi-criterion. These two
intersections are exactly model parameters cl and cr. The
distributions considered to estimate cl and cr are: previous
detection distribution X1, white pixels distribution X2, Hough
lines distribution X3, prior data distribution X4 and lane width
distribution X5. The probability distribution of cl and cr is then
given as:

pt(cl, cr)=

∑
j=l,r

(
3∑
i=1

ki ·pi (cj)

)
·p4(cj)

·p5(cl − cr), (1)

where pi(x) is probability density function of normalized
Xi, ki is an importance coefficient of pi(x). Finally the
intersections of left and right lane markings c∗l and c∗r are
decided by:

c∗l , c
∗
r = arg max

cl,cr

pt(cl, cr). (2)

A multi-kernel density based method with hierarchical
weights, improved from [15], is introduced for estimating the
remaining model parameters. The basic unit of this algorithm
is the similarity between an image pixel (xi, yi) and a marking
model (c, d, e) in a binary image:

Gpi(c, d, e, xi, yi) =

ˆ +∞

−∞
K ′xKydy, (3)

where,

Ky =
1√

2πσ2
yi

exp(− (y − yi)2
2σ2

yi

), (4)

K ′x =
1√

2πσ2
xi

exp(− (c+ dy + ey2 − xi)2
2σ2

xi

). (5)

GaussHermite quadrature method [16] is employed to compute
the numerical solution of Gpi. When Gpi is derived, the
probability of a specified model pGpi(d, e) is defined as:

pGpi(d, e) =
1

nt

ntotal∑
i=1

w(xi, yi) ·Gpi(cm, d, e, xi, yi), (6)

where ntotal is the total number of white pixels in the bina-
riezd image. w(xi, yi) is a hierarchical weight, which offers
corresponding coefficient according to different areas of the
BEV image.

The left and right marking models are computed together
as Eq. (7) to obtain the optimized parameters d∗l , e∗l , d∗r , e∗r ,
with a geometrical constraint presented in Eq. (8) and (9).
d∗l , e

∗
l , d
∗
r , e
∗
r =arg max
djl ,djr ,ejl ,ejr

[pGpi(dil , ejl) + pGpi(dir , ejr )]. (7)

djr ∈ (djl −4d, djl +4d), (8)
ejr ∈ (ejl −4e, ejl +4e). (9)

Therefore, c∗l and c∗r are estimated in the initialization step,
and d∗l , e∗l , d∗r , e∗r are optimized using multi-kernel method. At
each sampling time, a pair of lane markings are detected. The
confidence accorded to this procedure is modeled by the means
of a self-assessment indicator detailed in our previous work
[13]. Unreliable detections can then be efficiently identified
and discarded based on the estimated confidence. In such cases,
the last reliable estimation should be considered and predicted.

III. LANE MARKING BASED PARTICLE FILTER

Particle filter is a general Monte Carlo method to esti-
mate the posterior density of the state variables given the
observation variables. A Sampling Importance Resampling
(SIR) filter performs three operations sequentially: prediction
step, update step and resampling. Particle filter framework is
used in the following to observe the vehicle position fusing
the information provided by the detected lane markings and
rough GPS and speed measurements (i.e. lineal and angu-
lar). The vehicle state at time k is represented by s

(i)
k =[

x
(i)
enu,k, y

(i)
enu,k, v

(i)
veh,k, γ

(i)
veh,k

]T
, where

[
x
(i)
enu,k, y

(i)
enu,k

]T
is

the vehicle coordinate in meter in East-North-Up (ENU) space,
v
(i)
veh,k is the forward speed of host vehicle in meter per second

and γ
(i)
veh,k is the vehicle heading in degree. Particles are

sampled in prediction step and their weights and filtered state
are computed in update step. SIR algorithm is introduced to
deal with degeneracy problem.

A. Initialization Step
At time 0, particles are initialized according to a first vehicle

position reference denoted (xenu,0, yenu,0) in ENU space. Npf
particles (x

(i)
enu,0, y

(i)
enu,0), i = 1, ..., Npf are created following

a uniform distribution along both x and y axis centering at
(xenu,0, yenu,0), with the maximum peak of ±10 meters.

B. Prediction Step
At time k > 0, velocity v

(i)
veh,k and yaw angle γ

(i)
veh,k of

each particle are determined according to uniform distribution
based on vehicle velocity vveh,k and vehicle yaw angle γveh,k
measurements. The maximum velocity noise is ±10 m/s, and
the maximum heading noise is ±5◦. So the motion model of
a particle in ENU space is represented as L(i)

enu,k = v
(i)
veh,k ·
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Fig. 1. Predicting step of particle filter.

Tpf , where Tpf is the time interval of a filter cycle. L(i)
enu,k

is then translated to BEV space as L(i)
ipm,k, shown in Fig. 1.

Meanwhile, in BEV space, the trajectory length along marking
model x = c+ d · y + e · y2 from the starting point (c, 0) to a
certain point (x, y) on the curve can be expressed as:

L(y) =

ˆ y

0

√
1 + (∂x/∂y)2dy

=
1

2e
{d+ 2ey

2

√
(d+ 2ey)2 + 1 +

1

2
ln[(d+ 2ey)

+
√

(d+ 2ey)2 + 1]− d

2

√
d2 + 1 (10)

− 1

2
ln[d+

√
d2 + 1]}.

Eq. (10) are derived from the integration expression´ √
x2 + 1dx = x

2

√
x2 + 1 + 1

2 ln
(
x+
√
x2 + 1

)
+ C.

Therefore, the motion of a particle is given by:

4y(i)ipm,k = arg min
y∈(0,+∞)

∣∣∣L(i)
ipm,k − L(y)

∣∣∣ , (11)

4x(i)ipm,k = c+ d · 4y(i)ipm,k + e · (4y(i)ipm,k)2. (12)

4x(i)ipm,k and 4y(i)ipm,k are then translated to ENU space
through:

[4x(i)enu,k,4y
(i)
enu,k, 1]=[4x(i)ipm,k,4y

(i)
ipm,k, 1]·R(γ

(i)
veh,k), (13)

where R(γ
(i)
veh,k) is translation matrix from BEV space to ENU

space. The particle state after movement is then given by:

x
(i)
enu,k = x

(i)
enu,k−1 +4x(i)enu,k, (14)

y
(i)
enu,k = y

(i)
enu,k−1 +4y(i)enu,k. (15)

C. Update Step
In this step, the weight of each particle w(i)

k is refreshed
with respect to the observation at time k. The importance
weight of a particle is calculated according to a two-dimension
Gaussian distribution centering at (xenu,k, yenu,k):

w
(i)
k =

exp(− (x
(i)
enu,k−xenu,k)

2+(y
(i)
enu,k−yenu,k)

2

2σ2
w

)√
2πσ2

w

. (16)

When w
(i)
k is derived, normalized weight is computed as

w̄
(i)
k = w

(i)
k /

∑Npf

i=1 w
(i)
k .
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Fig. 2. Map reconfiguration to “lane marking” topology.

D. Resampling
The particles are resampled according to SIR algorithm. SIR

algorithm can be seen as a variant of Sequential Importance
Sampling (SIS). If the weight of a particle w

(i)
k is below

weight threshold, this particle is resampled to a certain existing
particle. The probability to become a certain existing particle
is proportional to the weight of this existing particle. SIR
algorithm is implemented every 5 filtering cycles.

Finally, the approximated vehicle fix is given by

x̂enu,k =

Npf∑
i=1

w̄
(i)
k · x

(i)
enu,k, (17)

ŷenu,k =

Npf∑
i=1

w̄
(i)
k · y

(i)
enu,k. (18)

IV. ROAD MATCHING
In this section, the map database is at first reconfigured from

a “node-way” topology to a “lane marking” topology. Then the
current lane is selected according to multi-criterion. Thus the
map-based lane markings are derived.

A. Map Reconfiguration
Map-based lane markings are obtained from Open-

StreetMap (OSM), a collaborative project to provide open
source map database. The basic components of OSM are a
“node” and a “way”, as shown in Fig. 2. A node represents a
specific point in map space. A way is an ordered list of nodes
which is able to denote an object in the map.

In order to derive a more detailed subdivision of a way,
the number of lanes and lane width dl are taken into account.
According to the geometrical relationship, nodes and ways are
able to be translated to “segments” and “cells”, as shown in
Fig. 2. A “segment” is a line segment of a poly-line “way”,
and a “cell” is a single lane in a “segment”. The left and right
cell boundaries of a cell (red lines in Fig. 2) are exactly lane
markings.

B. Lane Selection
The aim of lane selection is to estimate the current “cell” of

the host vehicle in a multi-lane “segment”. Lane selection stage
is implemented to determine the current cell the vehicle is in
two steps. In the first step, the map information and filtered
vehicle positions are fused to decide the current “segment”. In
ENU space, define djvs as the distance between host vehicle V
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and current segment j , shown in Fig. 3. djvs is determined ac-
cording to which zone the host vehicle is in. The host segment
is zone 5 in gray area. In zone 1, 3, 7, 9, djvs is the distance of
vehicle center and a segment vertex, in zone 2, 4, 6, 8, djvs is
the distance between vehicle center and a segment boundary
line, in zone 5, the vehicle is in the segment, djvs = 0. The
current segment jcur is selected as jcur = arg minj d

j
vs.

The second step is to determine which cell the vehicle is
in, according to multi-criterion. Considered criteria include
lane changing criterion, third lane marking criterion, and
history vehicle state criterion. Assuming that the maximum
lane number is 3, which are left lane, middle lane, and right
lane. The corresponding probabilities of each lane are pl, pm,
and pr. If it is one-lane situation, only the middle lane pm is
considered. If dual-lane, introduce both left and right lanes pl,
pr. If tri-lane, consider all pl, pm, and pr. The first criterion
is lane changing, which is determined according to the zero
order component c in lane marking model x = c+d ·y+e ·y2.
The strategy is shown as in the left part of Table I, pl,lc, pm,lc
and pr,lc are the probabilities of left, middle, and right lane
respectively. Take one situation as example, if there is a lane
changing from a left lane to a right lane in a 3 lane segment,
the host vehicle can be considered from the left lane to the
middle lane, or from the middle lane to the right lane. So the
current lane can be the middle lane or the right lane, which
means pl,lc = 0, pm,lc = 0.5, pr,lc = 0.5 respectively.

The second criterion is the third lane marking. At first, third
lane marking parameter range is estimated through the detected
two current lane markings in Sect II. pl,mk, pm,mk and pr,mk
are the probabilities of third lane marking criteria respectively.
According to the third lane detection result, a similar strategy
as lane changing criterion is demonstrated as the right part of
Table I. For instance, if only the left lane marking is detected
in a 3 lane segment, the vehicle can be in the middle lane or
in the right lane. But noises such as road barriers and shadows
may affect the third marking detection, which leads to some
paradoxical conditions. For instance, a third marking on the
left is detected in a one lane segment. In such paradoxical
conditions, the third markings criterion doesn’t work, pl,mk,
pm,mk and pr,mk are valued to 0.

The last criterion is the historical vehicle state, which means
the left lane, the middle lane or the right lane the vehicle

TABLE I
LANE CHANGING CRITERION AND THIRD MARKING CRITERION

lane changing criterion third marking criterion
lane number: 1 2 3 lane number: 1 2 3
left pl,lc 0 0 0 only pl,mk 0 0 0
to pm,lc 0 0 0.5 left pm,mk 0 0 0.5

right pr,lc 0 1 0.5 pr,mk 0 1 0.5
right pl,lc 0 1 0.5 only pl,mk 0 1 0.5

to pm,lc 0 0 0.5 right pm,mk 0 0 0.5
left pr,lc 0 0 0 pr,mk 0 0 0
lane pl,lc 0 pl,mk 0 0 0

keeping pm,lc 0 both pm,mk 0 0 1
pr,lc 0 pr,mk 0 0 0

pl,mk 0
none pm,mk 0

pr,mk 0

was in previous states. The probabilities of historical state are
represented as pl,hs, pm,hs, and pr,hs. Therefore, the integrated
probabilities of lanes are:

pl =klcpl,lc + kmkpl,mk + khspl,hs, (19)
pm =klcpm,lc + kmkpm,mk + khspm,hs, (20)
pr =klcpr,lc + kmkpr,mk + khspr,hs, (21)

where klc, kmk and khs are coefficients of the three cues, used
to tune the importance of different cues. The current lane is
selected according to the maximum value of pl, pm and pr.

V. MARKING BASED VEHICLE LOCALIZATION

When both vision-based and map-based lane markings of
current lane is obtained, vehicle positions are optimized using
a multi-kernel based estimation method. Fig. 4 shows the
vehicle localization procedure. On one hand, when the current
“cell” is selected in the map in Section IV, the markings of
current cell and the cell in front are projected to BEV space,
as shown the black lines in Fig. 4. Markings of a cell are
a pair of paralleled lines in map topology, so the map-based
markings are combination of several straight lines. The sets of
left and right marking pixels are denoted as Sl,ipm and Sr,ipm
respectively. On the other hand, vision-based lane markings are
represented as the form of quadratic model (c∗i , d

∗
i , e
∗
i ), i = l, r

from (2) and (7), as shown the gray curves in Fig. 4. The
translation from (c∗i , d

∗
i , e
∗
i ), i = l, r to Sl,ipm and Sr,ipm can

be regarded as the relative rigid transformation from rough
GPS positioning to positions according to map information.

However, it is difficult to compute a translation matrix from
a model (vision-based markings) to a set of pixels (map-based
markings). The idea is to at first estimate the translation from
the set of pixels to the marking model. The required matrix is
then derived using inverse matrix transform.

A translation matrix from map-based markings to vision-
based lane markings are estimated according to a multi-
kernel based estimation method, the same method to determine
marking parameters in Section II. The translation matrix is
defined as Tloc(4xloc,4θloc), where 4xloc is lateral dis-
placement, and 4θloc is vehicle rotation. A multi-kernel based
descriptor Gp(c∗i , d

∗
i , e
∗
i , x, y), defined in (3), is introduced to

describe the “distance” between a single pixel on a map-based
marking and a vision-based marking model. The optimized
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lateral displacement 4x∗loc and rotation 4θ∗loc are optimized
according to Gp(c∗i , d

∗
i , e
∗
i , x, y) as

(4x∗loc,4θ∗loc)=arg max
4xloc,4θloc

[
∑
i=l,r

∑
(x,y)∈Si,tra

Gp(c
∗
i , d
∗
i , e
∗
i , x, y)], (22)

where
Si,tra={(x, y)|(x, y,1)=(x′, y′, 1)·Tloc,(x′, y′)∈Si,ipm}. (23)

Translated markings through Tloc(4x∗loc,4θ∗loc) are
marked as dashed lines in Fig. 4. The inverse matrix
T−1loc (4x∗loc,4θ∗loc) is the translation of lane marking
based vehicle localization, from vehicle position filtered by
particle filter (x̂ipm,k, ŷipm,k) to the adjusted vehicle fix
(x′ipm,k, y

′
ipm,k). So (x′ipm,k, y

′
ipm,k) is computed as

(x′ipm,k, y
′
ipm,k, 1)=(x̂ipm,k, ŷipm,k, 1)·T−1loc(4x∗loc,4θ∗loc). (24)

Therefore, the marking based localized position is
(x′enu,k, y

′
enu,k), translating

(
x′ipm,k, y

′
ipm,k

)
from BEV space

to ENU space.

VI. RESULTS

The proposed method is experimentally validated using
the data from an intelligent vehicle platform provided by
KITTI [17]. Since, the considered dataset was acquired using
a high-end positioning system, on-road vehicle environment
perturbations were modeled by adding uniform distribution
noises to the corresponding vehicle fix, speed and yaw angle
measurements. A uniform distribution based noise of 10 meters
on both horizontal and vertical dimensions [18] are added on
the ground truth vehicle positions, performing as input rough
GPS data of our method. The vehicle velocity and yaw angle
measurements are noised with uniform distributions of 10 m/s
and 5◦respectively.

Fig. 5 illustrates the result of lane selection. In lane selection
part, the coefficients in Eq. (19) to (21) are set as klc = 0.60,
kmk = 0.24 and khs = 0.16, because lane changing behaviors
effect lane selection decision most deeply, while the history
states play the slightest role to choose the current lane. The
ground truth states are labeled manually according to vision
images. Original state is the state of the nearest cell to the
vehicle, and filtered state is the state estimated from multi-
criterion lane selection. The success ratio of original states
is 52.42%, while the success ratio of filtered states using

200 400 600 800 1000
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Left (2 lanes)

Right (3 lanes)
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Left (3 lanes)
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S
ta
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Fig. 5. Lane selection result.

lane selection increases to 78.23%. One critical reason of
unsuccessful lane selection is that the vehicle position after
particle filter is away from the ground truth position along
the vehicle forward direction, which leads to a “delay”. For
instance, at around frame 200, the benchmark position already
drives from a one lane segment to a two lane segment, but
the filtered vehicle position is still in one lane segment. This
“delay” lasts until the filtered vehicle position drives to two
lane segment. Another potential reason is noise disturb. At
frames around number 800 to 850, road barriers are detected
as a third left lane marking by mistake, resulting in a wrong
lane selection judgment.

The results of particle filter and marking based localization
are depicted in Fig. 6. Fig. 6(a)-(b) are two zoomed map areas.
In Fig. 6(a), the pink curve is the vehicle positions filtered
from rough GNSS signals (black), using particle filter. But
this pink curve is not in the road cell area which the vehicle
is in. The vehicle positions on pink curve is used to select
road cell according to multi-criterion. When the road cell is
determined, marking based localization is implemented, the
vehicle position is adjusted to the central area of road, as red
curve in Fig. 6(a). Fig. 6(b) depicts an exceptional example, a
mismatch occurred between two sources, benchmark positions
from KITTI and map information from OSM. In this example,
the ground truth GPS data is in the middle of two lanes, but
in the vision, the vehicle is in the middle lane, obviously,
at least one source is not accurate. This mismatch leads to
an error even the marking based method is utilized. Fig.
6(c) is a numerical comparison on lateral displacement errors,
among noised GPS measurements (cyan), vehicle position after
particle filter (pink) and marking-based position (red). In Fig.
6(c), both the pink and red curves are included in noise error
bound. And the red curve is closer to ground truth than the pink
curve, which implies that marking based localization improves
particle filter based localization.

Table II provides the performance metrics of localization
results. In this table, the mean value of both errors are far
below the noise error bound (14.2m). The maximum error of



(a) (b)

(c)

Fig. 6. Localization result. (a)-(b) are zoomed areas in map space. (c) is
lateral position error.

TABLE II
ERROR STATISTICS.

Lateral position error Lateral position error after
after particle filter marking based localization

Mean value 1.884m 0.089m
MAE 2.867m 1.006m

Standard deviation 2.942m 1.284m
Max 9.083m 5.429m

95th percentile 6.345m 2.589m

particle filter (9.083m) does not exceed the noise error bound
neither. Comparing position errors of the two methods, all
the statistics of marking based method are less than those of
particle filter, which numerically proves that marking based
localization helps to improve the performance of vehicle fix.

The method is run on a laptop using C++. The average pro-
cessing time per frame is 42.9ms, including marking detection
and localization. In vision-based marking detection part, the
average run time per frame is 22.7ms, accompanied by the
maximum time 62ms. In vehicle localization part, the mean
time is 20.2ms, and the maximum processing time of a single
frame is 25.3ms. The sum of maximum run time in both parts
is 87.3ms, which is less than the time cycle of KITTI database
frames (100ms). Therefore, the proposed method is adequate
to run in real-time.

VII. CONCLUSIONS
A lane marking based vehicle localization technique, ex-

ploiting rough GPS, speed and yaw angle measurements and an
open source map, has been demonstrated and experimentally
validated. The results verifies a real-time and precise vehicle
localization. In vision-based lane marking detection part, a
parametric Gaussian model based initialization and multi-
kernel based estimation provide lane markings of current lane
where the host vehicle is. In map-based marking selection
part, a “lane marking” map topology is created according to
OSM database at first. Then the lane markings of the current

lane are selected through a multi-criterion method. The vehicle
position is adjusted in two steps. Firstly, a particle filter is
designed to adjust the rough vehicle position. Secondly, vision-
based markings and map-based markings are fused to enhance
vehicle position, using a multi-kernel estimation method.

Future work focuses on creating the initial identification
of vehicle position, perfecting map reconfiguration at road
connections and road branches, developing the confidence
indicators for estimated vehicle position, as well as studying
on data mismatch between KITTI and OSM.
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