
HAL Id: hal-01095602
https://hal.science/hal-01095602

Submitted on 15 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inverse rheometry and basal properties inference for
pseudoplastic geophysical flows

Nathan Martin, Jerome Monnier

To cite this version:
Nathan Martin, Jerome Monnier. Inverse rheometry and basal properties inference for pseudo-
plastic geophysical flows. European Journal of Mechanics - B/Fluids, 2015, 50, pp.110 - 126.
�10.1016/j.euromechflu.2014.11.011�. �hal-01095602�

https://hal.science/hal-01095602
https://hal.archives-ouvertes.fr


Inverse rheometry and basal properties inference for pseudoplastic geophysical
flows

N. Martina, J. Monnierb

aCalifornia Institute of Technology’s Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, United States
bMathematics Institute of Toulouse - National Institute for Applied Sciences, 135 Avenue de Rangueil, 31077, Toulouse Cedex 4, France

Abstract

The present work addresses the question of performing inverse rheometry and basal properties inference for pseu-
doplastic gravity-driven free-surface flows at low Reynolds’ number. The modeling of these flows involves several
parameters, such as the rheological ones or the state of the basal boundary (modeling an interface between the base
and the fluid). The issues of inverse rheometry are addressed in a general laboratory flow context using surface ve-
locity data. The inverse characterization of the basal boundary is proposed in a geophysical flow context where the
parameters involved in the empirical effective sliding law are particularly difficult to estimate. Using an accurate
direct and inverse model based on the adjoint method combined with an original efficient solver, sensitivity analyses
and parameter identification are performed for a wide range of flow regimes, defined by the degree of slip and the
non-linearity of the viscous sliding law considered at the bottom.

The first result is the numerical assessment of the passive aspect of the viscosity singularity inherent to a power-
law pseudoplastic (shear-thinning) description in terms of surface velocities. From this result, identification of the
two parameters of the constitutive law, namely the power-law exponent and the consistency, are performed. These
numerical experiments provide, on the one hand, a very robust identification of the power-law exponent, even for
very noisy surface velocity observations and on the other hand, a strong equifinality problem on the identification
of the consistency. This parameter has a minor influence on the flow, in terms of surface velocities. Typically for
temperature-dependent geophysical fluids, a law describing a priori its spatial variability is then sufficient (e.g. based
on a temperature vertical profile).

This study then focuses on the basal properties interacting with the fluid rheology. An accurate joint identification of
the scalar valued triple (n,m; β) (respectively the rheological exponent, the non linear friction exponent and the friction
coefficient) is achieved for any degree of slip, allowing to completely infer the flow regime. Next, in a geophysical
flow context, identifications of a spatially varying friction coefficient are performed for various perturbed bedrock
topography. The (2D-vertical) results demonstrates a severely ill-posed problem that allows to compute a given set of
surface velocity data with different topography/friction pairs.

1. Introduction

Power-law fluids represent a wide category of mate-
rials in the range of shear rates to which the coefficients
were fitted. Pseudoplastic fluids designate fluids pre-
senting a shear-thinning behavior, modeled by a power-
law constitutive law (e.g. polymer solutions, ice, blood
etc) which expresses the relationship between the devi-
atoric stress tensor S and the strain-rate tensor D as (see
also Section 2.1):

S = 2η0‖D‖
1−n

n
F D (1)

The power-law type description leads to focus on the

two undetermined parameters of such a law which are
the exponent of the law n (scalar value) and the rate
factor or consistency η0 (possibly spatially distributed)
which are generally hard to estimate in a real context
and difficult to measure experimentally (see e.g. [1]).
In a geophysical context, these fluids involve gravity-
driven mass movements and are generally treated as flu-
ids flowing down a slope (see e.g. [2]). They show a
complex and non uniform rheology and have a strong
dependency on their basal properties, possibly in rela-
tion with their rheology. The basal properties mainly
involve the modeling of a basal slip through a (possibly
non-linear) viscous empirical effective sliding law. The
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sliding law is itself a model. It expresses the relation-
ship between the basal shear σnt and the basal velocity
u · t as (see also Section 2.1):

|σnt|
m−1σnt = βu · t (2)

It includes a friction parameter β which is hard to
directly estimate and an exponent m describing the
nonlinear response of the subglacial material on which
the sliding occurs. It is in this context that the possi-
bility of inferring these quantities (and consequently
the model they describe) through inverse modeling
becomes essential.

In the case of scalar valued parameters, the identi-
fication of rheological components formulated as an
inverse problem (thus using a direct differentiation of
the problem) has been treated in an industrial context
(particularly metal forming), adapted to particular
experimental setups only. Following this type of ap-
proach, identification of rheological parameters based
on cross-section velocity measurements can be found
in [3, 4]. A similar approach using measurement of
a pressure drop is proposed by [5]. In [6], attention
is also payed to the identification of a scalar friction
parameter.

The present study aims to perform inverse rheometry
in a more general context, hence applicable to broader
experimental setups. In addition, the present study
focus on geophysical flows whose characteristics
are: uniqueness of a given situation (compared to
reproducible laboratory experiments), velocity obser-
vation generally limited to the surface and a possible
strong influence of an unknown and unmeasurable
basal slip modeling an heterogeneous basal interface
non linearly interacting with the bed and the flow.
We focus hereafter on a pseudoplastic representative
geophysical examples which is ice flows. In ice flows
modeling, the power-law model firstly presented in [7]
is well admitted; while its temperature and shear rate
dependency is still a matter of debate (see e.g. [8], [9]).
The coupling with thermal physics also occurs in the
definition of the consistency.
For instance, the present equations are also suited for
modeling lava flows. In this case, the question of
the power-law index value is still under debate and
has been widely discussed but the literature generally
agrees on a pseudoplastic (shear-thinning) behavior of
the magma with possible dependency of this exponent
on temperature and/or crystal concentration (see e.g.
[10]).

The present studies are mainly led in this geophysical
fluid flow context, but the method and the results, when
mentioned, can be extended to general experimentally
controlled flows in laboratory experiments. Also, the
model and methods developed here are also valid
for dilatant (shear-thickening) fluids but has not been
numerically explored.

If the fluid flow present basal slip, the latter becomes
a major component of its modeling. Thus, investiga-
tions regarding the physical components and relevant
parameterizations introduced in the (empirical effective)
friction law are of primal importance.

In the case of ice and lava, different laws are used
to evaluate this parameter but a common description
is to consider an Arrhenius-type law including ap-
propriate physical considerations, see e.g. [8] for ice
and [11] for magma. In glaciology, the basal friction
law models the subglacial water pressure, underlying
non linear till, surface roughness, geothermal heat
flux etc, see eg [8]. The identification of the basal
friction coefficient and the consistency in glaciers
models using a variational approach became quite
common recently but considering the ice viscosity to
be independent of the velocity in the "adjoint model"
derivation, hence simplifying greatly the inverse model
but leading to the computation of an incorrect gradient.
The continuous adjoint model in the glaciological
context, with nonlinear basal slip, can be found in
[12]. In other respect, the question of basal properties
characterization through surface velocity observations
using the present variational approach is studied in [13].

In a computational point of view, the present study is
based on a second-order forward and adjoint solution
for the power-law Stokes problem. The forward prob-
lem, written as a four-field saddle point formulation
of the power-law Stokes problem, is discretized with
three-field finite elements and solved using a splitting
technique and an augmented Lagrangian approach
(providing large cpu-time saving, see [14]). The adjoint
problem is solved using source-to-source automatic
differentiation of the augmented Lagrangian algorithm.
The newly obtained adjoint solver provides a second
order accuracy gradient, efficiently computed and with
low memory needs. Ratios of four (4) in cpu-time and
memory consumption are assessed, compared to the
differentiation of a classical fixed-point based solver.
We refer to [13] for the technical method to assess the
gradient accuracy.
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In any case, what can be obtained from an inverse
approach is strongly related with the type and quality of
available data. This study focuses on the use of surface
horizontal velocity data (generally the most dense
and accurate data in the present geophysical context,
see e.g. [15]) to constrain the rheology and the basal
properties of this type of flow depending on the flow
regime. All the numerical experiments are designed
according to the bounds in terms of basal variability
transmission to the surface assessed in [13]. The
experiments are carried out on steady state geometries
of the free-surface gravity-driven flows.

As a preliminary issue, this study numerically
address the role of the well-known viscosity singularity
at the surface (i.e. at vanishing shear-rate) in the
power-law shear-thinning constitutive law, in an inverse
context, relying on surface velocity observations. As
a matter of fact, this singularity might lead to an
ill-posed direct problem if a free-surface is considered
as pointed out in [16]. For different sliding regimes,
sensitivity analysis demonstrate that the refinement
of the mesh close to the surface, while leading to the
appearance of a stiff (very high viscosity) layer, does
not affect the solution and that the viscosity singularity
remains passive in the model confirming numerically
the analysis done in [17].

From this result, numerical experiments of virtual
rheometry are carried out. Identifications of the
scalar power-law exponent first, and then sensitivity
analysis and identification of the spatially distributed
consistency are performed. The identification of the
power-law exponent proves to be extremely robust
(providing a highly accurate identification for a 50%
noise on the data), regardless of the flow regime. Con-
versely, the identification of a temperature-dependent
consistency is a severely ill-posed problem, even
with very good prior physical intuitions introduced in
the initial guess and the regularization term, leading
to a strong equifinality issue. We conclude that the
consistency has a negligible role in the model in the
bulk and that a trustworthy modeling a priori of the
temperature-dependency is sufficient.

Based on this result, we then perform identifications
of the scalar-valued triple (n,m; β) (respectively the
power-law exponent, the friction law exponent and the
friction coefficient) for all situations of sliding (from
strong friction to high sliding). The results are fully
conclusive allowing to accurately infer these three
scalar quantities and therefore the regime of the flow,

based only on surface velocity observations.

The final step is to identify (typically using the scalar
identification as a very good initial guess) a spatially
varying friction coefficient β. The numerical experiment
is designed in order to explore the typical regimes of
sliding of an ice-stream flow (from medium friction to
very rapid sliding), with relevent length scales for the
basal variability chosen following [13]. Based on a ref-
erence simulation, representing a “true state”, simula-
tions on randomly perturbed bedrock topographies are
performed. The main result is the fact that the inferred
friction coefficient completely depends on the topogra-
phy in order to produce a given set of surface velocity
data. This final result point a strong equifinality prob-
lem for the topography/friction pair and raises a ques-
tion on how it affects the predictive capabilities of ice
flow models since the most poorly observed data is the
bedrock topography.

2. Forward Model

In this section we present the key aspects of the fluid
model considered in the present study and its numerical
approximation.

2.1. Continuous Model
The flow is assumed to be 2D vertical (in (x, z) co-

ordinates); it is modelled as an incompressible viscous
fluid in a time moving domain Ωt open, bounded and
connected in R2 with boundary ∂Ω (assumed to be
Lipschitz). The momentum balance is described us-
ing the incompressible Navier-Stokes equation with low
Reynolds approximation, thus by the so-called Stokes
equation. The flow is driven by the gravity source term.
The forward model equations are:

−div(σ) = ρg in Ωt (3)

div(u) = 0 in Ωt (4)

where u = (ux(x, z, t), uz(x, z, t)) ∀(x, z) ∈ Ωt, t ∈
[0,T ] denotes the velocity, σ the Cauchy stress tensor,
ρ the fluid density, g the gravity and Ωt is the domain at
time t. The stress tensor σ is decomposed as:

σ = −pId + S (5)

where S is the deviatoric (or extra) stress tensor, p the
pressure and Id the unit tensor. The non Newtonian vis-
cous behavior is described by a viscoplastic constitutive
law that relates the stress tensor to the strain-rate tensor.
A power-law model, first proposed by Ostwald in 1925
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Figure 1: Typical geometry of the free-surface geophysical flow con-
sidered. Notations of the geometry and the boundary conditions.
Schematic representation of the inverse problem where us and ub des-
ignates surface velocity and basal velocity respectively and uobs

s des-
ignates isolated surface velocity measurements. The control variables
are represented in bold red as well as the typical cost function and are
β, m, n and η0 (see end of Section 3.2).

(see e.g. [18]), is considered hereafter. It follows that
the deviatoric tensor S is written as:

S = 2η(u)D with η(u) = η0‖D‖
1−n

n
F (6)

where η is the apparent viscosity, D = 1
2 (∇u +∇uT ) the

strain-rate tensor, n the power-law index and the consis-
tency η0 (also called rate or creep factor in glaciology)
is a dimensional constant which can depend on the state
of the considered fluid (typically the temperature). The
Frobenius matrix norm ‖ · ‖F usually called the shear-
rate is defined by:

‖D‖F =

√
1
2

tr(D DT ) = γ̇ (7)

A typical domain is represented in Figure 1. The
surface Γs, considered to be the graph of a function
h(x, t), is a free surface moving in time. The boundary
∂Ω is divided as follows: Γs is the moving surface (free
surface), Γb is the bottom surface, Γl and Γr are lateral
open boundaries.

The free surface dynamic is described by the follow-
ing 1D transport equation:

∂th + ux∂xh = a + uz on Γs × [0,T ] (8)

with a modelling a mass balance source term.

Boundary conditions.
We introduce (t,n), the normal-tangent pair of unit

vectors such that:

σ = (σ ·n)n + (σ · t)t (9)

with:

σ ·n = σnnn + σntt , σ · t = σtnn + σttt (10)

On the top surface Γs we consider a traction-free
boundary condition while given stress or Dirichlet con-
ditions can be prescribed on the lateral boundaries Γl

and Γr. The boundary Γb is splitted into an homoge-
neous Dirichlet area Γad and a friction (or sliding) area
Γ f r. The friction/sliding law on Γ f r is a power-law type
law (also known as Weertman law, see e.g. [8]) given
by:

|σnt|
m−1σnt = βu · t on Γ f r, u ·n = 0 on Γ f r (11)

where m is the stress exponent and β is the friction
coefficient. This viscous friction (or sliding) law is
an entire model itself as it can represent bedrock
heterogeneities, material properties change, an unclear
interface, etc. Typically, in glaciology it aims to
model the non-linear rheology of a subglacial sediment
layer (through a parameter m > 1) and the water
pressure from underlying hydrology (typically setting
β = kNq, q ≥ 1 and N = ρgh − Pwater the effective
pressure).

Also, there is no consensus on the value of m (or q)
a classical choice for ice-streams flows consists to set
m = 3, (and q = 1, see e.g. [8]). In a nutshell, the fric-
tion coefficient β is a priori non uniform and depends on
various quantities (bedrock roughness, subglacial water
pressure, sediment properties, etc) and requires to be ac-
curately calibrated. The last section of the present paper
focuses on this question.

The boundary conditions on the lateral boundaries
are as follows. At inflow, we impose the vertical
velocity profile as the shallow power-law uniform
solution, see e.g. [19]; a lithostatic pressure is imposed
at the outflow boundary. The boundary conditions
on the lateral boundaries are as follow;. at inflow,
we impose the vertical velocity profile as the shallow
power-law uniform solution, see e.g. [20, 19]; at
outflow, a lithostatic pressure is imposed.

2.2. Numerical solution of the forward problem

The numerical solution of the forward model (3)-(4)
is obtained using the four field finite element scheme, of
order two in space, and the augmented Lagrangian type
algorithm detailed in [14]. Such a formulation arises
when applying a splitting technique on a minimal dis-
sipation form of the corresponding variational problem.
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The splitting, by introducing the strain-rate tensor D as
an unknown, allows the linear part and the non linear
part of the governing equations to be solved sequen-
tially. This algorithm provides important cpu-time sav-
ing compared to a classical fixed point approach as well
as memory saving (which becomes important for solv-
ing the adjoint problem, as in Section 3). This formula-
tion requires a three-field finite element discretization in
order to handle the tensorial unknowns D and S in addi-
tion to the vectorial unknown u and the scalar unknown
p (see [21]). We refer to [14] and references therein
for a complete assessement of this accurate and robust
second order finite element scheme.

Free surface dynamic. Recall that Γs is supposed to be
the graph of a function h(x, t), an Arbitrary Lagrangian
Eulerian (ALE) formulation is adopted for the treatment
of its dynamic. The mesh velocity is computed from the
solution of an elastic problem or from a vertical homo-
thety if appropriate. Equation (8) is solved using the
characteristics method; it gives:

∂th + ux∂xh =
dh
dt

∣∣∣∣∣
χ

= a + uz, RHS given (12)

where χ denotes the characteristic curves. Then for each
node, we obtain a Cauchy problem which can be solved
using classical schemes (here Euler or Runge-Kutta or-
der 2). In the present study, inverse rheological ques-
tions are investigated and the numerical experiments are
only performed on steady state situations. The steady-
state state is obtained by running in time the free-surface
model until the average relative normal velocity (dis-
crete 1-norm) at the vertices is lower than 10−4 and the
relative variation of volume is lower than 10−5.

Figure 2: Four-field FEM implemented: extended Taylor-Hood mixed
finite elements corresponding to a P2 continuous velocity, P1 contin-
uous pressure and P1 discontinuous strain rate and deviatoric stress
tensors.

3. Inverse model

This section briefly describes the adjoint-based
method used in the present work to investigate inverse

questions (sensitivities, data assimilation - identi-
fication). The resulting numerical tool is accurate
since gradients are of second order. Furthermore it is
efficiently computed since based on the newly obtained
differentiation of the four-field finite element solver
presented previously.

3.1. Cost function and optimization problem

The output of the model is represented by the cost
function j (a scalar valued function) which depends on
the parameters k of the model. Given velocity observa-
tions denoted uobs, we define the cost function j which
measures the discrepancy between the computed vari-
able (state of the system) and the available data at a
given time. Extra terms can be added to the definition of
the cost function to include n a priori on the physics of
the control variables and/or a regularization of the opti-
mization problem:

j(k) =

∫
‖Cuobs − u(k)‖22 dx + regularization terms

(13)
where u is the computed velocity of the system and

C is the observation operator.
The optimization problem writes:

min
k

j(k) (14)

This minimization problem is solved numerically by
the quasi-Newton local descent algorithm L-BFGS im-
plemented in the M1QN3 routine (see [22]). To do so,
the gradient of j has to be computed. The corresponding
procedure is described hereafter.

3.2. Adjoint model and gradient accuracy

The cost function gradient is deduced from the
adjoint code of the forward direct code. The direct
code, solving the power-law Stokes problem at order
two in space, is written in Fortran 95. The development
of the sensitivity and parameter identification modules
are part of the DassFlow project which was originally
designed for shallow-water models, see [23, 24, 25].
The present code, called DassFlow-Ice (or DassIce),
has been developed during the PhD of the first author
(see [26]) and is publicly available (see [27]).

There exists three approaches in order to obtain a
solution algorithm of the adjoint problem. The most
natural one called continuous appproach consists in
analytically derive the continuous adjoint model and
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then discretized it with any appropriate numerical
scheme. The main difficulty of this approach lies in the
potentially difficult analytical derivation, sometimes
requiring some simplifying assumptions to be achieved.
Conversely, the discrete approach consists in deriving
the adjoint model of the discrete formulation of the
forward model. This method ensure a good consistency
between the forward and the adjoint discrete models.

In DassFlow software, the adjoint model is obtained
by using algorithmic differentiation of the source code
(which is a particular case of the discrete approach).
The principle of algorithmic differentiation is based on
the idea that any numerical program is a sequence of
elementary operations that can be analytically derived
with the usual derivation rules.

Let us consider the forward code as an operatorM :
Rn → Rs that computes for a set of input parameters
k ∈ Rn, an output vector Y ∈ Rs. One denotes by mk

an elementary operation and by Xk−1 the value of the
variables at step k. If one includes the control vector k
in the global set of variables for the program (k ⊂ X0) ,
one can write:

Y =M(k) = mp(Xp−1) ◦mp−1(Xp−2) ◦ ... ◦m1(X0) (15)

The Jacobian matrix ofM is then given by:

∂M

∂k
(k) = m′p(Xp − 1)×m′p−1(Xp−2)× ...×m′1(X0) (16)

where m′k are the Jacobian matrices associated to the
elementary operations mk.

Tangent mode. In practice the Jacobian matrix (16) is
too complicated to be computed and to heavy to be
stored in memory. However one can compute a direc-
tional derivative associated to a given direction δk:

∂M

∂k
(k) · δk = m′p(Xp − 1)×m′p−1(Xp−2)×...×m′1(X0) · δk

(17)
where the computation is performed from the right to
the left by simple matrix-vector products. This method
leads to obtain the linear tangent model by algorithmic
differentiation.

Reverse mode. The remaining issue is that the linear
tangent model is not appropriate to compute the gradient
since it requires s integrations (for a solution vector in
Rs). Automatic differentiation in reverse mode allows
to compute the scalar product between the transposed

of the Jacobian matrix (i.e. the adjoint model) and a
vector Ỹ:(
∂M

∂k
(k)

)
· Ỹ = m′T1 (X0) × m′T2 (X1) × ... × m′Tp (Xp−1) · Ỹ

(18)
This expression is also computed from the right to

the left by a sequence of matrix-vector product.

The automatic differentiation approach ensures a
better consistency between the computed cost function
and its gradient and a high accuracy of the computed
gradient, since it is the computed cost function that is
differentiated. A large part of this extensive task can be
automated using automatic differentiation (see [28]).

The linear solver used is MUMPS ([29]) and the
differentiation of the linear system solving process is
achieved using a “bypass” approach which considers the
linear solver as an unknown black-box (see [13]).

The adjoint code is derived using the automatic
differentiation tool Tapenade (see [30]).

Let us notice that the continuous exact adjoint system
of the power-law Stokes equations is presented in [31]
for a general optimal control framework and in [13]
for the problem with a nonlinear friction boundary
condition (treated in the present work).

A single integration of the forward model (3)-(4)
followed by a single integration of the adjoint model
allow to compute all components of the gradient of
the cost function. The computed gradient has been
validated against order two finite differences and is
adjustable in precision (from the fully incomplete
gradient corresponding to the so called “self-adjoint”
method in the glaciology community, to the exact order
two accurate gradient) providing time and memory
saving for an identical precision (see [13, 14]).

We consider in the following, as control variables,
the two parameters of the rheological law which are the
consistency η0 and the power-law exponent n (see (6))
and the two parameters of the friction law which are
the friction coefficient β and the exponent m (see (11)).
Therefore, we set k = (n, η0) and we write the total dif-
ferential d j of the cost function j as follows:

d j(k) =
∂ j
∂η0

(k) · δη0 +
∂ j
∂n (k) · δn +

∂ j
∂β

(k) · δβ +
∂ j
∂m (k) · δm

(19)
The output of the adjoint code corresponds to the partial
derivatives of the cost function j with respect to the
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chosen control variables.

Every variable in the control vector is only a potential
control variable. In practice, it is possible to identify
only a few of them simultaneously.

3.3. Local Sensitivity Analysis

Let us consider s parameters to be controlled i.e. k
is a vector value of size s. Then, the s gradient value
components, j′(k) = ( ∂ j

∂ki
)1≤i≤s, give the sensitivity of

the output function j with respect to the ith control com-
ponent, at the point k.
The sensitivity analysis allows to study how perturba-
tions on the input parameters of a model lead to a per-
turbed output. The use of an adjoint model provides a
local sensitivity analysis around a given point by com-
puting the Fréchet derivative of the cost function j (e.g.
defined by (13)) with respect to the control variables
k. This sensitivity analysis tool is an important fea-
ture which provides a better understanding of both the
physics and the model by quantifying the roles of the
various physical parameters and the influences of pa-
rameter variations on the behavior of the system. Since
control parameters can be spatially distributed, the re-
sults can be sensitivity maps (e.g. sensitivity maps with
respect to the consistency η0).

3.4. Data Assimilation and Twin Experiments

The main goal of the present article is to investigate
the sensitivities and inference capabilities of a varia-
tional method for geophysical free-surface flows with
a power-law rheology, with respect to the rheological
parameters and the basal properties. To do so, we
design in next sections fully representative flows in
term of regimes, and twin experiments including
realistic noised surface observations are performed.

Twin experiments are defined as follows. The refer-
ence parameters of the model kre f are used to generate
observations uobs. Then, the goal is to retrieve the set of
parameters kre f starting from an initial guess k , kre f

using the minimization of the cost function j. In order
to avoid the so called inverse crime and to simulate re-
alistic situations, a random Gaussian noise is added to
the synthetic data obtained from the numerical model.

3.5. On the efficiency of the adjoint solution based on
the four-field finite element solver LA

Since the adjoint code is obtained from source-
to-source automatic differentiation of the forward

code, the performances of the adjoint computation are
strongly linked to the algorithm considered for the
solution of the forward problem. In the present case,
automatic differentiation has been applied to the imple-
mentation of the augmented Lagrangian type algorithm
called LA. It is described and assessed in details in [14].

The automatic differentiation of an iterative proce-
dure is handled using a reverse accumulation technique.
It consists in computing a partial derivative associated
to each state encountered by the forward solver. The
final adjoint state is then computed as the sum of the
partial derivatives (as a consequence of the chain rule).
This process a priori requires to store as many states
of the system as iterations performed by the forward
solver to reach the converged state. We address [13] for
a comprehensive description of this approach.

This procedure applied to LA algorithm allows very
good performances to be obtained compared to the
derivation of a fixed point type algorithm. Firstly, an
important time-saving is obtained according to the
time-saving provided by LA algorithm for the solving
of the forward problem. Secondly, the splitting consid-
ered in LA algorithm implies that the Stokes system is
not modified along the iterations. It therefore requires
only one factorized Stokes stiffness matrix to be
stored. The non-linear tensor equation, discretized on
a discontinuous finite element basis, is block-diagonal
and therefore solved along the assembly. It follows that
no storage of this matrix is required.

The present implementation allows to obtain for the
complete solution (i.e. the forward solution plus the
adjoint solution), compared to the fixed point approach
used in [13], on a mesh of 300 000 elements, a cpu-time
ratio of 5 and a memory ratio of 4 . These ratios are
smaller than one can expect, based on the ratio obtained
for a single forward solve, due to a non-robust behavior
of the Newton algorithm used to solve a non-linear
scalar equation on the norm of the strain-rate within
the algorithm (see [14]). The use of a more robust
algorithm could allow to significantly improve these
ratios.

In other respect, technical adjustements in terms of
checkpointing can provide, using more memory, a better
cpu ratio.
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4. Assessment of the inverse numerical model: sur-
face observations and near-surface singularity

4.1. Issue addressed

The power-law form is an empirical fit to laboratory
and field data within a finite shear rate range. But, this
law leads to an infinite viscosity singularity for van-
ishing shear-rates (in the shear-thinning case, n > 1,
see equation (6)). In other respect, it has been demon-
strated that this singularity might lead to an ill-posed
direct problem if a free-surface is considered (see [16]).

In a geophysical fluid flows context, measurements
of rheological parameters are difficult and may depend
on the experimental setup, the shear-rate range and, for
fluid such as ice or lava, on the temperature (see [8],
[11], [32]). For instance, the laboratory conditions will
generally differ from the field. It follows that the values
for both the power-law exponent n and the consistency
η0 are not clearly established.

In the glaciology context, and concerning the infinite
viscosity singularity at the free-surface, in [33] for
example, the author proposes a regularization at low
shear-rate by adding a constant (i.e. a Newtonian
threshold). In [17] the authors consider the Glen’s
power-law (without low shear rate regularization and
using n = 3), a locally perturbated topography (around
a mean slope) and a friction condition at the bottom.
Using shallow asymptotic expansions (i.e. with respect
to the aspect ratio ε) and matching techniques between
the near-surface layer and the "bulk" solution (far from
the free surface), the authors give explicit expressions
of the stress components and velocity fields at the free
surface. At the leading order (first order in ε), the stress
components σxx, σxz are unphysically singular. They
show that the singularity appears in a boundary layer of
size O(ε1/3), which might not be negligible in practice.

The authors show nonetheless that at first order in
ε, the singular solution remains "passive", in the sense
that the free-surface geometry may not be changed
because of the presence of the boundary layer. In other
words, for shear-thinning shallow flows, one should
be able to infer basal behavior from surface velocities,
using a power-law model without any (non physical)
regularization at low shear rate.

Since surface velocities may be used to invert the
fluid properties studied, since all inversions on the
considered geophysical flows are based on surface ob-
servations, it seems to be relevant to assess the present
inverse approach inferring capabilities "through" this

singular boundary layer. It is what we propose to
numerically assess in the experiments below.

4.2. Methodology of investigation
In order to address this question, given horizontal

surface velocity observations, we compute sensitivities
with respect to a locally defined power-law exponent n.
It means that the solving of the adjoint code provides a
gradient of the cost function with respect to n around a
constant value n = 3.

Test case design. We consider the flow occuring in a
non uniform slab with a perturbated sinusoidal bottom.
The shape of the bottom is built as a carrier sinusoidal
function b0 perturbed with two higher frequencies b1
and b2. The carrier wave has an amplitude a0 = 2/5h̄
with h̄ = 1000m the average thickness and the two
perturbations have an amplitude a1 = a2 = 1/5h̄. The
frequency of the carrier wave is f0 = 5h̄ and the two
perturbations have frequencies f1 = 2h̄ and f2 = h̄.
This topography has been built according to the results
given in [13] providing the fact that, using dense
surface velocity observations with a 1% noise, the basal
variability frequency transmits to the surface up to two
thicknesses; higher frequencies does not a priori affect
the surface. The computational domain presents an
aspect ratio of 1/10 on a 2% slope. The inflow on the
left boundary is given by the analytical Poiseuille type
solution of the power-law uniform stationnary flow
(see e.g. [13]). The boundary condition at outflow is a
prescribed lithostatic (ice) pressure. The simulation is
run in time until a steady state is reached. The resulting
stationnary free-surface flow is thus obtained.

Considered flow regimes. Two different regimes are
considered in the following sensitivity experiments cor-
responding to a low sliding and a rapid sliding at the
bottom. The level of sliding is defined using the slip
ratio r which quantifies the relative contributions of the
viscous deformation and the sliding on the surface ve-
locities. It is defined by:

r =
ūb

ūs − ūb
(20)

where ūb and ūs represent respectively the average
velocity at the bottom and the surface. In what follows,
the low sliding case corresponds to an average slip
ratio rl = 0.05 which leads to surface velocities of
1m/y (meter per year) to 10m/y typical of an ice
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sheet regime; 95% the surface velocity comes from
the viscous deformation of the ice. The rapid sliding
case corresponds to an average slip ratio rr = 20
which leads to surface velocities of 50m/y to 500m/y
typical of an ice stream regime; 95% of the surface
velocity comes from the basal sliding. A linear sliding
law, corresponding to m = 1, m defined by (11), is
considered. Surface velocity data uobs

s are generated
for these two situations and a cost function is defined as:

j(n) =

∫
Γs

‖us(n) − uobs
s ‖

2
2 dx (21)

The approximation of a near-surface singularity is
assessed using two different meshes; an isotropic one
and mesh refined at the surface. The surface refinement
allows to converge to the singularity as the size of the
element goes to zero. Hereafter, a “boundary layer” of
1/5 of the average thickness h̄ is discretized with an
element size ratio of 10 compared to the elements in the
bulk.

4.3. Numerical results
Figures 3 and 5 plot the resulting sensitivity of the

model with respect to the power-law index n defined
by element ∂ j/∂n(uobs, n0) using the cost function (21)
for both meshes and the two different flow regimes
(r = 0.05 and r = 20 respectively). The corresponding
shear-rates γ̇ (see equation (7)) are plotted in Figures
4 and 6 for both slip ratios. It highlights the strong
yet varying correlation between γ̇ and the computed
gradient.

In all the following plots, the bounds of the colorbars
have been modified to match one another in order
for the figures to be compared. The values displayed
under the color bars as min and max give the original
bounds of the plotted field. Plots have been cut on
the sides to remove the sensitivity values close to the
lateral boundaries, particularly the Dirichlet boundary
Γl, which are not representative of the variations sought
since the lateral boundary conditions are fixed.

Analysis of the low sliding case (r = 0.05). The case
of strong friction at the bottom shows a relatively
layered repartition of the sensitivity ∂ j/∂n from high
at the bottom to low at the surface for both meshes
(see Figures 3(a) and 3(b)). These sensitivity maps
are strongly related to the shear-rate fields which are
naturally decreasing from the bottom to the surface

(a) Isotropic mesh

(b) Near-surface refined mesh

Figure 3: Slip-ratio r = 0.05: Local sensitivity ∂ j/∂n computed
around a state n0 = 2.25 using observations uobs obtained with n = 3.
The color scale is logarithmic. The gradient values, constant by ele-
ment, have been normalized by the area of their element in order to
remove the weight the element size induces (which is a normal feature
in an optimization perspective but prevents from drawing a readable
sensitivity map on an anisotropic mesh).

(a) Isotropic mesh

(b) Near-surface refined mesh

Figure 4: Slip ratio r = 0.05: Computed shear-rate γ̇ for the observed
state (with n = 3) in s−1. The color scale is logarithmic.

(due to the strong friction condition which induces a
non-linear Poiseuille flow, see Figures 4(a) and 4(b)).
The mesh refinement at the surface approximates
the infinite viscosity but the discretization induces a
cut-off on the shear-rate that depends on the size of the
elements. The convergence to the viscosity singularity
is clear since the minimum shear-rate obtained on the
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(a) Isotropic mesh

(b) Near-surface refined mesh

Figure 5: Slip-ratio r = 20: Local sensitivity ∂ j/∂n computed around
a state n0 = 2.25 using observations uobs obtained with n = 3. The
color scale is logarithmic. The gradient values, constant by element,
have been normalized by the area of their element in order to remove
the weight the element size induces (which is a normal feature in an
optimization perspective but prevents from drawing a readable sensi-
tivity map on an anisotropic mesh.

(a) Isotropic mesh

(b) Near-surface refined mesh

Figure 6: Slip ratio r = 20: Computed shear-rate γ̇ for the observed
state (with n = 3) in s−1. The color scale is logarithmic.

refined mesh is much smaller than the one obtained on
the isotropic mesh. However, both the gradient and the
shear-rate distribution look identical for both meshes.
It follows that a good convergence of the solution was
achieved on the coarser mesh and that the refinement of
the singularity does not affect the solution. In particular,
the singularity remained passive in terms of normal

surface velocities in the transient simulation since the
steady state free surfaces are identical for both meshes.

Analysis of the rapid sliding case (r = 20). In the
case of rapid sliding (Figure 5 and 6), the correlation
between the shear-rate and the sensitivity is less clear.
The presence of a rapid sliding allows high shear
rates to develop close to the surface and the layered
repartition of the shear-rate (from high shear-rate at
the bottom to low shear-rate at the surface) observed
for low sliding is no longer observable. Alongside this
aspect, the sensitivities ∂ j/∂n show non trivial low
sensitivity zone in highly sheared area.

However, as well as the case of low sliding, both
meshes show an identical result for the sensitivities
∂ j/∂n. The refined boundary layer does not affect the
sensitivity map leading to the same conclusions on the
role of the singularity. We point out that the higher
absolute values for the gradients in the case of rapid
sliding, compared to the low sliding case, are only due
to higher surface velocities and therefore a higher misfit.

The observed independance of the solution and the
gradient with respect to the power-law exponent to the
surface velocities numerically assess the robustness of
such data to the viscosity singularity.

Based on these results, the next sections focus on the
inference of the rheology and basal properties of this
type of flow based on surface velocity observations.

5. Virtual Rheometry: constant power-law expo-
nent identification

The present identification is performed on a radar-
sensed topography of an ice flow with a complex
bottom shape but the results can be extended to general
experimentally controlled flows with simpler bottoms.

The computational domain considered is built from
the radar-sensed topography and bedrock of the Mertz
ice-tongue in East Antarctica measured along a flowline
(American program ICECAP 2010, see [34]). It is
plotted in Figure 7. The present study focuses on the
grounded part of the glacier which has an average
thickness of 1km. The simulation is identical (in terms
of boundary conditions) to the one presented in Section
4.2. the friction coefficient β is adjusted accordingly
to the two flow regimes (corresponding to average slip
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Figure 7: Vertical cut of the outlet glacier Mertz, Antarctica (topography profile from ICECAP 2010 within Ice bridge, provided by B. Legrésy,
LEGOS, France), x-scale = 2/5. The norm of the velocity is plotted in the low sliding case (r = 0.05). The mesh is made of 4000 triangular cells
on approximatively 10 layers.

ratios r = 0.05 and r = 20).

From the results of the previous section, considering
the reliability of surface velocity observations, we
propose hereafter to use the data assimilation as a
complementary numerical tool to support rheometrical
investigations of power-law fluids such as laboratory
measurements (see e.g. [32]) or estimation from real
context data (see e.g. [35]).

We then present identification results of the scalar
valued power-law exponent n using noisy synthetic data.
These numerical experiments lead to what can be called
a virtual rheometer. The cost function is defined by:

j(n) =

∫ ∥∥∥us(n) − uobs
s (nt)

∥∥∥2
2 dx (22)

Since a scalar value is identified, there is no need
for regularization. Likewise, the adjoint model is
unnecessary for identifying a scalar value but is used
anyway.

Two data sets with Gaussian noise of 10% and 50%
are considered for the experiments. For both data
sets, the decreasing of cost and gradient as well as the
evolution of the power-law index value along the data
assimilation process are plotted in Figure 8 for the case
r = 0.05 using as a first guess n0 = 1. The case of
rapid sliding (r = 20) provides identical results and is
consequently not plotted.

Firstly, the almost linear decreasing of cost and gra-
dient (on a logarithmic scale) for each situation demon-
strates the robustness of the identification of a scalar
value. What is also of importance is the extremely large
decreasing of the gradient. As a matter of fact, the gra-
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Figure 8: Slip ratio r = 0.05: relative cost and gradient during the
data assimilation cycle for different levels of noise. Identified n along
the data assimilation cycle. Relative errors εn =

|n−nt |
nt

(with nt = 3 the
target) are: εn = 0.011% and εn = 0.055% for 10% and 50% of noise
respectively

dient decreases by (more than 20 orders of magnitude).
This is due to the fact that the model is highly sensitive
to the rheological exponent n.

As can be see in Figure 8, the final calibrated value
n is very close to the target value nt even for 50%
perturbed surface velocities. Once the target value is
reached, the gradient norm quickly drops to a very small
value making clear that the optimum has been reached.
It follows that velocity data with large uncertainties are
sufficient to recover the uniform value of n.

The present inverse tool can be very useful when
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rheometric measurements are more difficult to access
than velocities, or simply inaccessible, even for poorly
observed velocities such as e.g. extraterrestrial rheology
estimation, see [36].

6. Virtual rheometry: identification of η0 (tempera-
ture dependency)

As we have seen in the previous section, surface
velocities represent a robust information to characterize
the rheology of a uniform stationary flow. The present
approach for the characterization of the power-law
exponent led to a virtual rheometer. The other major
component of a power-law description is the consis-
tency η0 (see equation (6)), which allows to characterize
the non-homogeneity of the fluid. It is related, in the
case of ice or lava, to spatially non uniform coupled
physical effects such as the composition (ice fabric or
lava crystal fraction) or thermal physics, hence difficult
to assess.

This section focuses on the sensitivity analysis of the
steady-state model with respect to a thermal-dependent
consistency η0(T ) in order to observe and assess the role
the temperature plays in the flow in terms of surface
velocity through this parameter. This context is taken
as an example of fluids where the spatial variability
(through the temperature-dependency) is expected to be
strongly influent.

Then, following the idea of a virtual rheometer, iden-
tifications of this distributed parameter are performed
using synthetic data for a noise level of 1%.

6.1. Description of the Thermal Dependent Flow
As well as lava, ice is considered as a pseudoplastic

(shear-thinning) fluid. It is described by a power-law
constitutive law called Glen’s flow law which is gen-
erally considered to be temperature-dependent. In the
case of a non-isothermal glacier, the temperature field is
generally obtained using a coupled thermo-mechanical
model for the ice. In the sequel, a steady-state tem-
perature profile with a zero accumulation term, which
corresponds to a linearly decreasing temperature T with
respect to the height z̄ is considered (see e.g. [8]):

T (z̄, λ) = Ts − λz̄ (23)

with Ts the surface temperature and λ the temperature
gradient. It can take a large range of values. In order

to study the effect of the temperature description of the
consistency, a large temperature gradient λ = 0.04K/m
corresponding to a difference of 40◦C between the
surface and the bottom for a 1km thick glacier is con-
sidered hereafter. The surface temperature is therefore
Ts = 233.15◦K.

The consistency η0(T ) is obtained from the thermal
law given in [8] written as follows:

η0(T ) = ηre
−Q
RT (24)

where ηr is the reference viscosity, R is the gas
constant and Q stands for an activation energy. In
glaciology, the power-law exponent n is generally taken
equal to 3 and the values of ηr and Q are given (see [8]
for ice and [11] for lava).

The range of temperature within the fluid can be
much higher for lava but the definition and parameteri-
zation of the law leads to similar consistency gradients.

The numerical experiments aim to compare, for
a given situation of sliding, an isothermal flow and
a thermal dependent one. The isothermal runs are
identical to those considered in Section 4.2 and the
thermal dependent ones use a consistency η0 described
by relation (24). Again, every computational domain
correspond to the free-surface flow at steady state. Four
situations are therefore obtained corresponding to the
two cases of sliding (r = 0.05 and r = 20) with and
without a thermal description of the consistency.

Firstly sensitivity analyses are presented for the
isothermal and the thermal dependent case for a given
slip ratio. Identifications of the thermal dependent
consistency are then performed.

6.2. Sensitivity with respect to η0

Situations of low and rapid sliding at the bedrock
are compared hereafter. It can make an important
difference in terms of sensitivity with respect to η0 by
influencing the flow regime. Figures 9 and 10 plot the
computed shear-rate for low sliding (r = 0.05) and
rapid sliding (r = 20) respectively, with and without a
temperature-dependent consistency.

For both situations of sliding, the use of a temper-
ature gradient to compute η0 (see (24)) leads to the
appearance of a distinct highly sheared layer close to
the bottom (due to a higher temperature and thus a
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(a) Isothermal fluid

(b) Thermal dependent consistency η0

Figure 9: Slip ratio r = 0.05: Computed shear-rate γ̇ for the observed
state (with n = 3) in s−1. The color scale is logarithmic.

(a) Isothermal fluid

(b) Thermal dependent consistency η0

Figure 10: Slip ratio r = 20: Computed shear-rate γ̇ for the observed
state (with n = 3) in s−1. The color scale is logarithmic.

smaller viscosity). At the surface, the areas of higher
shear-rate inbetween those of very low shear-rate are
larger and of higher absolute value. Conversely, the
very low shear-rate spots close to the surface are more
localized and of smaller absolute value.

Figure 11 plots the sensitivity to the consistency η0,
in the case of rapid sliding (r = 20), around a reference
value ηm

0 = η0(Tm) which corresponds to a consistency
field evaluated for a constant temperature T taken

equal to the average temperature of the original thermal
dependent flow Tm = −20◦C.

Similarly to the sensitivities with respect to the
power-law exponent n, a correlation between the
distribution of the gradient ∂ j/∂η0 and the shear-rate
map appears. However, the presence of the thermal
physics make this correlation more vague; non trivial
high sensitivity areas appear close to the surface when
a thermal dependent consistency is used to generate the
data. Conversely, the appearance of a high shear rate
close to the bottom does not lead to a corresponding
high sensitivity. The sensitivity maps, in the case of
low sliding (r = 0.05), differ from Figure 11 but does
not provide any additional insights on the influence of
the thermal dependency in terms of surface velocities
and is thus not plotted.

We point out that the differences in the steady
geometries of the surface with or without the thermal
dependency are very small, even though a stiffening of
the near surface fluid occurs.

6.3. Identification of η0 based on surface velocity ob-
servations

The following section is dedicated to the identifica-
tion of a consistency field ηt

0(T ) computed using the lin-
ear thermal relation (24) with a temperature field ob-
tained with λ = 0.04 and plotted in Figure 12. The
computational domain and flows are identical to Sec-
tion 5, i.e. the real Mertz glacier topography with either
slow (r = 0.05) or rapid sliding (r = 20), but using a
consistency η0 computed from (24).

Cost function and initial guess. The cost function used
for the identification is defined by:

j(η0; γ1, γ2) =

∫
Γs

‖uobs
s − us(η0)‖22 dx + T (∇η0; γ1, γ2)

(25)
where the synthetic data uobs

s are the horizontal sur-
face velocities perturbed by a 1% random Gaussian
noise (the lack of robustness of these experiments lead
us to consider a relatively small noise compared to the
one used previously in the power-law index identifica-
tion). The Tykhonov’s regularization term T (∇η0) con-
trols the oscillations of the control variable gradient. It
is defined by:

T (∇η0; γ1, γ2) = γ1

∫
Γs

‖∂xη0‖
2
2 dx + γ2

∫
Γs

‖∂zη0‖
2
2 dx

(26)
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(a) Isothermal fluid (b) Thermal dependent consistency η0

Figure 11: Glacier flow with r = 20: sensitivity with respect to the consistency (∂ j/∂η0)(ηs
0) around the state j(ηm

0 ) (i.e. for an isothermal fluid at
−20◦C) for an isothermal fluid (η0 constant) and a thermal dependent one (η0 defined by (24)).

Figure 12: Target consistency field ηt
0 (in MPa.a1/3) computed from

(24) and (12) with λ = 0.04 in

where the parameters γ1 and γ2 quantify the strength
of the imposed smoothness. The adjustment of these
weights controls the degree of smoothness sought on
the control variable. A classical approach, referred to
as the Morozov’s discrepancy principle, consists of
choosing γ1 and γ2 such that the final cost j(η f

0 ; γ1, γ2)
matches the cost j(ηT

0 ; 0, 0) with the perturbed uobs
s (see

e.g. [37, 13]).

A layered consistency field decreasing from the
surface to the bottom is sought. Therefore the balance
on the gradients in both directions, appearing in the
regularization term (26), is achieved using γ1 = γ2/7
(which corresponds to the exact ratio of the target
consistency field). The exact ratio of 7 is not needed,
but a very good guess (typically between 5 and 10) is
required to achieve a decent identification.

Numerical results . The identification results are
plotted in Figure 14 and 15 for low and rapid sliding
respectively. For each case, two inferred η f

0 are plotted
corresponding to two different initial guesses which are
ηi,m

0 = η0(Tm), Tm = −20◦C the average temperature
and ηi,g

0 = η0(Tg), Tg = T (z̄, 0.02) with Ts = −30◦C (see
equation (23)). Evolutions of the cost function and the
gradient along the minimization procedure for the two
different initial guesses are plotted in Figure 13.
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different initial guesses ηi,m

0 and ηi,g
0

From the evolution of the cost and the gradient, we
can see that the behavior is more robust in the situation
of moderate sliding (r = 0.05) for both intial guesses.
In the case of rapid sliding (r = 20), the best intial
guess ηi,m

0 leads to a clearly better result (smaller cost
and smaller gradient). The difference between the two
intial guesses in the case of moderate sliding is not
really significant. This observation is retrieved in the
relative errors in Table 1. However, the most important
information we have from Figure 13 is the fact that
the decreasing of the gradient, regardless of the level
of sliding or the initial guess, is much smaller (3 to
4 orders of magnitude) than for the identification of
the rheological exponent n (20 orders of magnitude,
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(a) Initial guess ηi,m
0 (b) Initial guess ηi,g

0

Figure 14: Slip ratio r = 0.05: Identified field η f
0 in MPa.a1/3. A lower bound of 0.1 on the consistency has been imposed to prevent the minization

procedure from generating negative values for η0.

(a) Initial guess ηi,m
0 (b) Initial guess ηi,g

0

Figure 15: Glacier flow with r = 20: Identified field η f
0 in MPa.a1/3. A lower bound of 0.1 on the consistency has been imposed to prevent the

minization procedure from generating negative values for η0.

see Figure 8) or the identification of the (β, n,m) triple
(10 to 30 orders of magnitude, see Figure 17(a)). It
brings to light the ill-posedness of the consistency
identification problem.

The relative errors are given in Table 1. It clearly
appears that the identification is easier in the case
of low sliding. A small slip ratio represents a large
contribution of viscous deformation to the surface
velocities in favor of the identification of a rheological
quantity whereas a higher slip ratio leads to a smaller
contribution of the creep and of the rheology on the
surface velocities.

It also makes sense in the light of the above sensi-
tivities; the layered aspect of the sensitivity map in the
case of low sliding (due to an important gradient of
shear close to the bottom) helps to retrieve a layered
consistency field. In the case of rapid sliding the
distribution of the sensitivity is non trivial and so is the
inferred consistency.

Discussion. Despite very good prior physical knowl-
edges introduced in the identification process (by
using the exact ratio between horizontal and vertical

Slip ratio r = 0.05 r = 20
Initial guess Initial error Final error Initial error Final error

ηi,m
0 63.90% 40.57% 63.90% 54.12%
η

i,g
0 45.28% 35.49% 45.28% 41.31%

Table 1: Relative error
‖η

f
0−η

t
0‖2

‖ηt
0‖2

of the reconstructed rheological con-

stant for noise level δ = 1%.

consistency gradient, good initial guesses and a perfect
knowledge of all the other physical parameters) and
considering the noise level on the surface data of
1%, the resulting inferred consistency fields are poor.
The basic layered aspect of ηt

0 is retrieved, thanks to
the anisotropic regularization, but the range is quite
different from the target one and the presence of a
rapid sliding significantly deteriorates the inferred
consistency. As one can expect, the use of ηi,g

0 as a first
guess leads to a better identified consistency (see Table
1).

This result represents a major component of data as-
similation that can be called equifinality of the system;
an identical end state can be reached by different sets
of parameters. In this situation, defining the end state
as the horizontal surface velocities, ηt

0 and η
f
0 lead to

the same ending. It means that the inverse problem is
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Figure 16: Normalized horizontal surface velocities: the plain line
represents the computed surface velocities after identification and the
stars represent the target surface velocities of the glacier flow consid-
ered in section 6.3 perturbed by a 1% Gaussian noise. The error is the
relative error between both sets.

ill-posed.
The present inverse results show that an uncertainty

on the consistency do not greatly affect the bulk flow.
Its inference is a strongly ill-posed problem. The target
and inferred surface velocities are plotted in Figure
16 in the case of rapid sliding (r = 20) with ηi,m

0 as a
first-guess (which is the situation producing the larger
relative error on the inferred consistency) to highlight
the equifinality aspect.

Although physically questionable (in terms of di-
mensions of the problem), identifications of a spatially
varying power-law exponent n on the same situations
lead to relative error of 0.076% and 1.86% on the low
sliding and rapid sliding case respectively (with an
initial guess n = 1), confirming the greater robustness
of the identification of n.

These results suggest that the role of the thermal
physics through the parameterization of the consistency
is significantly minor compared to other parameters
such as the basal friction or the power-law index. There-
fore, the solving of a high precision model for the tem-
perature field in the bulk could be pointless in the case of
a power-law Stokes model and an assumed temperature
profile should be sufficient. The present analysis cor-
roborates a large scale numerical experiment performed
in [38].

7. Identification of the scalar-valued triple (n, m; β)

As observed here-before, a major quantity for the
control of this type of flow is the friction coefficient β.
The role of the slip ratio appears of great importance
on the sensitivities and identification results on both the
consistency and the rheological exponent by controlling

the flow regime.

The following numerical experiments are performed
in the general context of an irregularly perturbed
bottom (geophysical like topography), but again, both
approaches are applicable for reproducible fluid flows
observed during lab experiments.

In the case of ice flow for instance, it is well known
that rapid sliding only occurs in the presence of a layer
of subglacial sediment called till underneath the ice.
Such a layer can for instance be modeled as a non-linear
viscous fluid but a classical approach consists in using
a non-linear viscous sliding law such as (11) to mimick
this behavior.

7.1. Numerical experiments

The following numerical experiments aim to iden-
tify at the same time the scalar rheological exponent n
and the scalar sliding parameters β and m (see equation
(11)). They are performed on the Mertz glacier flowline
domain (see Figure 7) with a non-linear Poiseuille flow
prescribed on the left boundary Γl and a lithostatic pres-
sure on the right boundary Γr. A non-linear sliding law
with m = 3 (see equation (11)), and a uniform consis-
tency η0 are considered. In order to explore every slid-
ing situations, three average slip ratios are considered
hereafter corresponding to r = 0.01, r = 1 and r = 40
(see equation (20)). The value r = 40 corresponds to
the maximum slip ratio one can achieve for the present
flow with complex topography. As further discussed,
the local variation of the slip ratio can be large even for
a given scalar friction coefficient β. Since scalar values
are identified the cost function is simply:

j(n,m; β) =

∫ ∥∥∥us(n,m; β) − uobs
s (nt,mt; βt)

∥∥∥2
2 dx

(27)
The evolution of the cost j(n,m; β) (see (27)) and

its gradient with respect to (n,m; β) along the data
assimilation cycle is plotted in Figure 17. Figure 17(a)
shows a robust identification for every situations; the
decreasing of the costs is quite smooth (without taking
into account the restarts of the minimization algorithm).
The large drop of the gradient at the end highlight the
fact that the optimum does not lie in a locally convex
“valley” and it requires to run the minimization long
enough to achieve the convergence even if the cost
seems stable. We point out that such a result requires a
sharp minimizer and accurate numerical schemes and
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Figure 17: Identification of the scalar-valued triple (n,m; β).

gradient. We also point out that this behavior is not
sensitive to the first guess as long as the initial n is
taken smaller than the target one.

7.2. Discussion

Inferred values. It clearly appears that the convergence
of the rheological exponent n to the target value
is achieved before the friction parameters β and m
start their convergence. It demonstrates that n is a
completely dominant parameter in the perspective of
controlling the flow. Once n is almost converged, m
followed by β start to converge to their target values.
The errors on the inferred parameters for the different
situations are given in Table 2. The final results are
fully conclusive; all three parameters are well identified
allowing to completely infer the flow regime from hori-
zontal surface velocities only, under the assumption of
uniform values for the three parameters. The plot of the
resulting slip ratio in the case of low sliding (r = 0.01,
see Figure 18) allows to understand the reason of a less
faithful reconstruction of β and m. Indeed, a slip ratio
r = 0.01 corresponds to a situation where 1% of the
surface velocities come from the sliding and 99% come
from the viscous deformation. Since a noise of 1%
has been considered on the surface velocity data, it is
a priori impossible to achieve an identification of the
friction parameters. As we can see, the minimization

Slip ratio r = 0.01 r = 1 r = 40
n 0.111% 0.198% 0.332%
β 7.18% 0.225% 0.110%
m 15.8% 0.159% 0.332%

Table 2: Relative error for the reconstructed friction coefficient β, the
friction exponent m and the rheological exponent n for different slip
ratios.

procedure produced a pair (β,m) which provide the
same surface velocities as the target one but leading to
a higher slip ratio r = 0.016 to overcome the problem
of the noise.

Topography/slip-ratio correlation. The surface veloc-
ity data and the resulting surface velocities and basal
velocities are plotted in Figure 18,19 and 20 for the
three average slip ratios r = 0.01, r = 0.1 and r = 40
respectively.

The use of a scalar β as a friction coefficient can be
seen as a simplified modeling approach. However, the
non-uniform realistic topography considered here leads
to a strongly non-uniform slip ratio with respect to the
abscissa. In order to observe their variability of the basal
state, the pointwise slip ratios and the opposite of the
bedrock variations around its mean slope α (here α ∼
2.10−2) are also plotted in Figures 18, 19 and 20 for the

17



Figure 18: Noisy data and inferred surface velocities, slip ratio and opposite of the bedrock variations for an average slip ratio r = 0.01

Figure 19: Noisy data and inferred surface velocities, slip ratio and opposite of the bedrock variations for an average slip ratio r = 1.
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Figure 20: Noisy data and inferred surface velocities, slip ratio and opposite of the bedrock variations for an average slip ratio r = 40

three situations of sliding.
The case of rapid sliding (r = 40, the average

slip ratio), which allowed to obtain very accurate
identification of the three quantities, shows a strongly
varying slip ratio; it oscillates between r = 7 and
r = 450 with large local gradients. A strong correlation
between the variations of topography of the bedrock
and the slip ratios peaks appears (see Figure 20). This
aspect is a major component of the flow since it raises
the question of the ability to separate the effect of the
friction coefficient from the effect of the topography
itself. As a matter of fact, in the ice flow context, the
topography of the bedrock is generally the most poorly
observed data (compared to the surface velocities and
surface topography, see e.g. [39, 15]).

In the low sliding case (r = 0.01), although the
correlation between the slip ratio and the topography
are not obvious, the slip ratio of the original flow and
the one resulting from the identification are very similar
in terms of variations.

In conclusion, the identification of the scalar-valued
triple (n,m, ; β) seems robust. In a more general
perspective of infering a spatially varying friction co-
efficient β(x), such an identification allows to strongly
constrain the flow and provide an excellent initial
guess for a spatial identification of β. Nevertheless,

the observed correlation between the slip-ratio and
the topography (mainly in the rapid sliding case
r = 40) suggest a potential equifinality on the fric-
tion/topography pair.

8. Equifinality problem of the friction/bed topogra-
phy pair

In the geophysical context, the topography data are
generally poorly (or not) observed and the potential
correlation with the friction law is of prime interest.

The previous experiment raises a question about
the dependency of the inferred friction coefficient on
the topography and therefore the ability to separate
the two effects. As a final experiment, a spatially
varying friction coefficient is identified for a given
reference topography and the corresponding reference
surface velocity data (with a 1% Gaussian noise).
These reference surface velocity data are then used to
perform identifications of the friction coefficient β(x)
for other topographies of the bedrock. The aim is to
assess the link between the two quantities, depend-
ing on the regime of sliding, and the ability for the
present inverse method to distinguish the two quantities.
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8.1. Numerical experiment setup

A L = 50km long and h = 1km thick domain is
considered. The boundary conditions remains the same,
as defined in Section 2.1. The reference bedrock b(x) is
built as follows:

b(x) =


a0 sin( 2πx

ω0
) + α0

(
( 2πx
ω1

) + sin( 2πx
ω2

)
)

if 0 ≤ x ≤ 33km
a1 sin( 2πx

ω0
) + α1

(
( 2πx
ω1

) + sin( 2πx
ω2

)
)

if 33km < x ≤ 50km

(28)

with a = (a0, a1) = (h/8, h/16) fixed,
α = (α0, α1) = a/2 ± 30% is randomly generated
and ω = (ω0, ω1, ω2) = (50h, 4h, 2h) ± 30% is also
randomly generated. These values for the variations
of the bedrock are chosen according to the bounds
on the representable wavelengths assessed in [13].
For the reference domain, α = (h/12.7, h/47.2) and
ω = (51.9h, 4.4h, 2.1h). Then, four points p0, p1,
p2 and p3 at respectively x0 = 0km, x1 = 16km,
x2 = 33km and x4 = 50km are taken on this reference
topography, and used as a constraint for the other
topographies to be be built; they typically represent
measurement points made on the reference (or “true”)
topography. From there, three topographies are built
called the perturbed topography, the large amplitude
topography and the piecewise linear topography. The
perturbed topography is identical to the reference
one with different random vectors α and ω which are
α = (h/19.3, h/42.5) and ω = (59.3h, 4.8h, 1.6h).
The large amplitude topography is built on the same
principle but replacing a by ã = (ã0, ã1) = (h/4, h/8)
and α by α̃ = ã/2 ± 30% randomly generated. The
frequencies ω are randomly perturbed around the
same values as before. In the present case, we have
α̃ = (h/12.3, h/15.8) and ω = (58.5h, 3.63h, 2.24h).
Finally the piecewise linear bottom is just the piece-
wise linear interpolation of the reference points p0,
p1, p2 and p3. The four resulting topographies thus
gather at the four reference point and behave according
to the formula otherwise. They are plotted in Figure 8.1.

Only four topographies resulting from the ran-
domisation are presented since the results are similar
and these four topographies has been chosen as a
comprehensive overview of the present discussion.

The surface velocity data are then computed on the
reference topography using the following friction coef-

ficient:

β(x) =

{
5.10−2 if 0 ≤ x ≤ 16km
5.10−3 if 16km < x ≤ 50km (29)

The combination of friction coefficient and the
reference bed topography previously defined leads to
define three different areas with three different sliding
regimes. The first area for 0 ≤ x ≤ 16km has an
average slip ratio r = 2 and is called the intermediate
sliding area. The second area for 16km < x ≤ 33km
has an average slip ratio r = 20 and is called the rapid
sliding area. The last area for 33km < x ≤ 50km has
an average slip ratio r = 200 and is called the very
high sliding area. These areas correspond to the typical
sliding regimes observed in large scale Antarctica ice
sheds in the coastal regions (analogously to a water
shed, see [15]).

The resulting surface velocity data and the corre-
sponding slip ratio along the domain are plotted in
Figure 23(a).

We then perform four identifications of the friction
coefficient β(x) using the same surface velocity data and
boundary conditions but on the four different topogra-
phies described herebefore. The inferred friction co-
efficients are plotted in Figure 23(b) and the resulting
surface velocities are plotted in Figure 23(a). The cost
function used in what follows is defined by:

j(β(x); γ) =

∫
Γs

‖uobs
s −us(β(x))‖22 dx+γ

∫
Γs

‖∂xβ(x)‖22dx

(30)
The identification of the friction coefficient on the

reference bed includes a regularization and the plotted
result is optimal in Morozov’s sense. Since we will not
be able to achieve the Morozov’s optimal discrepancy
when using the other topographies, the regularization
parameter is kept constant and equal to the one adjusted
on the optimal case.

Evolutions of the cost function and the gradient
along the minimization process for the two different
initial guesses are plotted in Figure 22.

8.2. Discussion

A first observation is that, in order to obtain very high
slip ratio (typically r > 50), it is required to provide an
amplitude small enough on the topography (see Figures
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Figure 21: Bed topographies of the four different computational domains as defined in 8.1
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Figure 22: Costs and gradients along the minimization cycle. They
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different topographies.

8.1 and 8.1). Otherwise, for arbitrarily small β, the max-
imum sliding is controlled by the topography peaks. In
the present results, the effect is obviously purely bidi-
mensionnal but the global idea also applies on 3D flows.

From the evolution of the cost and the gradient (see
Figure 22), we retrieve the fact that the poorest identifi-
cation is obtained with the large amplitude topography
(as observed in the previous paragraph). The perturbed

topography and the piecewise linear topography leads
to rather similar final cost and obviously the best
identification is obtained on the reference topography.
Similarly to the identification of the consistency (see
Figure 13), the decreasing of the gradient, regardless
of the considered topography, is much smaller (4 to 6
orders of magnitude) than for the identification of the
rheological exponent n (20 orders of magnitude, see
Figure 8) or the identification of the (β, n,m) triple (10
to 30 orders of magnitude, see Figure 17(a)) pointing
out the ill-posedness of this identification problem.

From Figure 23(a), we observe that the optimal
fitting is achieved using the reference bed topography
according to Morozov; an L2 relative error of 0.9% is
obtained. Figure 23(b) shows a good match between
the target friction coefficient and the inferred one.
The transition between the two values for the friction
coefficient (between x = 9km and x = 15km) is
relatively smooth due to the regularization term.

The results of the identification using the randomly
perturbed topography, yet not optimal according to
Morozov, are still very good, providing a relative error
between the computed surface velocities and the data of
3.1%. On the contrary, Figure 23(b) shows an inferred
friction coefficient very different from the target one
for r ≥ 20, the match in the intermediate sliding area
remaining good.
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The same holds for the piecewise linear topography
where a very good match of 2.3% is obtained between
computed and target surface velocities, providing a
completely different friction coefficient. It is relatively
higher in average, due to the removal of any topograph-
ical effects. Again, the match in the intermediate sliding
area (r = 2) is good. Finally on the large amplitude
topography, the solution cannot achieve velocities high
enough for r ≥ 20 and the lower threshold imposed
on the friction coefficient is obtained everywhere in
the area of rapid and very high sliding to provide the
highest possible velocities, still far from the observed
one. It results in a 50% relative error between the
observed and computed velocities.

These experiments, performed using a highly ac-
curate numerical method (order two finite element
schemes, exact adjoint of the full-Stokes problem)
hence without any numerical artefact, demonstrate that
the inversion of the full-Stokes model with respect to the
friction/topography pair is a severely ill-posed problem.
It is very likely that this result remains true for 3D flows.
The next question would be to analyze how it affects the
predictive capabilities of a calibrated Stokes model for
ice-sheets mass balance.

9. Conclusion

This work presents, using a second order numeri-
cal tool (hence accurate, no numerical artifacts), an
adjoint-based inverse approach for inferring the rheol-
ogy and basal properties of gravity driven free-surface
pseudoplastic flows. The present numerical method
combines an efficient four-field finite element solver
based on an augmented Lagrangian type algorithm for
the forward problem and its automatically differentiated
counterpart to solve the adjoint problem. Numerical
tests assess ratios of four (4) in terms of computational
time and memory consumption compared to a classical
fixed point approach. In addition, some significant
improvements could be made within the element-wise
(thus highly-parallelizable) nonlinear iterative part of
the algorithm.

A preliminary section addresses the problem of the
viscosity singularity at vanishing shear-rate (i.e. at
the free-surface) as a limitation for the use of surface
velocities to constrain the rheology of the fluid model.
Based on sensitivity analyses of a spatially distributed
rheological exponent, this section allows to conclude
that the convergence to the singularity through re-
finement of the surface does not affect the forward

and adjoint solutions, for different flow regimes (in
terms of slip ratio). Therefore, the transmission of the
constraints through a stiff surface layer let the surface
velocities unchanged and control of the rheological
parameters using this type of observations can be done.

The two next sections focus then on the virtual
rheometry approach to infer the scalar power-law
exponent and the spatially varying consistency using
surface velocity observations. The first one shows
an extremely robust behavior, allowing to accurately
infer the power-law exponent from very noisy data
(50% of noise). Conversely, the identification of the
consistency is a severely ill-posed problem and leading
to an important equifinality; the role of the consistency
in terms of surface velocities is minor and an assumed
parameterization to describe this quantity is sufficient.
These results are obtained for a wide range of flow
regimes, defined by the degree of slip on the base.

These numerical investigations which could be
called "virtual rheometry" experiment are valid both
for industrial power-law fluids observed in laboratory
experiments or geophysical flows (if the negligible
inertia assumption is correct).

Next, inspired from the reality of geophysical flows
such as glaciers, the two final sections thoroughly
investigate the role of the friction coefficient (within
a nonlinear viscous sliding law) in conjunction with
the rheology and the topography, and the ability for
our inverse method to distinguish those non-linearly
combined effects.
Recall that the considered geophysical flows features
are: uniqueness of the observed flow situation, flow
dominated by their basal condition and rheology,
observation of the surface of the flow only, poorly
observed topography.

We first achieve very accurate joint identifications
of the scalar-valued triple (n,m; β) for any degree
of slip, providing the ability to completely infer the
flow regime solely based on surface velocities. The
identification of a scalar valued friction coefficient
β is however a simplification of the reality but such
an identification represent an excellent initial guess
towards the identification of a spatially varying friction
coefficient. The behavior of the optimization procedure
also highlights the need for a highly accurate and robust
data assimilation platform (in terms of gradient preci-
sion and descent algorithm) for such an identification
to be obtained.
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The final section thus provides identifications of
the friction coefficient on a flow with various slid-
ing regimes (from intermediate to very high sliding).
In order to investigate the joint action of the fric-
tion/topography pair, several perturbed bedrock to-
pographies are considered. The results demonstrate a
strong equifinality problem through an ability for the in-
verse model to provide a good match on the surface ve-
locities through very different friction coefficients, de-
pending on the topography, particularly for rapid slid-
ing. Since the observation of the bed topography is gen-
erally poor compared to the surface velocities, this result
raises an interrogation on the predictive capabilities of a
calibrated Stokes model for this type of flow.
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(a) Target surface velocities and surface velocities resulting from the minization

(b) Target and inferred friction coefficient
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