Marco Dozzi 
email: marco.dozzi@univ-lorraine.fr
  
Yuliya Mishura 
  
Georgiy 
  
Georgiy Shevchenko 
  
Statistical estimation by power variations in mixed models

Keywords: AMS 2000 subject classifications: Primary 60G22, 62M09; secondary 60G15, 62F25 power variation, fractional Brownian motion, Hurst parameter, Wiener process, consistent estimator, asymptotic confidence interval

published or not. The documents may come    

Introduction

Fractional Brownian motion (fBm) is frequently used to model short-and longrange dependence. By definition, fBm with Hurst parameter H ∈ (0, 1) is a centered Gaussian process B H t , t ≥ 0 with the covariance function

E B H t B H s = 1 2 t 2H + s 2H -|t -s| 2H .
For H > 1/2 fBm has a property of long-range dependence, for H < 1/2 it has short-range dependence and, in fact, is counterpersistent, i.e. its increments are negatively correlated. For H = 1/2 fBm is a standard Wiener process. Two important properties of fBm are stationary increments and self-similarity. However, this properties restrict applications of fBm, so recently so-called multifractional processes gained huge attention. Multifractionality can consist both in dependence of memory depth and regularity of process on the time instance and on the time scale. In this paper, we are dealing with the latter kind of multifractionality, where the properties of the process depend on the size of time interval, on which the process is considered. In other words, we are considering processes, which are not inherently self-similar. A simplest approach is to consider a linear combination of fBm's with different Hurst parameters.

Here we will concentrate on the case where we have only two fBm's and one of them has Hurst parameter equal to 1/2, simply put, it is a Wiener process. So we consider a process

M H t = aB H t + bW t , t ≥ 0 (1)
where a and b are some non-zero coefficients. Such mixed models and their applications where considered in many papers, see [START_REF] Androshchuk | Mixed Brownian-fractional Brownian model: absence of arbitrage and related topics[END_REF][START_REF] Cheridito | Mixed fractional Brownian motion[END_REF][START_REF] Filatova | Mixed fractional Brownian motion: some related questions for computer network traffic modeling[END_REF][START_REF] Mishura | Mixed stochastic differential equations with long-range dependence: Existence, uniqueness and convergence of solutions[END_REF][START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF].

The main aim of this paper is statistical identification of model [START_REF] Androshchuk | Mixed Brownian-fractional Brownian model: absence of arbitrage and related topics[END_REF], i.e. the statistical estimation of the model parameters. The principal attention will be given to the estimation of H, though we will give some comments on estimation of a and b.

In a "pure" fBm case, there exist several methods to estimate the Hurst parameter, an extensive overview of which is given in [START_REF] Coeurjolly | Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF]. The most popular methods are based on quadratic and, more generally, higher power variations of the process. A huge literature is devoted to such questions, we will cite only few: asymptotic behaviour of power variations and, more generally, of non-linear transformations of stationary Gaussian sequences is studied in [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF][START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF][START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF], and stochastic estimation for fBm and multifractional processes with the help of power variations, in [START_REF] Benassi | Identifying the multifractional function of a Gaussian process[END_REF][START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF][START_REF] Coeurjolly | Identification of multifractional Brownian motion[END_REF][START_REF] Giraitis | Variance-type estimation of long memory[END_REF][START_REF] Istas | Quadratic variations and estimation of the local Hölder index of a Gaussian process[END_REF][START_REF] Taqqu | Estimators for long-range dependence: An empirical study[END_REF]. Weighted power variations serving similar purposes for stochastic differential equations driven by fBm, were studied in [START_REF] Nourdin | Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion[END_REF][START_REF] Nourdin | Central and noncentral limit theorems for weighted power variations of fractional Brownian motion[END_REF].

In this paper we will use power variations of process [START_REF] Androshchuk | Mixed Brownian-fractional Brownian model: absence of arbitrage and related topics[END_REF] for estimation of parameters. Related questions for mixed models were already considered in [START_REF] Cai | The maximum likelihood drift estimator for mixed fractional Brownian motion[END_REF][START_REF] Filatova | Mixed fractional Brownian motion: some related questions for computer network traffic modeling[END_REF][START_REF] Kozachenko | On drift parameter estimation in models with fractional Brownian motion[END_REF][START_REF] Xiao | Maximumlikelihood estimators in the mixed fractional Brownian motion[END_REF], but we use different techniques here. We remark that, in contrast to the pure fractional case, there is no self-similarity property in mixed model [START_REF] Androshchuk | Mixed Brownian-fractional Brownian model: absence of arbitrage and related topics[END_REF], so we cannot directly apply the results of [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF][START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF][START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF] on asymptotic behaviour of sums of transformed stationary Gaussian sequences. For this reason we need to study asymptotic behaviour as n → ∞ of "mixed" power variations of the form

n-1 k=0 W (k+1)/n -W k/n p B H (k+1)/n -B H k/n r , (2) 
involving increments of independent fBm B H and Wiener process W , where p ≥ 0, r ≥ 0 are fixed integer parameters. We obtain that the behaviour of such power variations depends on parity of p and r and on the value of the Hurst parameter H. The paper is organized as follows. Section 2 contains results on the asymptotic behaviour of mixed power variations. These results are used in Section 3 to construct strongly consistent estimators of parameters H, a, b in model (1) and asymptotic confidence intervals for H. Finally, in Section 4 we present simulation results to illustrate quality of the estimators provided.
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Asymptotic behaviour of mixed power variations

Let W = {W t , t ≥ 0} be a standard Wiener process and B H = {B H t , t ≥ 0} be an independent of W fractional Brownian motion with Hurst parameter H ∈ (0, 1) defined on a complete probability space (Ω, F, P ).

For a function X : [0, 1] → R and integer n ≥ 1, k = 0, 1, . . . , n -1 we denote ∆ n k X = X (k+1)/n -X k/n . In this section we will study the asymptotic behavior as n → ∞ of the following mixed power variations

n-1 k=0 (∆ n k W ) p ∆ n k B H r ,
where p ≥ 0, r ≥ 0 are fixed integer numbers. Thanks to self-similarity of B H and W , the sequence (n

H ∆ n k B H , n 1/2 ∆ n k W ), 0 ≤ k ≤ n -1 is equivalent in law to {(ξ k , ζ k ), 0 ≤ k ≤ n -1}, where {ξ k , k ≥ 0} is a sequence of independent standard Gaussian random variables, {ζ k , k ≥ 1} is independent of {ξ k , k ≥ 1} stationary sequence of standard Gaussian variables with covariance ρ H (m) = E [ ζ 0 ζ m ] = E B H 1 (B H m+1 -B H m ) = 1 2 |m + 1| 2H + |m -1| 2H -|m| 2H .
Therefore, by ergodic theorem,

n rH+p/2-1 n-1 k=0 (∆ n k W ) p ∆ n k B H r → µ p µ r , n → ∞, (3) 
a.s., where for integer m ≥ 0

µ m = E [ N (0, 1) m ] = (m -1)!!1 m is even
is the mth moment of the standard Gaussian law. So it is natural to study the following centered sums

S H,p,r n = n-1 k=0 n rH+p/2 (∆ n k W ) p ∆ n k B H r -µ p µ r .
The following theorem summarizes limit behaviour of S H,p,r n . We remark that some (but not all) of results can be obtained from the limit theorems for stationary Gaussian sequences of vectors, see e.g. [START_REF] Arcones | Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors[END_REF]. However, we believe that our approach (using one-dimensional limit theorems) is more accessible and leads quicker to the desired results.

Theorem 2.1. If p and r are even, then

• for H ∈ (0, 3/4) n -1/2 S H,p,r n ⇒ N (0, σ 2 H,r µ 2 p + σ 2 p,r ), n → ∞, (4) 
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where

σ 2 H,r = r/2 l=1 (l!) 2 (2l)!((r -2l)!!) 2 ∞ m=-∞ ρ H (m) 2l , σ 2 p,r = µ 2r µ 2p -µ 2 p ;
• for H = 3/4

S 3/4,p,r n √ n log n ⇒ N (0, σ 2 3/4,r µ 2 p + σ 2 r,p ), n → ∞, (5) 
where σ 3/4,r = 3r(r -1)/4;

• for H ∈ (3/4, 1) n 1-2H S H,p,r n ⇒ ζ H,p,r , n → ∞, (6) 
where ζ H,p,r is a special "Rosenblatt" random variable.

If p is odd, then for any H ∈ (0, 1)

n -1/2 S H,p,r n = n rH-1/2 R n k n ⇒ N (0, σ 2 p,r ) = N (0, µ 2p µ 2r ). ( 7 
)
If p is even and r is odd, then

• for H ∈ (0, 1/2] n -1/2 S H,p,r n ⇒ N (0, σ 2 p,r + µ 2 p σ 2 H,r ), n → ∞, (8) 
where

σ 2 H,r = (r-1)/2 l=0 (r!) 2 (2l + 1)!((r -2l -1)!!) 2 ∞ m=-∞ ρ H (m) 2l+1 ; • for H ∈ (1/2, 1) n -H S H,p,r n ⇒ N (0, µ 2 p µ 2 r+1 ), n → ∞. (9) 
Proof. We study different cases in the same order as they appear in the formulation. Assume first that p and r are even. The principal idea in this case is to rewrite mixed power variation as

S H,p,r n = S n + S n ,
where For H ∈ (0, 3/4) write

S n = n rH n-1 k=0 ∆ n k B H r n p/2 (∆ n k W ) p -µ p , S n = µ p n-1 k=0 n rH ∆ n k B H r -µ r , (10) 
n -1/2 S H,p,r n = n -1/2 S n + n -1/2 S n .
According to [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF], for r even, H ∈ (0, 3/4),

n -1/2 n-1 k=0 n rH ∆ n k B H r -µ r ⇒ N (0, σ 2 H,r ), (11) 
as

n → ∞. Consequently, n -1/2 S n ⇒ N (0, σ 2 H,r µ 2 p ), n → ∞. Further, n -1/2 S n = n rH-1/2 R n k n ,
where

R n = 1 k n n-1 k=0 λ k,n n p/2 (∆ n k W ) p -µ p k n = (µ 2p -µ 2 p ) n-1 k=0 λ 2 k,n 1/2 , λ k,n = ∆ n k B H r . ( 12 
)
Since B H is uniformly continuous a.s., max 1≤k≤n λ k,n → 0, n → ∞ a.s. Thus, taking into account independence of B H and W and an evident fact that var R n = 1, we get by CLT that the conditional distribution of R n given B H converges to standard normal distribution as n → ∞ a.s. Further, from the ergodic theorem

n 2rH-1 n-1 k=0 (∆ n k B H ) 2r → µ 2r , n → ∞, a.s., hence n rH-1/2 k n → µ 2r (µ 2p -µ 2 p ) 1/2 , n → ∞ a.s.
So by Slutsky's theorem, the conditional distribution of S n given B H converges to N (0, σ 2 p,r ) a.s., that is, for any t ∈ R we have

R e itx P(S n ∈ dx | B H ) → e -t 2 σ 2 p,r /2 (13) 
a.s. as n → ∞. Now write

E e it(S n +S n ) = E E e it(S n +S n ) B H = E R e itx P S n ∈ dx B H e itS n ,
whence where

E e it(S n +S n ) -e -t
E 1 = E R e itx P S n ∈ dx B H -e -t 2 σ 2 p,r /2 e itS n → 0, n → ∞
by [START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF] and dominated convergence;

E 2 = e -t 2 σ 2 p,r E e itS n -e -t 2 σ 2 H,r µ 2 p /2 → 0, n → ∞
by [START_REF] Filatova | Mixed fractional Brownian motion: some related questions for computer network traffic modeling[END_REF]. It follows that

n -1/2 S H,p,r n ⇒ N (0, σ 2 H,r µ 2 p + σ 2 p,r ), n → ∞,
as required in this case.

In the case where H = 3/4, we have by [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF] 1

√ n log n n-1 k=0 n rH ∆ n k B H r -µ r ⇒ N (0, σ 2 3/4,r ),
as n → ∞, whence (5) can be deduced using the same reasoning as above.

For H ∈ (3/4, 1), write

n 1-2H S H,p,r n = n 1-2H S n + n 1-2H S n = n 1-2H+rH R n k n + n 1-2H S n ,
where R n , k n , S n are defined above. As before, R n ⇒ N (0, 1) conditionally given B H as n → ∞ a.s. However, this time n 1-2H+rH k n → 0, n → ∞ a.s., since n rH-1/2 k n has a finite limit and n 3/2-2H → 0, n → ∞. Therefore, n 1-2H S n → 0, n → ∞. Further, according to [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF], see also [START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF],

n 1-2H S n ⇒ ζ H,p,r , n → ∞,
where ζ H,p,r is a "Rosenblatt" random variable. Thus, we get (6) using Slutsky's theorem. This finishes the case where p and r are even. Now assume that p or r is odd. In this case S H,p,r n has a form

S H,p,r n = n-1 k=0 n rH+p/2 (∆ n k W ) p ∆ n k B H r . Write n -1/2 S H,p,r n = n rH-1/2 R n k n + Z n ,
where R n and k n are defined above,

Z n = n rH-1/2 µ p n-1 k=0 ∆ n k B H r . As be- fore, given B H , n rH-1/2 R n k n ⇒ N (0, σ 2 p,r ), n → ∞, a.s. Now if p is odd, we have Z 2 n = 0 irrespective of value of H, whence (7) immediately follows.
Further, assume that p is even and r odd. For H ∈ (0, 1/2], we have by [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF]]

n rH-1/2 n-1 k=0 ∆ n k B H r ⇒ N (0, σ 2 H,r ), n → ∞.
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Therefore,

Z n ⇒ N (0, µ 2 p σ 2 H,r ), n → ∞.
Arguing as in deriving of (4), we get [START_REF] Coeurjolly | Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths[END_REF]. For H ∈ (1/2, 1), it follows from [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF] that

n (r-1)H n-1 k=0 ∆ n k B H r ⇒ N (0, µ 2 r+1 ), n → ∞, (14) 
so

n 1/2-H Z n ⇒ N (0, µ 2 p µ 2 r+1 ), n → ∞ But n (r-1)H R n k n = n 1/2-H n rH-1/2 R n k n → 0, n → ∞, whence (9) 
follows. The proof is now complete.

Statistical estimation in mixed model

Now we turn to the question of parametric estimation in the mixed model

M H t = aB H t + bW t , t ∈ [0, T ], (15) 
where a, b are non-zero numbers, which we assume to be positive, without loss of generality. Out primary goal is to construct a strongly consistent estimator for the Hurst parameter H, given a single observation of M H . It is well-known (see [START_REF] Cheridito | Mixed fractional Brownian motion[END_REF]) that for H ∈ (3/4, 1) the measure induced by M H in C[0, T ] is equivalent to that of bW . Therefore, the property of almost sure convergence in this case is independent of H. Consequently, no strongly consistent estimator for H based on a single observation of M H exists.

In this section we denote ∆ n k X = X T k/n -X T (k-1)/n and

V H,p,r n = n-1 k=0 (∆ n k W ) p ∆ n k B H r .
Also for a real sequence {a n , n ≥ 1}, non-zero sequence {b n , n ≥ 1}, and a sequence {ξ n , n ≥ 1} of random variables, we will abbreviate

ξ n ≈ a n + b n N (0, 1)
whenever the following two assertions hold:

• either ξ n ∼ a n as n → ∞ a.s. or a n ≡ 0; • (ξ n -a n )/b n ⇒ N (0, 1) as n → ∞.

Statistical estimation based on quadratic variation

Consider quadratic variation of M H , i.e.

V H,2 n = n-1 k=0 ∆ n k M H 2 .
The following lemma contains information on asymptotic behaviour of V H,2 n , which is needed to construct estimators.
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V H,2 n ≈ a 2 T 2H n 1-2H + b 2 T + a 2 T 2H n 1/2-2H σ H,2 N (0, 1). ( 16 
)
2. For H ∈ (1/2, 1)

V H,2 n ≈ b 2 T + a 2 T 2H n 1-2H + √ 2b 2 T n -1/2 N (0, 1). ( 17 
)
3. For H = 1/2 V H,2 n ≈ (a 2 + b 2 )T + √ 2(a 2 + b 2 )T n -1/2 N (0, 1). Proof. Write V H,2 n = a 2 V H,0,2 n + 2abV H,1,1 n + b 2 V H,2,0 n . ( 18 
)
By law of large numbers

V H,2,0 n → T, n → ∞.
Therefore, we have

V H,2,0 n ≈ T + √ 2T n -1/2 N (0, 1)
by the classical CLT. This gives immediately the result in the case H = 1/2, since in this case

M H t = √ a 2 + b 2 W t ,
where W is a standard Wiener process. Further, by ergodic theorem and [START_REF] Filatova | Mixed fractional Brownian motion: some related questions for computer network traffic modeling[END_REF], for H ∈ (0, 3/4)

V H,0,2 n ≈ n 1-2H T 2H + n 1/2-2H T 2H σ H,2 N (0, 1), for H = 3/4 V H,0,2 n ≈ T 3/2 n -1/2 + 3 2 T 3/2 n -1 log n N (0, 1),
and for H ∈ (3/4, 1)

V H,0,2 n ≈ T 2H n -1 ζ H ,
where ζ H is a Rosenblatt random variable. Finally, from [START_REF] Coeurjolly | Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF],

V H,1,1 n ≈ n -H T H+1/2 N (0, 1).
The required statement now follows by comparing the orders of terms in [START_REF] Nourdin | Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion[END_REF].

As we see, the asymptotic behaviour of V H,2 n depends on whether H < 1/2 or not. Let us consider these cases individually (we omit the case H = 1/2, which is of minor interest).
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3.1.1. H ∈ (0, 1/2) For H ∈ (0, 1/2) we have V H,2 n ∼ a 2 T 2H n 1-2H , n → ∞, (19) 
a.s., which allows to estimate the Hurst parameter H consistently. Precisely, we have the following result.

Proposition 3.1. For H ∈ (0, 1/2), the following statistics

H k = 1 2 1 - 1 k log 2 V H,2 2 k
and

H k = 1 2 log 2 V H,2 2 k V H,2 2 k+1 + 1
are strongly consistent estimators of the Hurst parameter H.

Proof. Write from ( 16)

log 2 V H,2 2 k = log 2 a 2 T 2H 2 k(1-2H) + log 2 1 + b 2 a 2 T 1-2H 2 -k(1-2H) + 2 -k/2 ζ k ,
where the sequence {ζ k , k ≥ 1} is bounded in probability. Hence we have

log 2 V H,2 2 k = 2 log 2 a + 2H log 2 T + (1 -2H)k +O(2 -k(1-2H) ) + O P (2 -k/2 ), k → ∞, ( 20 
)
where O is the standard big-O notation, while

ξ k = O P (α k ), k → ∞, means that the sequence {ξ k /α k , k ≥ 1} is bounded in probability. In particular, log 2 V H,2 2 k ∼ 2 log 2 a + 2H log 2 T + (1 -2H)k, k → ∞,
whence the result immediately follows.

Remark 3.1. At the first sight, there is no clear advantage of H k or H k . But a careful analysis shows that H k is better. Indeed, from [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF] it is easy to see that

H k = H - log 2 a + H log 2 T k + o(k -1 ), k → ∞, while H k = H + O(2 -k(1-2H) ) + O P (2 -k/2 ), k → ∞. ( 21 
)
Now it is absolutely clear that H k performs much better (unless one hits the jackpot by having aT H = 1).
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Asymptotic confidence intervals for H and consistent estimates for a and b Asymptotic expansion [START_REF] Mishura | Mixed stochastic differential equations with long-range dependence: Existence, uniqueness and convergence of solutions[END_REF] allows to construct confidence intervals for H. In view of ( 16), we should distinguish two cases: H ∈ (0, 1/4) and H ∈ [1/4, 1). In order to proceed, we should first give a consistent estimate for a. The previous remark enables us to do this. Proposition 3.2. For H ∈ (0, 1/4), the statistic

a 2 k = 2 k(2 H k -1) T -2 H k V H,2 2 k is a consistent estimator of a 2 .
Proof. Observe that [START_REF] Taqqu | Estimators for long-range dependence: An empirical study[END_REF]. Therefore, we have the desired statement.

a 2 k a 2 ∼ 2 k( H k -H) T k(H-H k ) → 1, k → ∞, in probability, since k( H k -H) → 0, k → ∞, in probability by
The construction of asymptotic confidence intervals is different in cases H ∈ (0, 1/4) and H ∈ [1/4, 1). Let us first concentrate on the case H ∈ (0, 1/4). In this case

V H,2 n ≈ a 2 T 2H n 1-2H + a 2 T 2H n 1/2-2H σ H,2 N (0, 1).
Now in order to construct a confidence interval for H, observe that

2 1-2H V H,2 2 k -V H,2 2 k+1 ≈ a 2 T 2H σ H 2 k(1/2-2H) N (0, 1), ( 22 
)
where the constant σ H can be computed explicitly in terms of H, however, the expression is extremely cumbersome; thus we give only a less explicit expression in terms of B H :

σ H = ρ H,1 + 2 ∞ k=1 ρ H,k 1/2 
, where

ρ H,k = E 2 1-2H B H 1 2 -B H 1/2 2 -B H 1 -B H 1/2 2 × 2 1-2H B H k+1 -B H k 2 -B H k+1/2 -B H k 2 -B H k+1 -B H k+1/2 2 .
Now, it follows from Slutsky's theorem that whence the construction of asymptotic confidence interval is obvious. However, this leads to solving highly complicated equation involving quite unpleasant function σ H . A better idea is to replace H with H k :

2 k(2H-1/2) 2 1-2H V H,2 2 k -V H,2 2 k+1 a 2 k T 2H σ H ⇒ N (0, 1), k → ∞, imsart-
2 k(2 H k -1/2) 2 1-2H V H,2 2 k -V H,2 2 k+1 a 2 k T 2 H k σ H k = 2 k/2 2 1-2H V H,2 2 k -V H,2 2 k+1 σ H k V H,2 2 k ⇒ N (0, 1), k → ∞.
Hence, we have the following result, where z α is the standard normal (1 -α/2)quantile; for well-definiteness we denote

log 2+ x = log 2 x, x > 0, 0, x ≤ 0. Proposition 3.3. Let H ∈ (0, 1/4). The interval [H min , H max ],
where

H min = 1 2 1 + log 2 V H,2 2 k -log 2 V H,2 2 k+1 + z α σ H k V H,2 2 k 2 -k/2 , H max = H min ∨ 1 2 1 + log 2 V H,2 2 k -log 2+ V H,2 2 k+1 -z α σ H k V H,2 2 k 2 -k/2 ,
is an asymptotic confidence interval for H of level 1 -α.

Remark 3.2. As it is known from [START_REF] Van Zanten | When is a linear combination of independent fBm's equivalent to a single fBm? Stochastic Process[END_REF], for H ∈ (0, 1/4) the measure induced by M H in C[0, T ] is equivalent to that of aB H . So the results are essentially the same in this case as for fractional Brownian motion alone. Another important consequence that in this case it is not possible to estimate b consistently. Now let us move to the case H ∈ (1/4, 1/2). (We omit the case H = 1/4 for two reasons: considered similarly to H ∈ (1/4, 1/2), and it is hard to distinguish it statistically from the case where H = 1/4.) The construction of confidence interval is more involved in this case, since the second term in ( 16) cannot be omitted. However, the idea is the same: one needs to remove non-random terms from the [START_REF] Nourdin | Central and noncentral limit theorems for weighted power variations of fractional Brownian motion[END_REF]. To be more precise, we have the following result, where

U H,2 k = V H,2 2 k -V H,2 2 k+1 ; 
and the asymptotic variance is 

σ H = ρ H,1 + 2 ∞ k=1 ρ H,k 1/2 , ρ H,k = E c H s 0,1 -(c H + 1) s 1/2 0 + s 1/2 1/2 + s 1/4 0 + s 1/4 1/4 + s 1/4 1/2 + s 1/4 3/4 × c H s 1 k -(c H + 1) s 1/2 k + s 1/2 k+1/2 +
H min = 1 2 1 + log 2+ -U H,2 k -log 2+ -U H,2 k+1 + z α σ H k V H,2 2 k 2 -k/2 , H max = H min ∨ 1 2 1 + log 2+ -U H,2 k -log 2+ -U H,2 k+1 -z α σ H k V H,2 2 k 2 -k/2 ,
is an asymptotic confidence interval for H of level 1 -α.

Proof. It follows from [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF] that

2 1-2H V H,2 2 k -1 + 2 1-2H V H,2 2 k+1 + V H,2 2 k+2 ≈ a 2 σ H T 2H 2 (1/2-2H)k N (0, 1
). Thus, by Slutsky's theorem, we have the weak convergence

2 k/2 2 1-2H V H,2 2 k -1 + 2 1-2H V H,2 2 k+1 + V H,2 2 k+2 σ H k V H,2 2 k ⇒ N (0, 1), k → ∞, (23) 
whence the result follows.

Now we turn to estimation of b. In order to proceed, we will need another consistent estimator of H. Proposition 3.5. For H ∈ (0, 1/2), the statistic

H (2) k = 1 2 log 2+ U H,2 k U H,2 k+1 + 1 is a consistent estimator of H, moreover, H (2) 
k = H + O P (2 -k/2 ), k → ∞. Remark 3.3. Despite H (2) k
has asymptotically a better rate of approximation that H k for H ∈ (1/4, 1/2), we still do not recommend to use it, as the asymptotic variance is high; it's practically useless for k ≤ 10.

Proof. From [START_REF] Nourdin | Central and noncentral limit theorems for weighted power variations of fractional Brownian motion[END_REF] and [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF] it follows that

U H,2 k ≈ a 2 T 2H 2 1-2H -1 2 k(1-2H) + a 2 T 2H 2 k(1/2-2H) σ H N (0, 1)
with some constant σ H , which is of no importance now. In particular, U H,2 k is eventually negative, and we can write

log 2 (-U H,2 k ) = 2 log 2 a + 2H log 2 T + log 2 1 -2 1-2H + k(1 -2H) + O P (2 -k/2 ). (24) Thus, log 2 U H,2 k U H,2 k+1 = 2H -1 + O P (2 -k/2 ), k → ∞,
whence the assertion follows.
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Now we are able to construct a consistent estimator for b. However, the variance of this estimator is so huge that it is practically useless (see Section 4). Proposition 3.6. For H ∈ (1/4, 1/2) the statistic

b 2 k = 2 1-2 H (2) k V H,2 2 k -V H,2 2 k+1 (2 1-2 H (2) k -1)T is a consistent estimator of b 2 . Proof. Define b 2 k = 2 1-2H V H,2 2 k -V H,2 2 k+1 2 1-2H -1 T . It easily follows from (16) that b 2 k → b 2 , k → ∞. So it is enough to show that b 2 k -b 2 k → 0, k → ∞. To this end, write b 2 k -b 2 = 2 1-2 H (2) k -2 1-2H V H,2 2 k 2 1-2 H (2) k -1 T + T -1 2 1-2H V H,2 2 k -V H,2 2 k+1 2 1-2 H (2) k -1 -1 -2 1-2H -1 -1 .
Obviously, the second term converges to zero. To study the first one, write

2 1-2 H (2) k -2 1-2H V H,2 2 k ∼ -2 2-2H ( H (2) k -H)a 2 T 2H 2 k(1-2H) log 2 = 2 k(1-2H) O P (2 -k/2 ), k → ∞,
whence the consistency of b 2 k follows.

3.1.2. H ∈ (1/2, 3/4)
Now we move to the case H ∈ (1/2, 1). In view of [START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF], both H k and H k converge to 1/2 for H ∈ [1/2, 1), so they are not suitable for estimating H.

In order to estimate H, the trick is to cancel out the first term of asymptotic expansion [START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF]. The most natural way to accomplish this is to consider

U H,2 k := V H,2 2 k -V H,2 2 k+1 = 2 2 k -1 j=0 ∆ 2 k+1 2j M H ∆ 2 k+1 2j+1 M H . ( 25 
)
By [START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF], 

U H,2 k ∼ a 2 T 2H 2 (1-2H)k 1 -2 1-2H , k → ∞ ( 
H (2) k = 1 2 1 - 1 k log 2+ U H,2 k and H (2) k = 1 2 log 2+ U H,2 k U H,2 k+1 + 1
are strongly consistent estimators of the Hurst parameter H.

We will see in Section 4 that H 2 k performs very poorly, and H 2 k performs much better, despite having a worse asymptotic rate of convergence. For the values of H close to 1/2, both estimators are quite poor, and it is better to estimate H by regressing several values of log 2 U H,2 k on k.

Asymptotic confidence intervals for H and consistent estimates for a and b To construct a confidence interval, it is not hard to check (since we are not going to use this result, we will not give a proof) that

2 1-2H U H,2 k -U H,2 k+1 ≈ b 2 T 2 3-4H + 1 2 -k/2-1/2 N (0, 1).
In contrast to the case H ∈ (0, 1/2), where one has to replace H by its estimate, this result can be used immediately to construct asymptotic confidence intervals for H (though one needs to replace b 2 T by V H,2 2 k ). Indeed, one can write

P 2 k/2+1/2 2 1-2H U H,2 k -U H,2 k+1 V H,2 2 k √ 2 3-4H + 1 ∈ [-z α , z α ] → 1 -α, k → ∞, ( 27 
)
where z α is the standard Gaussian (1 -α/2)-quantile. Thus, the construction of asymptotic confidence interval is reduced to solving quadratic inequalities and taking logarithms. Unfortunately, even for such large values as α = 0.1 and k = 20 these confidence intervals are useless: approximation ( 27) is very imprecise, and, what is more dramatic, they usually contain the whole interval (1/2, 3/4). Estimating b is quite straightforward now: it is easy to verify that

b 2 k = T -1 V H,2 2 k
is a consistent estimator b 2 . We did not manage to construct a reasonable variance-based estimator for a. Similar to estimating b in the case H ∈ (0, 1/2), this requires to construct an estimate of H with approximation rate o(k -1 ). However, none of the estimators we presented has this order. One should take a much finer partition for this, moreover, the number of points should be depending on H, which is practically impossible. As we have already mentioned in the beginning of this section, in this case it is impossible to make conclusions about the value of H. In particular, in this case we have

V H,2 n ≈ b 2 T + √ 2b 2 T n -1/2 N (0, 1), so the behaviour of V H,2
n is essentially the same as that of the quadratic power variation of Wiener process

V 2 n = n-1 k=0 (∆ n k W ) 2 .
This confirms that we cannot make any conclusions about H from the asymptotic behaviour of quadratic variation.

Nevertheless, we will study the behaviour of quadratic variation in this case in more detail in order to be able to distinguish between the cases H < 3/4 and H > 3/4 statistically. Define

Z k = 2 k/2 b 2 T U H,2 k . Proposition 3.8. For H ∈ (3/4, 1), the sequence (Z k , Z k+1 , . . . ) converges in distribution as k → ∞ to a sequence (ζ 1 , ζ 2 , . . . ) of independent standard Gaussian variables.
Remark 3.4. We emphasize a sharp contrast with the case H ∈ (1/2, 3/4), where the sequence {Z k , k ≥ 1} has a positive limit in view of (26), hence, it eventually becomes positive. This clearly gives a possibility to distinguish statistically between cases H ∈ (1/2, 3/4) and H ∈ (3/4, 1). (See 4.1.3 for comparative simulations.)

Proof. Define

ξ k = 2 k/2 √ 2T V 2 2 k -T = 2 -k/2 √ 2T 2 k -1 i=0 2 k ∆ 2 k i W 2 -T .
By CLT, ξ k ⇒ N (0, 1), k → ∞, so we need to study the collective behaviour.

To this end, observe that the vector (ξ k , ξ k+1 , . . . , ξ k+m ) can be represented as a sum of independent vectors

(ξ k , ξ k+1 , . . . , ξ k+m ) = 2 k -1 i=0 ζ k,i ,
where the jth coordinate of ζ k,i , j = 0, 1, 2, . . . , m, is

ζ k,i,j = 2 -k/2 √ 2T 2 j -1 l=0 2 2(k+j) ∆ 2 k+j l+i2 j W 2 -T .
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(We simply group terms on the intervals of the partition i2 -k , i = 0, . . . , 2 k .) Therefore, we can apply a vector CLT and deduce that for every m ≥ 0 the vector (ξ k , ξ k+1 , . . . , ξ k+m ) converges in distribution to an (m + 1)-dimensional centered Gaussian vector as k → ∞. Consequently, the sequence (ξ k , ξ k+1 , ξ k+2 , . . . ) converges to a centered stationary Gaussian sequence as k → ∞.

Taking into account the fact that the asymptotic behaviour of V H,2 n and V 2 n is the same (up to the factor b 2 ), we obtain that

Z k = 2 k/2 b 2 T U H,2 k with U H,2 k
is defined in (25), also converges to a centered stationary Gaussian sequence. It is straightforward to check that the limit covariance is that of an i.i.d. standard Gaussian sequence, whence the result follows.

H = 3/4

For H = 3/4, an analogue of Proposition 3.8 can be proved, that is, (Z k , Z k+1 , . . . ) converges in distribution as k → ∞ to a sequence (ζ 1 , ζ 2 , . . . ) of independent Gaussian variables with unit variance. However, since

V 3/4,2 n ≈ b 2 T + a 2 T 3/2 n -1/2 + √ 2b 2 T n -1/2 N (0, 1),
the limiting stationary distribution now has a positive mean, namely,

E [ ζ 1 ] = a 2 b -2 T 1/2 (1 -2 -1/2
). As long as this value depends on how big is a compared to b, we might be unable to distinguish this case from H > 3/4. On the other hand, if b is small relative to a, it might be hard to distinguish this case from H < 3/4.

Statistical estimation using 4th power variation

It was mentioned in the previous section that the performance of quadratic variation estimators in the case H ∈ (1/2, 3/4) is not very satisfactory. One could try to improve it by considering quartic variation of 

M H V H,4 n := n-1 k=0 ∆ n k M H 4 = 4 i=0 4 i a i b 4-i V H,4-i,i n . Theorem 3.1. Statistics H (4) k = - 1 2k log 2+ U H,
H k (a) = k + 2 log 2 a -log 2 V H,2 2 k 2(k -log 2 T )
is a strongly consistent estimator of H.

Using the asymptotic expansion (24), we can construct another estimator of H, which has an asymptotically better rate of convergence, namely, we can define H k (a) as a solution from the interval (0, 1/2) of the equation

log 2 (-U H,2 k ) = 2 log 2 a + 2 H k (a) log 2 T + log 2 1 -2 1-2 H k (a) + k(1 -2 H k (a)).
We can also construct asymptotic confidence interval using the knowledge of a and b; there is no big advantage of this knowledge in the case H ∈ (0, 1/4), but for H ∈ (1/4, 1/2) the asymptotic confidence interval will be better. where

H min (a, b) = 1 2 1 + log 2+ Y k (b) -log 2+ Y k+1 (b) + z α σ H k (a) V H,2 2 k 2 -k/2 , H max (a, b) = H min (a, b) ∨ 1 2 1 + log 2+ Y k (b) -log 2+ Y k+1 (b) -z α σ H k (a) V H,2 2 k 2 -k/2 , Y k (b) = V H,2
2 k -b 2 T. is an asymptotic confidence interval for H of level 1 -α.

Proof. We have

2 1-2H V H,2 2 k -V H,2 2 k+1 ≈ 2 1-2H -1 b 2 T + a 2 T 2H σ H 2 k(1/2-2H
) N (0, 1), therefore by Slutsky's theorem,

2 k/2 2 1-2H V H,2 2 k -V H,2 2 k+1 -2 1-2H -1 b 2 T σ H k (a) V H,2 2 k ⇒ N (0, 1), k → ∞, (29) 
as required. 

H (2) k (a, b) = k + 2 log 2 a -log 2 V H,2 2 k -b 2 T 2(k -log 2 T )
is a strongly consistent estimator of H. The estimator H k underestimates all values of H by around 8 %, which seems a lot for such number of computations. Finally, the relative error of H For sake of completeness, we present some values of estimators for H > 0. We see that the estimators based on the quartic variation are quite useless and definitely worse than those based on the quadratic variation; only the regression estimator is reliable for H close to 0.5. (2) 20 (a), but the advantage of the latter is that it uses only knowledge of a. The confidence intervals are acceptable for H ≤ 0.6 and pretty useless for bigger values.

Proposition 3 . 10 .

 310 Let H ∈ (0, 1/2), a, b are known. The interval [H min (a, b), H max (a, b)],

  for H = 0.35 to 6.25 % for H = 0.4 and 13.2 % for H = 0.05. This hints at a large variance of the estimator H (2) k , which is supported by the following figure. It contains values of estimator H k (lozenges), H k (squares) and H (2) k (triangles), k = 5, . . . , 20, H = 0.3. The values of H (2) k outside [0.1, 0.5] were dropped. It is clearly visible that the performance of H (2) k is better than that of H k , despite the former has asymptotically better rate of convergence to H. imsart-generic ver. 2012/08/31 file: mixedvars-jan13.tex date: January 4, 2013

20 N

 20 parameter H, the values of H range from 0.525 to 0.725 with step 0.025. We also give a "regression" estimator H(4) . It is obtained in the following way: we consider linear regression of {log 2+ U H,4 j , j = m, m + 1, . . . , 20} on {m, m + 1, . . . , 20}, where m = 11, 12, . . . , 17, and take the best regression (in terms of the coefficient of determination). If r(4) is the coefficient of the best linear regression, we set H(4) = -r(4) /2. (N/A means an estimator value outside the theoretical range (/A N/A .5103 .5224 .5303 .5644 N/A N/A .5802 H (4) 20 N/A .6227 .6098 .5736 N/A N/A N/A N/A N/A H(4) .5321 .5606 .6189 .6783 .6378 .7425 N/A N/A N/A

4. 3 .

 3 Estimation when a and b are known 4.3.1. H ∈ (0, 1/2) Below are values of estimators H 20 and H 20 for H from 0.05 to 0.45 with the step 0.05. Since the estimates are very close to the real values, we give a rescaled difference. We

  , b) and H

  ) of Hurst parameter H. The values of H range from 0.525 to 0.725 with step 0.025. We also give 99 % confidence intervals constructed with the help of (30). Starting from H = 0.65, these confidence intervals already contain whole values from 1/2 to 3/4, so we give 80 % confidence intervals (marked by † ). As before, by * we denote the theoretical bound.

  , b) outperforms H

  s

		1/4 k	+ s 1/4 k+1/4 + s 1/4 k+1/2 + s 1/4 k+3/4
	with s h t = B H t+h -B H t	2 , c H = 2 1-2H .
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  In this case the knowledge of a and b allows us we can improve on estimation of H by utilising[START_REF] Mishura | Stochastic calculus for fractional Brownian motion and related processes[END_REF].

	3.3.2. H ∈ (1/2, 3/4)
	Proposition 3.11. If H ∈ (1/2, 3/4) and a, b are known, the statistic

  imsart-generic ver. 2012/08/31 file: mixedvars-jan13.tex date: January 4, 2013 0.05 to 0.5 with step 0.05. For each value of H we also estimate coefficient a, and for H between 0.25 and 0.5 we give value of estimator for b. (N/A means that b 2 20 is negative; * means theoretical value.)We see from the table that the estimator H k has consistently the best performance: the relative error is within 2 % for all values but 0.45, where the relative error is 2.33 %.

	H	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45
	H 20	.046	.092 .1382 .1841 .2302 .276 .3215 .3656 .4054
	H 20	.0509 .1017 .1489 .1993 .2511 .3018 .3525 .407 .4605
	H	(2) 20	.0566 .106 .1449 .1922 .2547 .2919 .3534 .375 .4397
	H min .0448 .0932 .1311 .1768 .2371 .2708 .3269 .335 .3551
	H max .0686 .119	.159	.208 .2728 .3136 .3809 .417	.5 *
	a 20	1.019 1.023 .985	.991 1.014 1.027 1.043 1.135 1.293
	b 20						2.627 N/A 1.823 1.241

  5. 20 of the coefficient b. The values of H range from 0.525 to 0.725 with step 0.025. We also give a "regression" estimator H(2) . It is obtained in the following way: we consider linear regression of {log 2+ U H,2 j , j = m, m+1, . . . , 20} on {m, m + 1, . . . , 20}, where m = 11, 12, . . . , 15, and take the best regression (in terms of the coefficient of determination). If r(2) is the coefficient of the best linear regression, we set H(2) = (1 -r(2) )/2. We do not give values of the estimator a 20 and confidence intervals in view of their poor quality. (In the table, N/A means an estimator value outside the theoretical range (1/2, 3/4).)Below are values of {[10 4 U H,2 k ], k = 11, 12, . . . , 20} for H = 0.7 and H = 0.8. The difference is clearly visible: for H = 0.7 the sequence is positive, while for H = 0.8 there is a plenty of negative values.

	4.2. Estimators based on quartic variation
	H 4.2.1. H ∈ (1/2, 3/4)	0.5	0.6	0.7	0.8	0.9
	H 20 .4353 .4577 .4601 .4603 .4604 The following table contains estimators H
		H 20 .5021 .507 .5027 .4996 .4997
	As expected, the values of H 20 are close to 0.5.
	4.1.2. H ∈ (1/2, 3/4)				
	The following table contains estimators H	(2) 20 and H 20 of Hurst parameter H, (2)
	and estimator b H 0.525 0.55 0.575	0.6	0.625 0.65 0.675	0.7	0.725
	H 20 (2)	.6061 .604 .6096 .627	.639 .6447 .6629 .7013 .6931
	H 20 (2)	N/A .5559 .5341 .6308 N/A N/A .7241 N/A N/A
	H(2) .5668 .5797 .6083 .6041 .6116 N/A N/A N/A N/A
	b 20	1.229 1.123 1.065 1.033 1.017 1.009 1.005 1.002 1.001
	As we can see, when the value of estimator H 20 is greater than .625, it is quite (2) reliable, while other two estimators are not. In other cases H(2) performs slightly
	better.					
	4.1.3. H ∈ (1/2, 3/4)				
		H = 0.7 869 649 523 3 260 18	78	98 53 50
		H = 0.8 665 -620 482 -475 8 -29 -104 -71 -78 -28
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  can see that H 20 has more stable performance, while H 20 has worse (but still very good) quality for H close to 1/2. H min (a, b) .2469 .2972 .3473 .3956 .4457 H max (a, b) .2538 .3037 .3537 .402 .453 We see that the intervals are smaller than those given by (3.4). The picture below illustrates the quality of estimators H k (a) (lozenges) and H k (a) (squares), k = 5, . . . , 20, H = 0.3. imsart-generic ver. 2012/08/31 file: mixedvars-jan13.tex date: January 4, 2013 4.3.2. H ∈ (1/2, 3/4) The following table contains estimators H

	H	0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
	10 5 ( H 20 (a) -H) .66 -2.5 2.3 -1.3 .36	19 190 300 960
	10 5 ( H 20 (a) -H) -220 -22	51	50	-70	60	11	1.1	47
	Further we give asymptotic 99 % confidence intervals for H ∈ [1/4, 1/2) using
	(29).							
	H	0.25	0.3	0.35		0.4	0.45	

  5249 .55004 .57496 .5995 .6262 .6487 .6736 .6927 .712 H .5538 .5547 .5734 .5962 .6336 .6422 .6642 .6701 .683 H min (b) .5203 .539 .5586 .571 .5404 .609 † .5951 † .6251 † .5785 † H max (b) .5301 .557 .5944 .639 .6785 .732 † .75

	(2) 20 (a)

* .75 * .75 * We see that H
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Remark 3.5. Both these estimators are quite poor. Regression of several values of log 2 U H,4 k on k leads to a much better estimator. However, as numerical experiments in Section 4 suggest, it is better to use the quadratic variation based estimators (although they are not apparently very efficient as well).

Remark 3.6. It is clear that (28) also allows to construct approximate confidence intervals for H. One should be careful with the third term in (28): for H ∈ (5/8, 3/4) it is smaller than the Gaussian fluctuation, so can be omitted, while for H ∈ (1/2, 5/8] it does affect a confidence interval. However, a priori a value of H is not known, of course, so in case where the value of estimator is close to 5/8 one should take a partition sufficiently fine in order to determine whether H > 5/8 or not.

Proof. By LLN and CLT,

Using [START_REF] Coeurjolly | Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF], we obtain

Further, from ( 4)

by [START_REF] Coeurjolly | Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study[END_REF] and

by the ergodic theorem and [START_REF] Filatova | Mixed fractional Brownian motion: some related questions for computer network traffic modeling[END_REF]. Collecting all the terms and omitting the terms of lower order, we get

(28) Hence, the assertion follows.

Estimate of Hurst parameter for known a and b

When the scale coefficients a and b are known, the estimation procedure significantly simplifies, and the quality of estimators is improved. Since we already know asymptotic expansions of power variations, we immediately proceed to statistical conclusions.

If only a is known, we can still use (26) to construct an estimator for H. This requires solving a non-linear equation

on the interval (1/2, 3/4).

Knowing coefficient b also allows to construct more efficient confidence intervals (those constructed using ( 27) are pretty useless). Proposition 3.12.

where

Then the required result follows by solving the quadratic inequality for 2 1-2H in

Simulations

In each procedure we take