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1. Introduction

Fractional Brownian motion (fBm) is frequently used to model short- and long-
range dependence. By definition, fBm with Hurst parameter H ∈ (0, 1) is a
centered Gaussian process

{
BHt , t ≥ 0

}
with the covariance function

E
[
BHt B

H
s

]
=

1

2

(
t2H + s2H − |t− s|2H

)
.

For H > 1/2 fBm has a property of long-range dependence, for H < 1/2 it has
short-range dependence and, in fact, is counterpersistent, i.e. its increments are
negatively correlated. For H = 1/2 fBm is a standard Wiener process.

Two important properties of fBm are stationary increments and self-similarity.
However, this properties restrict applications of fBm, so recently so-called mul-
tifractional processes gained huge attention. Multifractionality can consist both
in dependence of memory depth and regularity of process on the time instance
and on the time scale. In this paper, we are dealing with the latter kind of mul-
tifractionality, where the properties of the process depend on the size of time
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interval, on which the process is considered. In other words, we are consider-
ing processes, which are not inherently self-similar. A simplest approach is to
consider a linear combination of fBm’s with different Hurst parameters.

Here we will concentrate on the case where we have only two fBm’s and one
of them has Hurst parameter equal to 1/2, simply put, it is a Wiener process.
So we consider a process

MH
t = aBHt + bWt, t ≥ 0 (1)

where a and b are some non-zero coefficients. Such mixed models and their
applications where considered in many papers, see [1, 6, 11, 16, 17].

The main aim of this paper is statistical identification of model (1), i.e. the
statistical estimation of the model parameters. The principal attention will be
given to the estimation of H, though we will give some comments on estimation
of a and b.

In a “pure” fBm case, there exist several methods to estimate the Hurst
parameter, an extensive overview of which is given in [7]. The most popular
methods are based on quadratic and, more generally, higher power variations
of the process. A huge literature is devoted to such questions, we will cite only
few: asymptotic behaviour of power variations and, more generally, of non-linear
transformations of stationary Gaussian sequences is studied in [4, 10, 13, 20],
and stochastic estimation for fBm and multifractional processes with the help
of power variations, in [3, 8, 9, 12, 14, 21]. Weighted power variations serving
similar purposes for stochastic differential equations driven by fBm, were studied
in [18, 19].

In this paper we will use power variations of process (1) for estimation of
parameters. Related questions for mixed models were already considered in [5,
11, 15, 23], but we use different techniques here. We remark that, in contrast to
the pure fractional case, there is no self-similarity property in mixed model (1),
so we cannot directly apply the results of [4, 10, 13, 20] on asymptotic behaviour
of sums of transformed stationary Gaussian sequences. For this reason we need
to study asymptotic behaviour as n → ∞ of “mixed” power variations of the
form

n−1∑
k=0

(
W(k+1)/n −Wk/n

)p (
BH(k+1)/n −B

H
k/n

)r
, (2)

involving increments of independent fBm BH and Wiener process W , where
p ≥ 0, r ≥ 0 are fixed integer parameters. We obtain that the behaviour of such
power variations depends on parity of p and r and on the value of the Hurst
parameter H.

The paper is organized as follows. Section 2 contains results on the asymptotic
behaviour of mixed power variations. These results are used in Section 3 to
construct strongly consistent estimators of parameters H, a, b in model (1) and
asymptotic confidence intervals forH. Finally, in Section 4 we present simulation
results to illustrate quality of the estimators provided.
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2. Asymptotic behaviour of mixed power variations

Let W = {Wt, t ≥ 0} be a standard Wiener process and BH = {BHt , t ≥ 0}
be an independent of W fractional Brownian motion with Hurst parameter
H ∈ (0, 1) defined on a complete probability space (Ω,F , P ).

For a function X : [0, 1]→ R and integer n ≥ 1, k = 0, 1, . . . , n− 1 we denote
∆n
kX = X(k+1)/n−Xk/n. In this section we will study the asymptotic behavior

as n→∞ of the following mixed power variations

n−1∑
k=0

(∆n
kW )

p (
∆n
kB

H
)r
,

where p ≥ 0, r ≥ 0 are fixed integer numbers. Thanks to self-similarity of BH

and W , the sequence
{

(nH∆n
kB

H , n1/2∆n
kW ), 0 ≤ k ≤ n− 1

}
is equivalent in

law to {(ξk, ζk), 0 ≤ k ≤ n− 1}, where {ξk, k ≥ 0} is a sequence of independent
standard Gaussian random variables, {ζk, k ≥ 1} is independent of {ξk, k ≥ 1}
stationary sequence of standard Gaussian variables with covariance

ρH(m) = E [ ζ0ζm ] = E
[
BH1 (BHm+1 −BHm)

]
=

1

2

(
|m+ 1|2H + |m− 1|2H

)
−|m|2H .

Therefore, by ergodic theorem,

nrH+p/2−1
n−1∑
k=0

(∆n
kW )

p (
∆n
kB

H
)r → µpµr, n→∞, (3)

a.s., where for integer m ≥ 0

µm = E [N(0, 1)m ] = (m− 1)!!1m is even

is the mth moment of the standard Gaussian law. So it is natural to study the
following centered sums

SH,p,rn =
n−1∑
k=0

(
nrH+p/2 (∆n

kW )
p (

∆n
kB

H
)r − µpµr) .

The following theorem summarizes limit behaviour of SH,p,rn . We remark
that some (but not all) of results can be obtained from the limit theorems for
stationary Gaussian sequences of vectors, see e.g. [2]. However, we believe that
our approach (using one-dimensional limit theorems) is more accessible and
leads quicker to the desired results.

Theorem 2.1. If p and r are even, then

• for H ∈ (0, 3/4)

n−1/2SH,p,rn ⇒ N(0, σ2
H,rµ

2
p + σ2

p,r), n→∞, (4)
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where

σ2
H,r =

r/2∑
l=1

(l!)2

(2l)!((r − 2l)!!)2

∞∑
m=−∞

ρH(m)2l, σ2
p,r = µ2r

(
µ2p − µ2

p

)
;

• for H = 3/4

S
3/4,p,r
n√
n log n

⇒ N(0, σ2
3/4,rµ

2
p + σ2

r,p), n→∞, (5)

where σ3/4,r = 3r(r − 1)/4;
• for H ∈ (3/4, 1)

n1−2HSH,p,rn ⇒ ζH,p,r, n→∞, (6)

where ζH,p,r is a special “Rosenblatt” random variable.

If p is odd, then for any H ∈ (0, 1)

n−1/2SH,p,rn = nrH−1/2Rnkn ⇒ N(0, σ2
p,r) = N(0, µ2pµ2r). (7)

If p is even and r is odd, then

• for H ∈ (0, 1/2]

n−1/2SH,p,rn ⇒ N(0, σ2
p,r + µ2

pσ
2
H,r), n→∞, (8)

where

σ2
H,r =

(r−1)/2∑
l=0

(r!)2

(2l + 1)!((r − 2l − 1)!!)2

∞∑
m=−∞

ρH(m)2l+1;

• for H ∈ (1/2, 1)

n−HSH,p,rn ⇒ N(0, µ2
pµ

2
r+1), n→∞. (9)

Proof. We study different cases in the same order as they appear in the formu-
lation.

Assume first that p and r are even. The principal idea in this case is to rewrite
mixed power variation as

SH,p,rn = S′n + S′′n,

where

S′n = nrH
n−1∑
k=0

(
∆n
kB

H
)r (

np/2 (∆n
kW )

p − µp
)
,

S′′n = µp

n−1∑
k=0

(
nrH

(
∆n
kB

H
)r − µr) ,

(10)

and to apply known results concerning asymptotic behaviour of S′′n, since it
contains only fractional Brownian motion, and consider S′n conditionally on the
fractional Brownian motion. In what follows we realize this idea.
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For H ∈ (0, 3/4) write

n−1/2SH,p,rn = n−1/2S′n + n−1/2S′′n.

According to [4], for r even, H ∈ (0, 3/4),

n−1/2
n−1∑
k=0

(
nrH

(
∆n
kB

H
)r − µr)⇒ N(0, σ2

H,r), (11)

as n→∞. Consequently, n−1/2S′′n ⇒ N(0, σ2
H,rµ

2
p), n→∞. Further,

n−1/2S′n = nrH−1/2Rnkn,

where

Rn =
1

kn

n−1∑
k=0

λk,n

(
np/2 (∆n

kW )
p − µp

)

kn =

(
(µ2p − µ2

p)

n−1∑
k=0

λ2k,n

)1/2

, λk,n =
(
∆n
kB

H
)r
.

(12)

Since BH is uniformly continuous a.s., max1≤k≤n λk,n → 0, n → ∞ a.s. Thus,
taking into account independence of BH and W and an evident fact that
varRn = 1, we get by CLT that the conditional distribution of Rn given BH

converges to standard normal distribution as n → ∞ a.s. Further, from the
ergodic theorem

n2rH−1
n−1∑
k=0

(∆n
kB

H)2r → µ2r, n→∞,

a.s., hence

nrH−1/2kn →
(
µ2r(µ2p − µ2

p)
)1/2

, n→∞ a.s.

So by Slutsky’s theorem, the conditional distribution of S′n given BH converges
to N(0, σ2

p,r) a.s., that is, for any t ∈ R we have∫
R
eitxP(S′n ∈ dx | BH)→ e−t

2σ2
p,r/2 (13)

a.s. as n→∞. Now write

E
[
eit(S

′
n+S

′′
n)
]

= E
[
E
[
eit(S

′
n+S

′′
n)
∣∣∣BH ] ] = E

[ ∫
R
eitxP

(
S′n ∈ dx

∣∣BH) eitS′′
n

]
,

whence ∣∣∣E [ eit(S′
n+S

′′
n)
]
− e−t

2(σ2
H,rµ

2
p+σ

2
p,r)/2

∣∣∣ ≤ E1 + E2,
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where

E1 =

∣∣∣∣E [(∫
R
eitxP

(
S′n ∈ dx

∣∣BH)− e−t2σ2
p,r/2

)
eitS

′′
n

]∣∣∣∣→ 0, n→∞

by (13) and dominated convergence;

E2 = e−t
2σ2

p,r

∣∣∣E [ eitS′′
n

]
− e−t

2σ2
H,rµ

2
p/2
∣∣∣→ 0, n→∞

by (11). It follows that

n−1/2SH,p,rn ⇒ N(0, σ2
H,rµ

2
p + σ2

p,r), n→∞,

as required in this case.
In the case where H = 3/4, we have by [4]

1√
n log n

n−1∑
k=0

(
nrH

(
∆n
kB

H
)r − µr)⇒ N(0, σ2

3/4,r),

as n→∞, whence (5) can be deduced using the same reasoning as above.
For H ∈ (3/4, 1), write

n1−2HSH,p,rn = n1−2HS′n + n1−2HS′′n = n1−2H+rHRnkn + n1−2HS′′n,

where Rn, kn, S
′′
n are defined above. As before, Rn ⇒ N(0, 1) conditionally given

BH as n → ∞ a.s. However, this time n1−2H+rHkn → 0, n → ∞ a.s., since
nrH−1/2kn has a finite limit and n3/2−2H → 0, n→∞. Therefore, n1−2HS′n →
0, n→∞. Further, according to [10], see also [13, 20],

n1−2HS′′n ⇒ ζH,p,r, n→∞,

where ζH,p,r is a “Rosenblatt” random variable. Thus, we get (6) using Slutsky’s
theorem. This finishes the case where p and r are even.

Now assume that p or r is odd. In this case SH,p,rn has a form

SH,p,rn =

n−1∑
k=0

nrH+p/2 (∆n
kW )

p (
∆n
kB

H
)r
.

Write
n−1/2SH,p,rn = nrH−1/2Rnkn + Zn,

where Rn and kn are defined above, Zn = nrH−1/2µp
∑n−1
k=0

(
∆n
kB

H
)r

. As be-

fore, given BH , nrH−1/2Rnkn ⇒ N(0, σ2
p,r), n→∞, a.s.

Now if p is odd, we have Z2
n = 0 irrespective of value of H, whence (7)

immediately follows.
Further, assume that p is even and r odd. For H ∈ (0, 1/2], we have by [4]

nrH−1/2
n−1∑
k=0

(
∆n
kB

H
)r ⇒ N(0, σ2

H,r), n→∞.

imsart-generic ver. 2012/08/31 file: mixedvars-jan13.tex date: January 4, 2013



M. Dozzi, Yu. Mishura, and G. Shevchenko/Statistical estimation in mixed models 7

Therefore, Zn ⇒ N(0, µ2
pσ

2
H,r), n → ∞. Arguing as in deriving of (4), we get

(8). For H ∈ (1/2, 1), it follows from [10] that

n(r−1)H
n−1∑
k=0

(
∆n
kB

H
)r ⇒ N(0, µ2

r+1), n→∞, (14)

so n1/2−HZn ⇒ N(0, µ2
pµ

2
r+1), n→∞ But

n(r−1)HRnkn = n1/2−HnrH−1/2Rnkn → 0, n→∞,

whence (9) follows. The proof is now complete.

3. Statistical estimation in mixed model

Now we turn to the question of parametric estimation in the mixed model

MH
t = aBHt + bWt, t ∈ [0, T ], (15)

where a, b are non-zero numbers, which we assume to be positive, without loss
of generality. Out primary goal is to construct a strongly consistent estimator
for the Hurst parameter H, given a single observation of MH .

It is well-known (see [6]) that for H ∈ (3/4, 1) the measure induced by MH in
C[0, T ] is equivalent to that of bW . Therefore, the property of almost sure con-
vergence in this case is independent of H. Consequently, no strongly consistent
estimator for H based on a single observation of MH exists.

In this section we denote ∆n
kX = XTk/n −XT (k−1)/n and

V H,p,rn =

n−1∑
k=0

(∆n
kW )

p (
∆n
kB

H
)r
.

Also for a real sequence {an, n ≥ 1}, non-zero sequence {bn, n ≥ 1}, and a
sequence {ξn, n ≥ 1} of random variables, we will abbreviate

ξn ≈ an + bnN(0, 1)

whenever the following two assertions hold:

• either ξn ∼ an as n→∞ a.s. or an ≡ 0;
• (ξn − an)/bn ⇒ N(0, 1) as n→∞.

3.1. Statistical estimation based on quadratic variation

Consider quadratic variation of MH , i.e.

V H,2n =

n−1∑
k=0

(
∆n
kM

H
)2
.

The following lemma contains information on asymptotic behaviour of V H,2n ,
which is needed to construct estimators.
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Lemma 3.1. 1. For H ∈ (0, 1/2),

V H,2n ≈ a2T 2Hn1−2H + b2T + a2T 2Hn1/2−2HσH,2N(0, 1). (16)

2. For H ∈ (1/2, 1)

V H,2n ≈ b2T + a2T 2Hn1−2H +
√

2b2Tn−1/2N(0, 1). (17)

3. For H = 1/2

V H,2n ≈ (a2 + b2)T +
√

2(a2 + b2)Tn−1/2N(0, 1).

Proof. Write
V H,2n = a2V H,0,2n + 2abV H,1,1n + b2V H,2,0n . (18)

By law of large numbers

V H,2,0n → T, n→∞.

Therefore, we have

V H,2,0n ≈ T +
√

2Tn−1/2N(0, 1)

by the classical CLT.
This gives immediately the result in the case H = 1/2, since in this case

MH
t =

√
a2 + b2W̃t, where W̃ is a standard Wiener process.

Further, by ergodic theorem and (11), for H ∈ (0, 3/4)

V H,0,2n ≈ n1−2HT 2H + n1/2−2HT 2HσH,2N(0, 1),

for H = 3/4

V H,0,2n ≈ T 3/2n−1/2 +
3

2
T 3/2n−1

√
log nN(0, 1),

and for H ∈ (3/4, 1)

V H,0,2n ≈ T 2Hn−1ζH ,

where ζH is a Rosenblatt random variable.
Finally, from (7),

V H,1,1n ≈ n−HTH+1/2N(0, 1).

The required statement now follows by comparing the orders of terms in
(18).

As we see, the asymptotic behaviour of V H,2n depends on whether H < 1/2 or
not. Let us consider these cases individually (we omit the case H = 1/2, which
is of minor interest).
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3.1.1. H ∈ (0, 1/2)

For H ∈ (0, 1/2) we have

V H,2n ∼ a2T 2Hn1−2H , n→∞, (19)

a.s., which allows to estimate the Hurst parameter H consistently. Precisely, we
have the following result.

Proposition 3.1. For H ∈ (0, 1/2), the following statistics

Ĥk =
1

2

(
1− 1

k
log2 V

H,2
2k

)
and

H̃k =
1

2

(
log2

V H,2
2k

V H,2
2k+1

+ 1

)
are strongly consistent estimators of the Hurst parameter H.

Proof. Write from (16)

log2 V
H,2
2k

= log2

(
a2T 2H2k(1−2H)

)
+ log2

(
1 +

b2

a2
T 1−2H2−k(1−2H) + 2−k/2ζk

)
,

where the sequence {ζk, k ≥ 1} is bounded in probability. Hence we have

log2 V
H,2
2k

= 2 log2 a+ 2H log2 T + (1− 2H)k

+O(2−k(1−2H)) +OP (2−k/2), k →∞,
(20)

where O is the standard big-O notation, while ξk = OP (αk), k → ∞, means
that the sequence {ξk/αk, k ≥ 1} is bounded in probability. In particular,

log2 V
H,2
2k
∼ 2 log2 a+ 2H log2 T + (1− 2H)k, k →∞,

whence the result immediately follows.

Remark 3.1. At the first sight, there is no clear advantage of Ĥk or H̃k. But a
careful analysis shows that H̃k is better. Indeed, from (20) it is easy to see that

Ĥk = H − log2 a+H log2 T

k
+ o(k−1), k →∞,

while
H̃k = H +O(2−k(1−2H)) +OP (2−k/2), k →∞. (21)

Now it is absolutely clear that H̃k performs much better (unless one hits the
jackpot by having aTH = 1).
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Asymptotic confidence intervals for H and consistent estimates for
a and b Asymptotic expansion (16) allows to construct confidence intervals
for H. In view of (16), we should distinguish two cases: H ∈ (0, 1/4) and H ∈
[1/4, 1).

In order to proceed, we should first give a consistent estimate for a. The
previous remark enables us to do this.

Proposition 3.2. For H ∈ (0, 1/4), the statistic

ã2k = 2k(2H̃k−1)T−2H̃kV H,2
2k

is a consistent estimator of a2.

Proof. Observe that

ã2k
a2
∼ 2k(H̃k−H)T k(H−H̃k) → 1, k →∞,

in probability, since k(H̃k −H)→ 0, k →∞, in probability by (21). Therefore,
we have the desired statement.

The construction of asymptotic confidence intervals is different in cases H ∈
(0, 1/4) and H ∈ [1/4, 1). Let us first concentrate on the case H ∈ (0, 1/4). In
this case

V H,2n ≈ a2T 2Hn1−2H + a2T 2Hn1/2−2HσH,2N(0, 1).

Now in order to construct a confidence interval for H, observe that

21−2HV H,2
2k
− V H,2

2k+1 ≈ a2T 2Hσ′H2k(1/2−2H)N(0, 1), (22)

where the constant σ′H can be computed explicitly in terms of H, however, the
expression is extremely cumbersome; thus we give only a less explicit expression
in terms of BH :

σ′H =

(
ρ′H,1 + 2

∞∑
k=1

ρ′H,k

)1/2

,

where

ρ′H,k = E

[(
21−2H

(
BH1
)2 − (BH1/2)2 − (BH1 −BH1/2)2)

×
(

21−2H
(
BHk+1 −BHk

)2 − (BHk+1/2 −B
H
k

)2
−
(
BHk+1 −BHk+1/2

)2)]
.

Now, it follows from Slutsky’s theorem that

2k(2H−1/2)
21−2HV H,2

2k
− V H,2

2k+1

ã2kT
2Hσ′H

⇒ N(0, 1), k →∞,
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whence the construction of asymptotic confidence interval is obvious. However,
this leads to solving highly complicated equation involving quite unpleasant
function σ′H . A better idea is to replace H with H̃k:

2k(2H̃k−1/2) 21−2HV H,2
2k
− V H,2

2k+1

ã2kT
2H̃kσ′

H̃k

= 2k/2
21−2HV H,2

2k
− V H,2

2k+1

σ′
H̃k
V H,2
2k

⇒ N(0, 1), k →∞.

Hence, we have the following result, where zα is the standard normal (1−α/2)-
quantile; for well-definiteness we denote

log2+ x =

{
log2 x, x > 0,

0, x ≤ 0.

Proposition 3.3. Let H ∈ (0, 1/4). The interval [Hmin, Hmax], where

Hmin =
1

2

(
1 + log2 V

H,2
2k
− log2

(
V H,2
2k+1 + zασ

′
H̃k
V H,2
2k

2−k/2
))

,

Hmax = Hmin ∨
1

2

(
1 + log2 V

H,2
2k
− log2+

(
V H,2
2k+1 − zασ′H̃k

V H,2
2k

2−k/2
))

,

is an asymptotic confidence interval for H of level 1− α.

Remark 3.2. As it is known from [22], for H ∈ (0, 1/4) the measure induced by
MH in C[0, T ] is equivalent to that of aBH . So the results are essentially the
same in this case as for fractional Brownian motion alone. Another important
consequence that in this case it is not possible to estimate b consistently.

Now let us move to the case H ∈ (1/4, 1/2). (We omit the case H = 1/4 for
two reasons: considered similarly to H ∈ (1/4, 1/2), and it is hard to distinguish
it statistically from the case where H 6= 1/4.) The construction of confidence
interval is more involved in this case, since the second term in (16) cannot be
omitted. However, the idea is the same: one needs to remove non-random terms
from the (19). To be more precise, we have the following result, where

UH,2k = V H,2
2k
− V H,2

2k+1 ;

and the asymptotic variance is

σ′′H =

(
ρ′′H,1 + 2

∞∑
k=1

ρ′′H,k

)1/2

,

ρ′′H,k = E

[(
cHs0,1 − (cH + 1)

(
s
1/2
0 + s

1/2
1/2

)
+ s

1/4
0 + s

1/4
1/4 + s

1/4
1/2 + s

1/4
3/4

)
×
(
cHs

1
k − (cH + 1)

(
s
1/2
k + s

1/2
k+1/2

)
+ s

1/4
k + s

1/4
k+1/4 + s

1/4
k+1/2 + s

1/4
k+3/4

)]
with sht =

(
BHt+h −BHt

)2
, cH = 21−2H .
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Proposition 3.4. Let H ∈ [1/4, 1/2). The interval [Hmin, Hmax], where

Hmin =
1

2

(
1 + log2+

(
−UH,2k

)
− log2+

(
−UH,2k+1 + zασ

′′
H̃k
V H,2
2k

2−k/2
))

,

Hmax = Hmin ∨
1

2

(
1 + log2+

(
−UH,2k

)
− log2+

(
−UH,2k+1 − zασ

′′
H̃k
V H,2
2k

2−k/2
))

,

is an asymptotic confidence interval for H of level 1− α.

Proof. It follows from [4] that

21−2HV H,2
2k
−
(
1 + 21−2H

)
V H,2
2k+1 + V H,2

2k+2 ≈ a2σ′′HT 2H2(1/2−2H)kN(0, 1).

Thus, by Slutsky’s theorem, we have the weak convergence

2k/2
21−2HV H,2

2k
−
(
1 + 21−2H

)
V H,2
2k+1 + V H,2

2k+2

σ′′
H̃k
V H,2
2k

⇒ N(0, 1), k →∞, (23)

whence the result follows.

Now we turn to estimation of b. In order to proceed, we will need another
consistent estimator of H.

Proposition 3.5. For H ∈ (0, 1/2), the statistic

H̃
(2)
k =

1

2

(
log2+

UH,2k

UH,2k+1

+ 1

)
is a consistent estimator of H, moreover,

H̃
(2)
k = H +OP (2−k/2), k →∞.

Remark 3.3. Despite H̃
(2)
k has asymptotically a better rate of approximation

that H̃k for H ∈ (1/4, 1/2), we still do not recommend to use it, as the asymp-
totic variance is high; it’s practically useless for k ≤ 10.

Proof. From (19) and [4] it follows that

UH,2k ≈ a2T 2H
(
21−2H − 1

)
2k(1−2H) + a2T 2H2k(1/2−2H)σ′′′HN(0, 1)

with some constant σ′′′H , which is of no importance now. In particular, UH,2k is
eventually negative, and we can write

log2(−UH,2k ) = 2 log2 a+ 2H log2 T

+ log2

(
1− 21−2H

)
+ k(1− 2H) +OP (2−k/2).

(24)

Thus,

log2

UH,2k

UH,2k+1

= 2H − 1 +OP (2−k/2), k →∞,

whence the assertion follows.
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Now we are able to construct a consistent estimator for b. However, the
variance of this estimator is so huge that it is practically useless (see Section 4).

Proposition 3.6. For H ∈ (1/4, 1/2) the statistic

b̃2k =
21−2H̃

(2)
k V H,2

2k
− V H,2

2k+1

(21−2H̃
(2)
k − 1)T

is a consistent estimator of b2.

Proof. Define

b̂2k =
21−2HV H,2

2k
− V H,2

2k+1(
21−2H − 1

)
T

.

It easily follows from (16) that b̂2k → b2, k → ∞. So it is enough to show that

b̃2k − b̂2k → 0, k →∞. To this end, write

b̃2k − b2 =

(
21−2H̃

(2)
k − 21−2H

)
V H,2
2k(

21−2H̃
(2)
k − 1

)
T

+ T−1
(

21−2HV H,2
2k
− V H,2

2k+1

)((
21−2H̃

(2)
k − 1

)−1 − (21−2H − 1
)−1)

.

Obviously, the second term converges to zero. To study the first one, write(
21−2H̃

(2)
k − 21−2H

)
V H,2
2k
∼ −22−2H(H̃

(2)
k −H)a2T 2H2k(1−2H) log 2

= 2k(1−2H)OP (2−k/2), k →∞,

whence the consistency of b̃2k follows.

3.1.2. H ∈ (1/2, 3/4)

Now we move to the case H ∈ (1/2, 1). In view of (17), both Ĥk and H̃k converge
to 1/2 for H ∈ [1/2, 1), so they are not suitable for estimating H.

In order to estimate H, the trick is to cancel out the first term of asymptotic
expansion (17). The most natural way to accomplish this is to consider

UH,2k := V H,2
2k
− V H,2

2k+1 = 2

2k−1∑
j=0

∆2k+1

2j MH∆2k+1

2j+1M
H . (25)

By (17),

UH,2k ∼ a2T 2H2(1−2H)k
(
1− 21−2H

)
, k →∞ (26)

a.s., whence we can easily construct estimators exactly as in the case H ∈
(0, 1/2).
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Proposition 3.7. For H ∈ (1/2, 3/4), statistics

Ĥ
(2)
k =

1

2

(
1− 1

k
log2+ U

H,2
k

)
and

H̃
(2)
k =

1

2

(
log2+

UH,2k

UH,2k+1

+ 1

)
are strongly consistent estimators of the Hurst parameter H.

We will see in Section 4 that H̃2
k performs very poorly, and Ĥ2

k performs much
better, despite having a worse asymptotic rate of convergence. For the values of
H close to 1/2, both estimators are quite poor, and it is better to estimate H

by regressing several values of log2 U
H,2
k on k.

Asymptotic confidence intervals for H and consistent estimates for a
and b To construct a confidence interval, it is not hard to check (since we are
not going to use this result, we will not give a proof) that

21−2HUH,2k − UH,2k+1 ≈ b
2T
√

23−4H + 1 2−k/2−1/2N(0, 1).

In contrast to the case H ∈ (0, 1/2), where one has to replace H by its estimate,
this result can be used immediately to construct asymptotic confidence intervals
for H (though one needs to replace b2T by V H,2

2k
). Indeed, one can write

P

(
2k/2+1/2

21−2HUH,2k − UH,2k+1

V H,2
2k

√
23−4H + 1

∈ [−zα, zα]

)
→ 1− α, k →∞, (27)

where zα is the standard Gaussian (1 − α/2)-quantile. Thus, the construction
of asymptotic confidence interval is reduced to solving quadratic inequalities
and taking logarithms. Unfortunately, even for such large values as α = 0.1
and k = 20 these confidence intervals are useless: approximation (27) is very
imprecise, and, what is more dramatic, they usually contain the whole interval
(1/2, 3/4).

Estimating b is quite straightforward now: it is easy to verify that

b̂2k = T−1V H,2
2k

is a consistent estimator b2. We did not manage to construct a reasonable
variance-based estimator for a. Similar to estimating b in the case H ∈ (0, 1/2),
this requires to construct an estimate of H with approximation rate o(k−1).
However, none of the estimators we presented has this order. One should take
a much finer partition for this, moreover, the number of points should be de-
pending on H, which is practically impossible.
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3.1.3. H ∈ (3/4, 1)

As we have already mentioned in the beginning of this section, in this case it is
impossible to make conclusions about the value of H. In particular, in this case
we have

V H,2n ≈ b2T +
√

2b2Tn−1/2N(0, 1),

so the behaviour of V H,2n is essentially the same as that of the quadratic power
variation of Wiener process

V 2
n =

n−1∑
k=0

(∆n
kW )

2
.

This confirms that we cannot make any conclusions about H from the asymp-
totic behaviour of quadratic variation.

Nevertheless, we will study the behaviour of quadratic variation in this case
in more detail in order to be able to distinguish between the cases H < 3/4 and
H > 3/4 statistically.

Define

Zk =
2k/2

b2T
UH,2k .

Proposition 3.8. For H ∈ (3/4, 1), the sequence (Zk, Zk+1, . . . ) converges
in distribution as k → ∞ to a sequence (ζ1, ζ2, . . . ) of independent standard
Gaussian variables.

Remark 3.4. We emphasize a sharp contrast with the case H ∈ (1/2, 3/4),
where the sequence {Zk, k ≥ 1} has a positive limit in view of (26), hence,
it eventually becomes positive. This clearly gives a possibility to distinguish
statistically between cases H ∈ (1/2, 3/4) and H ∈ (3/4, 1). (See 4.1.3 for
comparative simulations.)

Proof. Define

ξk =
2k/2√

2T

(
V 2
2k − T

)
=

2−k/2√
2T

2k−1∑
i=0

(
2k
(

∆2k

i W
)2
− T

)
.

By CLT, ξk ⇒ N(0, 1), k → ∞, so we need to study the collective behaviour.
To this end, observe that the vector (ξk, ξk+1, . . . , ξk+m) can be represented as
a sum of independent vectors

(ξk, ξk+1, . . . , ξk+m) =

2k−1∑
i=0

ζk,i,

where the jth coordinate of ζk,i, j = 0, 1, 2, . . . ,m, is

ζk,i,j =
2−k/2√

2T

2j−1∑
l=0

(
22(k+j)

(
∆2k+j

l+i2jW
)2
− T

)
.
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(We simply group terms on the intervals of the partition
{
i2−k, i = 0, . . . , 2k

}
.)

Therefore, we can apply a vector CLT and deduce that for every m ≥ 0 the vec-
tor (ξk, ξk+1, . . . , ξk+m) converges in distribution to an (m+1)-dimensional cen-
tered Gaussian vector as k →∞. Consequently, the sequence (ξk, ξk+1, ξk+2, . . . )
converges to a centered stationary Gaussian sequence as k →∞.

Taking into account the fact that the asymptotic behaviour of V H,2n and V 2
n

is the same (up to the factor b2), we obtain that

Zk =
2k/2

b2T
UH,2k

with UH,2k is defined in (25), also converges to a centered stationary Gaussian
sequence. It is straightforward to check that the limit covariance is that of an
i.i.d. standard Gaussian sequence, whence the result follows.

3.1.4. H = 3/4

ForH = 3/4, an analogue of Proposition 3.8 can be proved, that is, (Zk, Zk+1, . . . )
converges in distribution as k → ∞ to a sequence (ζ1, ζ2, . . . ) of independent
Gaussian variables with unit variance. However, since

V 3/4,2
n ≈ b2T + a2T 3/2n−1/2 +

√
2b2Tn−1/2N(0, 1),

the limiting stationary distribution now has a positive mean, namely, E [ ζ1 ] =
a2b−2T 1/2(1− 2−1/2). As long as this value depends on how big is a compared
to b, we might be unable to distinguish this case from H > 3/4. On the other
hand, if b is small relative to a, it might be hard to distinguish this case from
H < 3/4.

3.2. Statistical estimation using 4th power variation

It was mentioned in the previous section that the performance of quadratic
variation estimators in the case H ∈ (1/2, 3/4) is not very satisfactory. One
could try to improve it by considering quartic variation of MH

V H,4n :=

n−1∑
k=0

(
∆n
kM

H
)4

=

4∑
i=0

(
4

i

)
aib4−iV H,4−i,in .

Theorem 3.1. Statistics

Ĥ
(4)
k = − 1

2k
log2+ U

H,4
k

and

H̃
(4)
k =

1

2
log2+

UH,4k

UH,4k+1

are strongly consistent estimators of the Hurst parameter H ∈ (1/2, 3/4) in the
mixed model (15).

imsart-generic ver. 2012/08/31 file: mixedvars-jan13.tex date: January 4, 2013



M. Dozzi, Yu. Mishura, and G. Shevchenko/Statistical estimation in mixed models 17

Remark 3.5. Both these estimators are quite poor. Regression of several values
of log2 U

H,4
k on k leads to a much better estimator. However, as numerical

experiments in Section 4 suggest, it is better to use the quadratic variation
based estimators (although they are not apparently very efficient as well).

Remark 3.6. It is clear that (28) also allows to construct approximate confidence
intervals for H. One should be careful with the third term in (28): for H ∈
(5/8, 3/4) it is smaller than the Gaussian fluctuation, so can be omitted, while
for H ∈ (1/2, 5/8] it does affect a confidence interval. However, a priori a value
of H is not known, of course, so in case where the value of estimator is close to
5/8 one should take a partition sufficiently fine in order to determine whether
H > 5/8 or not.

Proof. By LLN and CLT,

V H,4,0n ≈ 3T 2n−1 + 4
√

6T 2n−3/2N(0, 1).

Using (7), we obtain

V H,3,1n ≈ TH+3/2√µ6µ2n
−H−1N(0, 1) =

√
15TH+3/2n−1−HN(0, 1).

Further, from (4)

V H,2,2n ≈ T 2H+1n−2H +
√
σ2
H,2µ

2
2 + 6T 2H+1n−2H−1/2N(0, 1).

Finally,
V H,1,3n ≈

√
15T 3H+1/2n−3HN(0, 1)

by (7) and

V H,0,4n ≈ 3T 4Hn1−4H + T 4Hn1/2−4HσH,4N(0, 1),

by the ergodic theorem and (11). Collecting all the terms and omitting the terms
of lower order, we get

V H,4n ≈ 3T 2b4n−1 + 6T 2H+1a2b2n−2H + 3T 4Hn1−4Ha4 + 4
√

6T 2b4n−3/2N(0, 1).
(28)

Hence, the assertion follows.

3.3. Estimate of Hurst parameter for known a and b

When the scale coefficients a and b are known, the estimation procedure signif-
icantly simplifies, and the quality of estimators is improved. Since we already
know asymptotic expansions of power variations, we immediately proceed to
statistical conclusions.
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3.3.1. H ∈ (0, 1/2)

Proposition 3.9. For H ∈ (0, 1/2) and known a, the statistic

Ĥk(a) =
k + 2 log2 a− log2 V

H,2
2k

2(k − log2 T )

is a strongly consistent estimator of H.

Using the asymptotic expansion (24), we can construct another estimator
of H, which has an asymptotically better rate of convergence, namely, we can
define H̃k(a) as a solution from the interval (0, 1/2) of the equation

log2(−UH,2k ) = 2 log2 a+ 2H̃k(a) log2 T + log2

(
1− 21−2H̃k(a)

)
+ k(1− 2H̃k(a)).

We can also construct asymptotic confidence interval using the knowledge of
a and b; there is no big advantage of this knowledge in the case H ∈ (0, 1/4),
but for H ∈ (1/4, 1/2) the asymptotic confidence interval will be better.

Proposition 3.10. Let H ∈ (0, 1/2), a, b are known. The interval [Hmin(a, b), Hmax(a, b)],
where

Hmin(a, b) =
1

2

(
1 + log2+ Yk(b)− log2+

(
Yk+1(b) + zασ

′
Ĥk(a)

V H,2
2k

2−k/2
))

,

Hmax(a, b) = Hmin(a, b) ∨ 1

2

(
1 + log2+ Yk(b)− log2+

(
Yk+1(b)− zασ′Ĥk(a)

V H,2
2k

2−k/2
))

,

Yk(b) = V H,2
2k
− b2T.

is an asymptotic confidence interval for H of level 1− α.

Proof. We have

21−2HV H,2
2k
− V H,2

2k+1 ≈
(
21−2H − 1

)
b2T + a2T 2Hσ′H2k(1/2−2H)N(0, 1),

therefore by Slutsky’s theorem,

2k/2
21−2HV H,2

2k
− V H,2

2k+1 −
(
21−2H − 1

)
b2T

σ′
Ĥk(a)

V H,2
2k

⇒ N(0, 1), k →∞, (29)

as required.

3.3.2. H ∈ (1/2, 3/4)

In this case the knowledge of a and b allows us we can improve on estimation
of H by utilising (17).

Proposition 3.11. If H ∈ (1/2, 3/4) and a, b are known, the statistic

Ĥ
(2)
k (a, b) =

k + 2 log2 a− log2

(
V H,2
2k
− b2T

)
2(k − log2 T )

is a strongly consistent estimator of H.

imsart-generic ver. 2012/08/31 file: mixedvars-jan13.tex date: January 4, 2013



M. Dozzi, Yu. Mishura, and G. Shevchenko/Statistical estimation in mixed models 19

If only a is known, we can still use (26) to construct an estimator for H. This
requires solving a non-linear equation

log2 U
H,2
k = 2 log2 a+ 2H̃

(2)
k (a) log2 T + (1−2H̃

(2)
k (a))k+ log2

(
1− 21−2H̃

(2)
k (a)

)
on the interval (1/2, 3/4).

Knowing coefficient b also allows to construct more efficient confidence inter-
vals (those constructed using (27) are pretty useless).

Proposition 3.12. Let H ∈ (1/2, 3/4), b is known. The interval [Hmin(b), Hmax(b)],
where

Hmin(b) =
1

2

(
1 + log2+Ak(b)− log2+

(
Bk(b) +

√
Bk(b)2 −Ak(b)Ck(b)

))
,

Hmax(b) = Hmin(b) ∨ 1

2

(
1 + log2+Ak(b)− log2+

(
Bk(b)−

√
Bk(b)2 −Ak(b)Ck(b)

))
,

Ak(b) = Yk(b)2 − 4Dk(b), Bk(b) = 2Yk(b)Yk+1(b)−Dk(b),

Ck(b) = Yk+1(b)2 − 2Dk(b), Dk(b) = z2αb
4T 22−k−1,

is an asymptotic confidence interval for H of level 1− α.

Proof. Write

2k/2
21−2H

(
V H,2
2k
− b2T

)
−
(
V H,2
2k+1 − b2T

)
bT
√

23−4H − 21−2H + 1
⇒ N(0, 1), k →∞. (30)

Then the required result follows by solving the quadratic inequality for 21−2H

in

P

2k/2
21−2H

(
V H,2
2k
− b2T

)
−
(
V H,2
2k+1 − b2T

)
b2T
√

23−4H − 21−2H + 1
∈ [−zα, zα]

→ 1− α, k →∞.

4. Simulations

In each procedure we take T = 3, a = b = 1, n = 220 and use the circulant
method to simulate values of BH on the uniform partition {iT/n, i = 0, 1, . . . , n}
of [0, T ]. The simulation takes about 6 seconds on Intel Core i5-3210M processor,
computing all estimators takes 10–500 milliseconds.

4.1. Estimators based on quadratic variation

4.1.1. H ∈ (0, 1/2)

The following table contains estimators of Hurst parameter H and 99 % ap-
proximate confidence interval [Hmin, Hmax] for it, the values of H range from
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0.05 to 0.5 with step 0.05. For each value of H we also estimate coefficient a,
and for H between 0.25 and 0.5 we give value of estimator for b. (N/A means

that b̃220 is negative; ∗ means theoretical value.)

H 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Ĥ20 .046 .092 .1382 .1841 .2302 .276 .3215 .3656 .4054

H̃20 .0509 .1017 .1489 .1993 .2511 .3018 .3525 .407 .4605

H̃
(2)
20 .0566 .106 .1449 .1922 .2547 .2919 .3534 .375 .4397

Hmin .0448 .0932 .1311 .1768 .2371 .2708 .3269 .335 .3551

Hmax .0686 .119 .159 .208 .2728 .3136 .3809 .417 .5∗

ã20 1.019 1.023 .985 .991 1.014 1.027 1.043 1.135 1.293

b̃20 2.627 N/A 1.823 1.241

We see from the table that the estimator H̃k has consistently the best perfor-
mance: the relative error is within 2 % for all values but 0.45, where the relative
error is 2.33 %.

The estimator Ĥk underestimates all values of H by around 8 %, which seems

a lot for such number of computations. Finally, the relative error of H̃
(2)
k ranges

from 1 % for H = 0.35 to 6.25 % for H = 0.4 and 13.2 % for H = 0.05.
This hints at a large variance of the estimator H̃

(2)
k , which is supported by the

following figure. It contains values of estimator H̃k (lozenges), Ĥk (squares) and

H̃
(2)
k (triangles), k = 5, . . . , 20, H = 0.3. The values of H̃

(2)
k outside [0.1, 0.5]

were dropped. It is clearly visible that the performance of H̃
(2)
k is better than

that of H̃k, despite the former has asymptotically better rate of convergence to
H.
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For sake of completeness, we present some values of estimators for H > 0.5.

H 0.5 0.6 0.7 0.8 0.9

Ĥ20 .4353 .4577 .4601 .4603 .4604

H̃20 .5021 .507 .5027 .4996 .4997

As expected, the values of H̃20 are close to 0.5.

4.1.2. H ∈ (1/2, 3/4)

The following table contains estimators Ĥ
(2)
20 and H̃

(2)
20 of Hurst parameter H,

and estimator b̂20 of the coefficient b. The values of H range from 0.525 to 0.725
with step 0.025. We also give a “regression” estimator H̄(2). It is obtained in the
following way: we consider linear regression of {log2+ U

H,2
j , j = m,m+1, . . . , 20}

on {m,m + 1, . . . , 20}, where m = 11, 12, . . . , 15, and take the best regression
(in terms of the coefficient of determination). If r̄(2) is the coefficient of the
best linear regression, we set H̄(2) = (1 − r̄(2))/2. We do not give values of
the estimator â20 and confidence intervals in view of their poor quality. (In the
table, N/A means an estimator value outside the theoretical range (1/2, 3/4).)

H 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725

Ĥ
(2)
20 .6061 .604 .6096 .627 .639 .6447 .6629 .7013 .6931

H̃
(2)
20 N/A .5559 .5341 .6308 N/A N/A .7241 N/A N/A

H̄(2) .5668 .5797 .6083 .6041 .6116 N/A N/A N/A N/A

b̂20 1.229 1.123 1.065 1.033 1.017 1.009 1.005 1.002 1.001

As we can see, when the value of estimator Ĥ
(2)
20 is greater than .625, it is quite

reliable, while other two estimators are not. In other cases H̄(2) performs slightly
better.

4.1.3. H ∈ (1/2, 3/4)

Below are values of {[104UH,2k ], k = 11, 12, . . . , 20} for H = 0.7 and H = 0.8.
The difference is clearly visible: for H = 0.7 the sequence is positive, while for
H = 0.8 there is a plenty of negative values.

H = 0.7 869 649 523 3 260 18 78 98 53 50

H = 0.8 665 −620 482 −475 8 −29 −104 −71 −78 −28
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4.2. Estimators based on quartic variation

4.2.1. H ∈ (1/2, 3/4)

The following table contains estimators Ĥ
(4)
20 and H̃

(4)
20 of Hurst parameter H,

the values of H range from 0.525 to 0.725 with step 0.025. We also give a
“regression” estimator H̄(4). It is obtained in the following way: we consider
linear regression of {log2+ U

H,4
j , j = m,m + 1, . . . , 20} on {m,m + 1, . . . , 20},

where m = 11, 12, . . . , 17, and take the best regression (in terms of the coefficient
of determination). If r̄(4) is the coefficient of the best linear regression, we set
H̄(4) = −r̄(4)/2. (N/A means an estimator value outside the theoretical range
(1/2, 3/4).)

H 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725

Ĥ
(4)
20 N/A N/A .5103 .5224 .5303 .5644 N/A N/A .5802

H̃
(4)
20 N/A .6227 .6098 .5736 N/A N/A N/A N/A N/A

H̄(4) .5321 .5606 .6189 .6783 .6378 .7425 N/A N/A N/A

We see that the estimators based on the quartic variation are quite useless and
definitely worse than those based on the quadratic variation; only the regression
estimator is reliable for H close to 0.5.

4.3. Estimation when a and b are known

4.3.1. H ∈ (0, 1/2)

Below are values of estimators Ĥ20 and H̃20 for H from 0.05 to 0.45 with the step
0.05. Since the estimates are very close to the real values, we give a rescaled
difference. We can see that H̃20 has more stable performance, while Ĥ20 has
worse (but still very good) quality for H close to 1/2.

H 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

105(Ĥ20(a)−H) .66 -2.5 2.3 -1.3 .36 19 190 300 960

105(H̃20(a)−H) -220 -22 51 50 -70 60 11 1.1 47

Further we give asymptotic 99 % confidence intervals for H ∈ [1/4, 1/2) using
(29).

H 0.25 0.3 0.35 0.4 0.45

Hmin(a, b) .2469 .2972 .3473 .3956 .4457

Hmax(a, b) .2538 .3037 .3537 .402 .453

We see that the intervals are smaller than those given by (3.4).

The picture below illustrates the quality of estimators H̃k(a) (lozenges) and

Ĥk(a) (squares), k = 5, . . . , 20, H = 0.3.
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4.3.2. H ∈ (1/2, 3/4)

The following table contains estimators Ĥ
(2)
20 (a, b) and H̃

(2)
20 (a) of Hurst param-

eter H. The values of H range from 0.525 to 0.725 with step 0.025. We also
give 99 % confidence intervals constructed with the help of (30). Starting from
H = 0.65, these confidence intervals already contain whole values from 1/2 to
3/4, so we give 80 % confidence intervals (marked by †). As before, by ∗ we
denote the theoretical bound.

H 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725

Ĥ
(2)
20 (a, b) .5249 .55004 .57496 .5995 .6262 .6487 .6736 .6927 .712

H̃
(2)
20 (a) .5538 .5547 .5734 .5962 .6336 .6422 .6642 .6701 .683

Hmin(b) .5203 .539 .5586 .571 .5404 .609† .5951† .6251† .5785†

Hmax(b) .5301 .557 .5944 .639 .6785 .732† .75∗ .75∗ .75∗

We see that Ĥ
(2)
20 (a, b) outperforms H̃

(2)
20 (a), but the advantage of the latter is

that it uses only knowledge of a. The confidence intervals are acceptable for
H ≤ 0.6 and pretty useless for bigger values.
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