Hélène Fargier
email: fargier@irit.frmarquis

Pierre Marquis

Alexandre Niveau

Nicolas Schmidt
email: schmidt@cril.fralexandre.niveau@unicaen.fr

Carte de compilation des diagrammes de décision ordonnés à valeurs réelles *

Les diagrammes de décision valués (VDDs) sont des structures de données représentant des fonctions à valeurs réelles positives. Ces structures sont utiles pour la compilation de fonctions de coût ou d'utilité, ou encore de distributions de probabilités. Si la complexité de certaines requêtes (comme l'optimisation) et de certaines transformations (comme le conditionnement) sur de tels langages est bien connue, il reste de nombreuses requêtes et transformations importantes dont la complexité n'a pas encore été identifiée ; figurent parmi elles différents types de coupes, marginalisations, ou encore combinaisons. En établissant une carte de compilation des diagrammes de décision ordonnés à valeurs réelles, cet article contribue à combler ce manque. Nos résultats montrent que beaucoup de tâches difficiles à partir de CSPs valués sont traitables à partir de VDDs.

Introduction

Les diagrammes de décision valués sont des structures de données représentant des fonctions à variables multiples, et à valeur dans un ensemble V de « valuations » (généralement un sous-ensemble de R +).

Ces fonctions correspondent souvent à des fonctions de coût ou d'utilité, ou à des distributions de probabilités, qui sont largement utilisés en IA. Parmi les différentes tâches importantes lorsque l'on utilise ce genre de fonctions, on retrouve la requête d'optimisation : trouver une affectation donnant la valuation optimale, ou la valeur d'une variable donnée pouvant conduire à une affectation optimale, etc. Une telle requête est particulièrement intéressante combinée avec la transformation de conditionnement, qui donne une représentation restreinte de la fonction, dans laquelle certaines variables ont été affectées. La combinaison de ces deux tâches permet par exemple de résoudre des problèmes comme la recherche du diagnostic le plus probable considérant un ensemble de symptômes, ou de la voiture la moins chère d'une gamme qui soit munie d'un klaxon cucaracha.

Plusieurs autres structures de données ont été définies pour représenter ce genre de fonctions à variables multiples, les plus connues étant les CSP valués [START_REF] Schiex | Valued constraint satisfaction problems: Hard and easy problems[END_REF], les GAI nets [START_REF] Bacchus | Graphical models for preference and utility[END_REF], et les réseaux bayésiens [START_REF] Pearl | Probabilistic reasoning in intelligent systems -networks of plausible inference[END_REF]. Cependant ces langages ne sont pas adaptés aux requêtes susmentionnées lorsque des garanties de temps de réponse sont imposées (comme c'est le cas dans les applications Web) : l'optimisation est en effet NP-difficile pour les CSPs, GAI-nets et réseaux bayésiens.

Les VDDs n'ayant pas cet inconvénient, plusieurs familles de VDDs ont été définies et étudiées durant ces vingt dernières années. On s'intéressera ici notamment au langage ADD (algebraic decision diagrams) [START_REF] Bahar | Algebraic decision diagrams and their applications[END_REF], au langage AADD (affine algebraic decision diagrams) [START_REF] Tafertshofer | Factored edge-valued binary decision diagrams[END_REF][START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF], et au langage SLDD (semiring-labeled decision diagrams) [START_REF] Wilson | Decision diagrams for the computation of semiring valuations[END_REF]. En réalité, SLDD est une famille de langages SLDD ⊗ , paramétrée par un opérateur ⊗. On retrouve en particulier SLDD + (équivalent au langage des EVBDDs [START_REF] Lai | Edge-valued binary decision diagrams for multi-level hierarchical verification[END_REF][START_REF] Lai | Formal verification using edge-valued binary decision diagrams[END_REF][START_REF] Amilhastre | Consistency restoration and explanations in dynamic CSPs: Application to configuration[END_REF]) lorsque ⊗ représente l'opérateur +, et SLDD × lorsque ⊗ représente l'opérateur ×.

Toutefois, de nombreuses requêtes et transformations ne découlent pas du conditionnement et de l'optimisation. Considérons par exemple la requête suivante : « lister toutes les voitures bon marché (par exemple en-dessous de 10 000 euros) de telle gamme, d'une capacité d'au moins 8 passagers ». Cela demande de se concentrer sur les voitures bon marché, ce qui ne relève ni de l'optimisation ni du conditionnement. De même, certaines transformations, telles la projection sur une variable, ou son complémentaire, l'élimination de variables, qui ont une grande importance théorique et pratique (par exemple pour résoudre le problème « posterior marginal » (PM) dans les réseaux bayésiens), ne peuvent pas être réduites à l'optimisation et au conditionnement. C'est également le cas pour les transformations de combinaison (aussi appelées opérations « apply »), qui consistent, étant donné des représentations de fonctions f et g, à calculer une représentation de la fonction f g, avec un opérateur associatif et commutatif sur V (par exemple l'addition ou la multiplication, lorsque V = R +). Ces transformations sont très importantes, ne serait-ce que pour permettre la construction incrémentale de représentations par des algorithmes de type ascendant.

La carte de compilation [START_REF] Darwiche | A knowledge compilation map[END_REF] identifie la complexité des requêtes et transformations sur plusieurs langages propositionnels, ainsi que la compacité relative de ces langages. Cependant, elle ne concerne que le cas spécifique des fonctions booléennes ; et même si cette carte a été étendue dans de nombreuses directions, le cas des VDDs n'a pas encore été très développé. Il a été montré que le langage AADD est strictement plus compact que le langage ADD [START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF], les travaux sur la compacité ont ensuite été étendus [START_REF] Fargier | Semiring labelled decision diagrams, revisited: Canonicity and spatial efficiency issues[END_REF], montrant que le langage AADD est strictement plus compact que les langages SLDD + et SLDD × , eux-mêmes plus compacts que le langage ADD. Pour compléter cette carte, il reste à déterminer l'ensemble des requêtes et transformations d'intérêt que chacun de ces langages satisfait. En d'autres termes, pour chaque requête et transformation, et pour chacun des langages ADD, SLDD + , SLDD × et AADD, il s'agit de mettre en évidence un algorithme en temps polynomial effectuant cette opération, ou de prouver qu'un tel algorithme n'existe pas à moins que P = NP.

C'est le but principal de cet article, qui est orga-nisé comme suit La section suivante permet au lecteur de faire connaissance avec la famille des langages de VDDs, et la suivante présente les requêtes et transformations étudiées dans la carte de compilation. Nous exposons ensuite les résultats de complexité obtenus 1 , établissant pour chaque langage étudié et chaque requête et transformation, si le langage satisfait ou pas la requête ou la transformation. Ils constituent une première avancée dans la construction d'une carte de compilation pour les fonctions à valeurs non booléennes.

Diagrammes de decision valués

Préliminaires. Soit un ensemble fini de variables X = {x 1 , . . . , x n }, chaque x i prenant ses valeurs dans un domaine fini D xi , et soit un sous-ensemble X ⊆ X ; on note #-

x = { x i , d i | x i ∈ X, d i ∈ D xi }
une affectation des variables de X, et D X l'ensemble de toutes ces affectations (le produit cartésien des domaines des variables de X). La concaténation de deux affectations #x et #y de deux ensembles disjoints de variables X et

Y est une affectation de X ∪ Y notée #-x • #-y .
On considère des fonctions f portant sur des variables d'un sous-ensemble Scope(f) ⊆ X , et prenant leurs valeurs dans V (dans cet article, on pren-

dra souvent V = R +). Le domaine de f est noté D f = D Scope(f) . Pour tout Z ⊆ Scope(f), on note f #-z la restriction (ou conditionnement sémantique) de f par #-z , c'est-à-dire la fonction sur Scope(f) \ Z telle que pour tout #-x ∈ D Scope(f)\Z , f #-z (#-x) = f (#-z • #-x).
Soit un opérateur binaire sur V, et deux fonctions f et g portant sur un même ensemble de variables ; f g est la fonction définie par f g

(#-x) = f (#-x) g(#-x). La -projection de f sur Z ⊆ Scope(f) est définie par f ,Z (#-x) = #-y ∈D Scope(f)\Z f #-y (#-x).
En abusant quelque peu des notations, si X et Y sont deux ensembles de variables disjoints, Scope(f) = X, et #x • #y est une affectation de X ∪ Y , alors on suppose que f (#x • #y) = f (#x). En pratique, on considère souvent des affectations complètes #x ∈ D X .

Soit une relation binaire réflexive et transitive sur V (c'est-à-dire un préordre), dont on note ∼ la partie symétrique et la partie asymétrique. On définit les ensembles de « coupes » suivants :

-CUT max (f) = { #-x * | ∀ #-x , ¬(f (#-x) f (#-x *)) } ; -CUT min (f) = { #-x * | ∀ #-x , ¬(f (#-x) ≺ f (#-x *)) } ; -CUT γ (f) = { #-x | f (#-x) γ } ; -CUT γ (f) = { #-x | f (#-x) γ } ; -CUT ∼γ (f) = { #-x | f (#-x) ∼ γ } ;
1. Pour des raisons de place, les preuves ne sont pas développées ici ; une version complète (incluant les preuves) de l'article AAAI original peut être trouvée à l'adresse <url: https: //niveau.users.greyc.fr/pub/AAAI14 FMNS.pdf>.

Par exemple, si l'optimisation correspond à la minimisation, CUT min est l'ensemble des solutions optimales (les voitures les moins chères) ; CUT γ est l'ensemble des solutions satisfaisant la condition de la coupe (les voitures bon marché, celles dont le prix est inférieur à γ).

Un langage de représentation sur X à valeurs dans V est un ensemble de structures de données, équipé d'une fonction d'interprétation qui associe à chacune une fonction f : D X → V. Cette fonction est appelée l'interprétation de la structure de données, et la structure de données est la représentation de cette fonction.

Définition 2.1 (langage de représentation ; inspirée de [START_REF] Gogic | The comparative linguistics of knowledge representation[END_REF]). Etant donné un ensemble de valuations V, un langage de représentation L sur X à valeurs dans V est un quadruplet C L , Var L , f L , s L , où : -C L est un ensemble de structures de données (également appelées L-représentations ou simplement « formules »), -Var L : C L → 2 X est une fonction qui associe à chaque L-représentation le sous-ensemble de X dont elle dépend, -f L est une fonction d'interprétation associant à chaque L-représentation α une fonction f L α depuis l'ensemble de toutes les affectations de Var L (α) vers V, -s L est une fonction de taille, de C L dans N, qui donne la taille de chacune des L-représentations.

Diagrammes de décision valués. Dans la suite, nous considérons des langages de représentation basés sur des structures de données appelées diagrammes de décision valués. De tels diagrammes permettent de représenter des fonctions à valeurs dans V en autorisant les noeuds et les arcs à porter des valeurs, prises dans un ensemble E (généralement E = V, mais ce n'est pas toujours le cas, comme nous le verrons plus tard). Définition 2.2 (diagramme de décision valué). Un diagramme de décision valué (VDD) sur X et E est un multi-graphe acyclique orienté, fini, et comportant une racine unique, dans lequel chaque noeud N est étiqueté par une variable x ∈ X et possède un ensemble Out(N) de |D x | arcs sortants, chaque arc a ∈ Out(N) étant étiqueté par une valeur distincte v(a) ∈ D x . Les arcs comme les noeuds peuvent être étiquetés par des éléments de E ; on note ϕ(a) (resp. ϕ(N)) la valuation de l'arc a (resp. du noeud N). La taille d'un diagramme de décision α, notée |α|, est la taille du graphe (son nombre de noeuds et d'arcs) plus la taille de l'ensemble des valuations portées par les arcs et les noeuds.

Nous supposons que tous les diagrammes de décision considérés sont ordonnés, i.e. que pour tout VDD, un ordre strict et total sur X est choisi, et quel que soit le chemin pris de la racine à un noeud terminal, les variables étiquetant les noeuds sont rencontrés dans l'ordre (chaque variable ne peut donc apparaître qu'une seule fois dans un même chemin). Un chemin de la racine à un noeud terminal représente une affectation (partielle) de X ; la structure des diagrammes de décision est déterministe, ce qui signifie qu'à une affectation donnée ne correspond au plus qu'un seul chemin dans α, noté p α (#x).

Un VDD α est considéré comme réduit s'il ne comporte aucun couple de noeuds isomorphes (distincts) 2 . Un système de cache peut être utilisé pour détecter et fusionner ces noeuds isomorphes à la volée, ce qui nous permet de considérer implicitement les diagrammes comme étant réduits. -si α est un noeud terminal, alors

f ADD α (#-x) = ϕ(α), -sinon, en notant N la racine de α, x ∈ X sa va- riable, d ∈ D x la valeur telle que x, d ∈ #-x , a = N, M l'arc tel que v(a) = d, et β la for- mule ADD ayant pour racine le noeud M de α, alors f ADD α (#-x) = f ADD β (#-x). Dans le cadre AADD de Sanner & McAllester [18],
le co-domaine de la fonction représentée est V = R + .

Un seul noeud terminal est autorisé, et chaque arc est étiqueté par un couple de valeurs de R + (c'est-à-dire que

E = R + × R + = V).
q 0 , f 0 dans R + × R + , appelé offset. L'inter- prétation d'un tel VDD α est, pour chaque affectation #-x , f AADD α (#-x) = q 0 + (f 0 × g AADD α (#-x)), où g AADD α est définie comme suit : -si α est le noeud terminal, alors g AADD α (#-x) = 0, -sinon, en notant N la racine de α, x ∈ X sa va- riable, d ∈ D x la valeur telle que x, d ∈ #-x , a = N, M l'arc tel que v(a) = d, ϕ(a) = q a , f a , et β la formule prenant racine au noeud M de α, alors g AADD α (#-x) = q a + (f a × g AADD β (#-x)).
Le langage AADD est muni d'une condition de normalisation qui rend toute AADD-représentation ordonnée (et réduite) canonique. La canonicité est importante car elle assure une représentation unique de chacune des sous-formules, ce qui est la clé pour efficacement reconnaître et fusionner les noeuds isomorphes.

Dans le cadre SLDD ⊗ [START_REF] Wilson | Decision diagrams for the computation of semiring valuations[END_REF] 3 , les arcs (mais pas les noeuds terminaux) sont étiquetés par des éléments de

E = V, et E, ⊗, 1 ⊗ est un monoïde commutatif : f SLDD⊗ α
(#x) est l'agrégation par ⊗ des étiquettes des arcs le long du chemin p α (#x). Définition 2.5 (SLDD ⊗). Soit un monoïde commutatif E, ⊗, 1 ⊗ ; le langage SLDD ⊗ est le quadruplet C SLDD⊗ , 3. Notre définition de SLDD est un peu plus générale que l'originale, en ce que (i) nous ne considérons que des diagrammes ordonnés, et (ii) nous utilisons un monoïde commutatif au lieu d'un semi-anneau commutatif, le deuxième opérateur n'étant pas utilisé dans la définition de la structure de données [START_REF] Fargier | Semiring labelled decision diagrams, revisited: Canonicity and spatial efficiency issues[END_REF].

Var SLDD⊗ , f SLDD⊗ , s SLDD⊗ , avec C SLDD⊗ l'ensemble des VDDs ordonnés sur X ayant un unique noeud terminal N d'étiquette ϕ(N) = 1 ⊗ , dont les arcs sont étiquetés avec des éléments de E = V, et dont la racine a un

offset ϕ 0 ∈ E. Pour chaque formule α et chaque affec- tation #-x , f SLDD⊗ α (#-x) = ϕ 0 ⊗ g SLDD⊗ α (#-x), où g SLDD⊗ α (#-x) est définie comme suit : -si α est le noeud terminal, alors g SLDD⊗ α (#-x) = 1 ⊗ , -sinon, en notant N la racine de α, x ∈ X sa va- riable, d ∈ D x la valeur telle que x, d ∈ #-x , a = N, M l'arc tel que v(a) = d, et β la formule prenant racine au noeud M de α, alors g SLDD⊗ α (#-x) = ϕ(a) ⊗ g SLDD⊗ β (#-x).
Deux monoïdes sont particulièrement intéressants : R + , +, 0 (le langage correspondant est noté SLDD +) et R + , ×, 1 (le langage correspondant est noté SLDD ×). Les langages SLDD + et SLDD × ont tous deux des conditions de normalisation qui assurent leur canonicité. De plus, toute formule de l'un de ces deux langages peut être traduite en temps linéaire vers le langage AADD .

Il en va de même pour le langage ADD, dont chaque formule peut être traduite en temps linéaire en une formule de chacun des trois autres langages étudiés ici ; un exemple est donné en figure 2 (pour plus de détails sur les traductions de formules d'un langage vers un autre, voir Fargier et al. [START_REF] Fargier | Compacité pratique des diagrammes de décision valués : normalisation, heuristiques et expérimentations[END_REF]). Enfin, notons que si les variables sont booléennes, et V = {0, 1}, toute formule de chacun des quatre langages considérés peut être traduite en un OBDD en temps linéaire, la réciproque étant trivialement vraie. -L satisfait l'optimisation OPT max (resp.

OPT min) si et seulement s'il existe un algorithme en temps polynomial associant à toute formule α de L la valeur max

#-x ∈D f f L α (#-x) (resp. min #-x ∈D f f L α (#-x)).
-L satisfait l'équivalence EQ si et seulement s'il existe un algorithme en temps polynomial asso-ciant tout couple α, β de formules de L à 1 si f L α = f L β , et à 0 sinon. -L satisfait l'implication de formules SE si et seulement s'il existe un algorithme en temps polynomial associant tout couple α, β de formules de

L à 1 si ∀ #-x , f L α (#-x) f L β (#-x), et à 0 sinon. -L satisfait la cohérence partielle supérieure (resp.
inférieure, resp. égale) CO γ (resp CO γ , resp. CO ∼γ) si et seulement s'il existe un algorithme en temps polynomial associant tout γ ∈ V et toute formule

α de L à 1 si ∃ #-x , f L α (#-x) γ (resp. f L α (#-x) γ, resp. f L α (#-x) ∼ γ),
∈ V et toute formule α de L à 1 si ∀ #-x , f L α (#-x) γ (resp. f L α (#-x) γ, resp. f L α (#-x) ∼ γ),
(f L α), CUT γ (f L α), CUT γ (f L α) et CUT ∼γ (f L α) à la place de CUT max (f L α)
. Les familles de requêtes MX et ME sont cruciales pour le raisonnement bayésien et la configuration interactive. Elles capturent, par exemple, la demande d'une explication parmi les plus probables (MX max), ou d'une des configurations les moins chères (MX min). Dans ces applications, le comptage est également utile, comme pour caractériser le nombre de voitures « bon marché » (CT γ) ou le nombre de maladies suffisamment probables pour être considérées (CT γ). Les autres requêtes, telles la cohérence, la validité, l'équivalence ou l'implication, sont utiles à de nombreux problèmes de raisonnement, notamment car elles étendent aux bases de connaissances pondérées les requêtes analogues définies sur les formules booléennes en NNF. -L satisfait la -marginalisation de variable Marg si et seulement s'il existe un algorithme en temps polynomial associant à toute formule α de L et toute variable x ∈ X une L-représentation de #-z ∈D X \{x} f L α, #z . -L satisfait la γ-coupe haute CUT γ , suivant un préordre sur V, si et seulement s'il existe un algorithme en temps polynomial associant à toute formule α de L et toutes valeurs γ, a, b ∈ V vérifiant a b, une L-représentation de la fonction g définie par g(

#-x) = a si #-x ∈ CUT γ (f L α), et g(#-x) = b sinon.
Les transformations CUT γ , CUT ∼γ , CUT max et CUT min sont définies de la même façon, en utilisant respectivement les ensembles

CUT γ (f L α), CUT ∼γ (f L α), CUT max (f L α) et CUT min (f L α).
La transformation classique d'« oubli » de variables (forgetting) correspond à leur max-élimination. La marginalisation sur une variable est équivalente à l'élimination de toutes les variables, sauf une ; la +-marginalisation est typiquement importante dans le cadre des réseaux bayésiens, pour effectuer la posterior marginal request (voir par exemple Darwiche [START_REF] Darwiche | Modeling and Reasoning with Bayesian Networks[END_REF]), et dans les problèmes de configuration, la min-marginalisation dans un VDD représentant une fonction de prix revient à calculer le prix minimal associé à toute valeur possible de la variable en question (qui représente par exemple une option pour une voiture, voir Astesana et al. [START_REF] Astesana | Constraint-based vehicle configuration: A case study[END_REF]). On trouve un autre exemple d'utilisation en planification stochastique, où l'algorithme d'itération de la valeur peut être a été implémenté par une suite de +-éliminations et de ×combinaisons sur des formules ADD [START_REF] Hoey | SPUDD: Stochastic planning using decision diagrams[END_REF].

Pour finir, la famille des opérations de coupe représente la restriction d'une fonction aux affectations optimales (les voitures les moins chères, les explications les plus probables. . .) ou proches de l'optimum (les voitures à moins de γ euros, les maladies ayant une probabilité > γ). Pour qu'elle reste aussi générale que possible, nous avons défini cette famille d'opérations comme des transformations au sein d'un même langage, mais il est important de noter qu'en prenant -ADD, SLDD + , SLDD × et AADD satisfont EQ et CD.

-ADD, SLDD + et SLDD × satisfont SE.
Pour structurer les autres résultats, nous distinguons trois catégories d'opérations : celles liées à l'optimisation, qui sont traitables sur les VDDs ; celles liées à la coupe suivant un seuil γ, qui peuvent devenir difficiles ; et les transformations de combinaison et d'élimination de variables. Les résultats obtenus pour les deux premières catégories sont résumés dans la table 1, et ceux obtenus pour la troisième le sont dans la table 2.

Opérations liées à l'optimisation. Comme évoqué précédemment, OPT max et OPT min sont traitables pour les formules AADD [START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF] comme pour les formules SLDD [START_REF] Wilson | Decision diagrams for the computation of semiring valuations[END_REF], et leur satisfaction par ADD est évidente. Tous les résultats positifs de la table 1 sont liés aux faits que (i) les VDDs sont des graphes sans circuit, et (ii) l'agrégation des valuations ϕ est monotone sur les classes considérées. Dans de tels diagrammes, les chemins de valeur minimale (resp. maximale) peuvent être obtenus en temps polynomial, grâce à un algorithme de recherche de plus court (resp. plus long) chemin. En s'appuyant sur cette idée, on peut écrire une procédure en temps polynomial construisant une formule MDD qui représente les affectations optimales -ce qui implique la satisfaction de CUT max et CUT min , dont on peut déduire celle des requêtes portant sur ces coupes. Opérations liées aux γ-coupes. Les requêtes et transformations liées à l'optimisation pure sont donc faciles ; cependant, pour de nombreuses applications, l'optimisation seule ne suffit pas. Ainsi, un client voulant acheter une voiture ne cherche pas forcément la moins chère, mais un véhicule qui satisfait ses desiderata tout en étant relativement bon marché, c'està-dire, d'un coût inférieur à un certain seuil -d'où l'importance des γ-coupes.

Un résultat positif est qu'il suffit de comparer la valeur maximale (resp. minimale) de f L α (qui peut s'ob-

tenir en temps polynomial) à γ ∈ R + pour décider s'il existe un #-x tel que f L α (#-x) ≥ γ (resp. ≤ γ).
De même, décider de la γ-validité d'une formule α nécessite seulement de comparer γ à la valeur maximale (resp. minimale) de f L α .

Proposition 4.3. ADD, SLDD + , SLDD × et AADD satis- font CO γ , VA γ , CO γ , VA γ et VA ∼γ .
Bien qu'il soit possible de vérifier en temps polynomial s'il existe une affectation conduisant à une valeur supérieure ou égale à γ, déterminer s'il existe une affectation conduisant exactement à γ est difficile sur SLDD + , SLDD × et AADD. La preuve s'appuie sur une réduction polynomiale depuis le problème de décision subset sum [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] L'idée de la preuve du premier point est que depuis tout noeud d'une formule AADD normalisée, il existe un chemin vers le noeud terminal qui correspond à la valeur 1, et un autre qui correspond à la valeur 0. Un chemin de la racine à ce noeud lui fournit un offset (notons-le p, q), calculé à partir de ses arcs. Il est ainsi possible de répondre à ME γ (resp. ME γ) en énumérant tous les chemins, sans explorer les noeuds pour lesquels p + q < γ (resp. p > γ).

La preuve du point suivant s'appuie sur le fait que si CT γ était satisfaite, il serait possible de compter les affectations #x vérifiant f α (#x) ≥ γ, et également celles vérifiant f α (#x) > γ ; CT ∼γ serait donc satisfaite, or nous avons montré qu'elle est difficile (même principe pour CT γ).

Les transformations CUT γ et CUT γ ne sont pas satisfaites, et ce inconditionnellement (même si P = NP). Pour le cas de CUT γ sur SLDD + , la preuve utilise le fait que la fonction

f (#-y • #-z) = n i=1 y i • √ √ √ √ • CO∼γ √ • • • • CO γ / CO γ √ √ √ √ • ME∼γ √ • • • • ME γ / ME γ √ √ √ √ • MX∼γ √ • • • • MX γ / MX γ √ √ √ √ • CUT∼γ √ • • • ? CUT γ / CUT γ √ • • • ? CT∼γ √ • • • • CT γ / CT γ √ • • • •
2 n-i + n i=1 z i • 2 n-i a une SLDD + -représentation com- portant seulement 2n + 1 noeuds, en utilisant l'ordre y 1 • • • y n z 1 • • • z n sur
les variables, alors qu'il n'existe aucune formule en OBDD de taille polynomiale représentant la fonction qui vaut 1 quand f (#y • #z) ≥ 2 n et 0 sinon. Les autres preuves sont similaires, en adaptant la fonction f .

Ces résultats sur AADD et SLDD contrastent avec le cas du langage ADD, qui satisfait toutes les transformations CUT (les γ-coupes s'obtiennent par une procédure simple de fusion de noeuds terminaux), et donc également toutes les requêtes MX, ME, CT et CO.

Combinaison, élimination de variables, marginalisation. Aucun des langages considérés ne satisfait les transformations de combinaison ou d'élimination de variables dans leur version non bornée ; ce n'est pas surprenant si l'on observe que (i) la combinaison disjonctive non bornée (∨C) et l'oubli (FO) ne sont pas satisfaits par OBDD ; (ii) toute formule d'OBDD peut être vue comme une formule d'ADD, et donc être traduite en temps polynomial en SLDD + (resp. SLDD × , AADD) ; et (iii) la disjonction de plusieurs formules en OBDD revient à couper leur somme (leur combinaison par +) à la valeur minimale (par construction, les contre-modèles de la disjonction sont les #x tels que ϕ(#x) = 0, la formule résultante peut donc être vue comme une formule en OBDD dont la négation est équivalente à la disjonction de la formule de départ) or tous les langages considérés satisfont CUT min . Les autres preuves s'appuient sur des arguments similaires. Il est [START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF] ont proposé une extension de l'algorithme « apply » de Bryant [START_REF] Bryant | Graph-based algorithms for Boolean function manipulation[END_REF], lequel est en temps polynomial sur OBDD pour les opérations AND et OR, pour combiner deux formules en AADD (par +, ×, max ou min) ; cet algorithme est directement adaptable aux autres langages de la famille des VDDs considérés dans cet article. Cependant, la complexité de cette procédure « apply » n'avait pas été identifiée formellement ; un des principaux résultats de cet article est que les combinaisons bornées sont difficiles sur AADD, ce qui implique que l'algorithme en question n'est pas en temps polynomial. Proposition 4.9.

Transformation ADD SLDD+ SLDD× AADD maxBC / minBC √ • • • +BC √ √ • • ×BC √ • √ • maxC / minC • • • • +C / ×C • • • • maxElim / minElim • • • • +Elim / ×Elim • • • • SmaxElim / SminElim • • • • S+Elim / S×Elim • • • • SBmaxElim / SBminElim √ • • • SB+Elim √ √ • • SB×Elim √ • √ • maxMarg / minMarg √ √ √ √ +Marg √ √ √ √ ×Marg √ ? √ ?
-SLDD + , SLDD × et AADD ne satisfont pas maxBC, minBC, SBmaxElim ou SBminElim.

-SLDD × et AADD ne satisfont pas +BC, et donc pas SB+Elim.

-SLDD + et AADD ne satisfont pas ×BC, et donc pas SB×Elim.

La difficulté de maxBC et de minBC vient directement de celle de CUT γ et CUT γ . Celle de ×BC se prouve en considérant les deux fonctions suivantes, qui portent sur des variables booléennes : f (#x) = n-1 i=0 x i •2 i (représentation d'un entier par un vecteur de bits) et g(#x) = 2 n+1 -f (#x). Chacune a une SLDD + -représentation (pour l'ordre x 0 x 1 • • • x n-1) comportant n + 1 noeuds et 2n arcs ; or il est possible de montrer que la SLDD + -représentation de f × g (pour le même ordre) contient un nombre exponentiel d'arcs au dernier niveau, même après normalisation. Cela montre que toute SLDD + -représentation de f × g est de taille exponentielle. Les autres preuves procèdent de la même manière, avec des fonctions f et g adaptées.

Il y a en fait deux cas dans lesquels la combinaison bornée n'est pas difficile : lorsque le langage considéré est ADD, et lorsque l'opérateur de combinaison est aussi celui servant à agréger les valeurs des arcs dans le langage considéré (l'addition pour SLDD + et le produit pour SLDD ×). Dans ces deux cas, éliminer une variable de domaine borné est également réalisable en temps polynomial -par définition de l'élimination de variable.

Proposition 4.10.

-SLDD + satisfait +BC et SB+Elim.

-SLDD × satisfait ×BC et SB×Elim.

-ADD satisfait BC et SB Elim pour toute opération ∈ {×, +, min, max}.

Pour finir, nous avons prouvé que tous les langages considérés satisfont la marginalisation suivant tous les opérateurs, à l'exception de la ×-marginalisation sur AADD et SLDD + , dont la satisfaction reste à déterminer. -ADD, SLDD + , SLDD × et AADD satisfont Marg, pour toute opération ∈ {+, min, max}.

-ADD et SLDD × satisfont ×Marg.

Conclusion

Cet article a présenté une analyse de la complexité des langages de la famille des VDDs à valeurs réelles pour un ensemble de requêtes et de transformations utiles. Les requêtes liées à l'optimisation se révèlent faisables pour tous les langages considérés, et c'est également le cas de la marginalisation additive et de certaines requêtes liées aux coupes ; ces dernières sont généralement difficiles lorsque l'on cherche à atteindre exactement une valeur γ, et cette difficulté s'étend aux transformations liées. Un des principaux résultats est que les combinaisons, même bornées, sont difficiles sur les VDDs, ce qui implique qu'aucun algorithme « apply » ne peut être en temps polynomial sur les formules en AADD dans le cas général, même pour les opérations simples et « booléennes » que sont min et max. Lorsqu'il est nécessaire de pouvoir effectuer des combinaisons bornées par + (resp. par ×) efficacement, le meilleur compromis temps/espace est offert par SLDD + (resp. SLDD ×). Enfin, il s'avère que la complexité de diverses opérations liées à l'optimisation est meilleure pour les langages de la famille des VDDs que pour d'autres langages dédiés à la représentation de fonctions non booléennes comme VCSP + ; des résultats proches sont à attendre pour les GAI-nets ou les réseaux bayésiens, pour lesquels l'optimisation est également difficile.

 Langages de la famille des VDDs. On s'intéresse à plusieurs langages de la famille des VDDs, à savoir ADD, SLDD et AADD. Chacun d'entre eux impose des restrictions sur les diagrammes admissibles (par exemple, dans le langage ADD seuls les noeuds terminaux portent des valuations ϕ), et définit comment ils sont interprétés. De ce fait, les langages ADD, SLDD et AADD diffèrent à la fois syntaxiquement (par la façon dont les arcs et les noeuds sont étiquetés) et sémantiquement (par la façon dont les formules sont interprétées). La figure 1 présente des représentations d'une même fonction dans chacun de ces langages, dont nous allons maintenant rappeler la définition. Définition 2.3 (ADD). Le langage ADD est le quadruplet C ADD , Var ADD , f ADD , s ADD , avec C ADD l'ensemble des VDDs ordonnés sur X dont chaque noeud terminal est étiqueté par un élément de E = V (en général, E = V = R +) et dont les arcs ne sont pas étiquetés, et f ADD définie comme suit, pour chaque formule α et chaque affectation #x :

Figure 1 -

 1 Figure 1 -Exemple de VDDs dans trois langages différents, ADD (a), SLDD + (b), et AADD (c), tous trois représentant la même fonction sur les variables {x 1 , x 2 , x 3 } avec D x1 = D x3 = {0, 1} et D x2 = {0, 1, 2}.

 Définition 2.4 (AADD). Le langage AADD est le quadruplet C AADD , Var AADD , f AADD , s AADD , avec C AADD l'ensemble des VDDs ordonnés sur X ayant un unique noeud terminal, et dont les arcs sont étiquetés par un couple q, f dans R + × R + . A des fins de normalisation, la racine de α est également étiquetée par un couple

Figure 2 -

 2 Figure 2 -Exemple de traduction d'une formule du langage ADD vers le langage SLDD + : (a) formule ADD de départ, (b) les poids sont remontés sur les arcs, (c) les noeuds x 2 puis x 1 sont normalisés, et (d) les noeuds isomorphes sont fusionnés.

Définition 3 . 2

 32 (transformations). Soit L un langage de représentation sur X à valeurs dans V, et un opérateur binaire associatif et commutatif sur V.-L satisfait le conditionnement CD si et seulement s'il existe un algorithme en temps polynomial associant à toute formule α de L, toutX ⊆ X , et tout #x ∈ D X , une L-représentation de f L α, #x . -L satisfaitla -combinaison bornée BC si et seulement s'il existe un algorithme en temps polynomial associant à tout couple α, β de formules de L, une L-représentation de f L α f L β . -L satisfait la -combinaison C si et seulement s'il existe un algorithme en temps polynomial associant à tout ensemble {α 1 , . . . , α n } de formules de L, une L-représentation de n i=1 f L αi . -L satisfait la -élimination de variables Elim (resp. d'une seule variable, S Elim) si et seulement s'il existe un algorithme en temps polynomial associant à toute formule α de L et tout ensemble de variables X ⊆ X (resp. tout singleton X ⊆ X) une L-représentation de #-x ∈D X f L α, #x . -L satisfait la -élimination d'une variable bornée SB Elim si et seulement s'il existe un polynôme p et un algorithme associant à toute formule α de L et toute variable x ∈ X , une L-représentation de #-x ∈Dx f L α, #x en temps p(|α| |Dx|).

a = 1

 1 et b = 0 quand V = R + , la coupe d'un VDD est en fait une formule du langage MDD[START_REF] Srinivasan | Algorithms for discrete function manipulation[END_REF], une extension directe d'OBDD aux variables non booléennes, qui satisfait à peu près les mêmes requêtes et transformations, comme CO, CD, SE, etc.[START_REF] Amilhastre | Compiling CSPs: A complexity map of (non-deterministic) multivalued decision diagrams[END_REF].4 Carte de compilation des VDDs ordonnés à valeurs dans R + Nous pouvons à présent établir une carte de compilation des VDDs représentant des fonctions à valeur réelle ; on se focalise donc dans la suite de l'article sur le cas V = R + , avec l'ordre habituel ≥ sur R + , et ∈ {max, min, +, ×}. Les langages considérés sont ADD, SLDD × , SLDD + et AADD ; nous laissons de côté SLDD max et SLDD min , ces langages ayant été prouvés équivalents à ADD modulo une transformation polynomiale[START_REF] Fargier | Semiring labelled decision diagrams, revisited: Canonicity and spatial efficiency issues[END_REF].Commençons par les requêtes de base. Chacun des quatre langages examinés satisfait CD : conditionner une formule α par une affectation #x peut être effectué en temps linéaire grâce à un algorithme adapté du cas OBDD. De plus, comme la représentation de toute fonction en une formule réduite (resp. réduite et normalisée) de ADD (resp. AADD, SLDD × , SLDD +) est unique, et comme les procédures de réduction et normalisation sur chacun des quatre langages sont polynomiales, ils satisfont tous EQ. Enfin, SE est satisfaite par ADD, SLDD + et SLDD × , grâce à une combinaison de coupes, d'inversion des valuations sur les arcs et de traduction vers MDD. Décider si AADD satisfait SE reste en revanche un problème ouvert. Proposition 4.1.

Proposition 4 . 2 .

 42 ADD, SLDD + , SLDD × et AADD satisfont OPT max , OPT min , CUT max , CUT min , ME max , ME min , MX max , MX min , CT max et CT min .

 et à 0 sinon. -L satisfait la validité partielle supérieure (resp. inférieure, resp. égale) VA γ (resp VA γ , resp. VA ∼γ) si et seulement s'il existe un algorithme en temps polynomial associant tout γ

 et à 0 sinon. -L satisfait l'énumération de max-modèles ME max si et seulement s'il existe un polynôme p et un algorithme associant à toute formule α de L l'ensemble des éléments de CUT max (f L α) en temps p(|α|, |CUT max (f L Les requêtes ME min , ME γ , ME γ et ME ∼γ (resp. MX min , MX γ , MX γ et MX ∼γ ; resp. CT min , CT γ , CT γ et CT ∼γ) sont définies de la même façon que ME max (resp. MX max ; resp. CT max), en utilisant respectivement les ensembles CUT min

α)|).

-L satisfait l'extraction de max-modèle MX max si et seulement s'il existe un algorithme en temps polynomial associant à toute formule α de L un élément de CUT max (f L α). -L satisfait le comptage de max-modèles CT max si et seulement s'il existe un algorithme en temps polynomial associant à toute formule α de L le nombre d'éléments de CUT max (f L α).

.

 Proposition 4.4. SLDD + , SLDD × et AADD ne satisfont pas CO ∼γ , sauf si P = NP. Il est clair que la satisfaction de MX ∼γ ou CT ∼γ est une condition suffisante à celle de CO ∼γ ; cela est vrai en toute généralité, et pas seulement sur nos quatre langages à valeurs dans R + . De façon similaire, on peut montrer que ME ∼γ est également une condition suffisante à CO ∼γ , et que CUT ∼γ implique MX ∼γ si l'une des requêtes MX est satisfaite. Proposition 4.5. Soit L un langage de représentation sur X à valeurs dans un ensemble V totalement ordonné par une relation . -Si L satisfait CUT ∼γ et l'une des requêtes MX, alors il satisfait MX ∼γ . -Si L satisfait MX ∼γ , CT ∼γ ou ME ∼γ , alors il satisfait CO ∼γ . Corollaire 4.6. SLDD + , SLDD × et AADD ne satisfont pas MX ∼γ , CUT ∼γ , CT ∼γ ou ME ∼γ , sauf si P = NP. Proposition 4.7. Soit L ∈ {SLDD + , SLDD × , AADD}. -L satisfait ME γ , ME γ , MX γ et MX γ . -L ne satisfait ni CT γ ni CT γ , sauf si P = NP. -L ne satisfait ni CUT γ ni CUT γ .

	Ainsi, excepté VA ∼γ , les requêtes visant la coupe
	exacte d'une fonction représentée par un VDD à un
	seul noeud terminal sont difficiles. La situation est plus
	nuancée lorsque l'on s'intéresse aux coupes inférieure
	et supérieure.

Table 1 -

 1 Résultats sur les requêtes de base, l'optimisation et les γ-coupes ; √ signifie « satisfait », • signifie « ne satisfait pas », et • signifie « ne satisfait pas, sauf si P = NP ». Les résultats pour les problèmes de satisfaction de contraintes valuées additives (VCSP +) sont données à titre de comparaison.

Table 2 -

 2 Résultats sur les transformations (voir légende des symboles en table 1). ; √ signifie « satisfait », • signifie « ne satisfait pas », et • signifie « ne satisfait pas, sauf si P = NP ». à noter que contrairement au cas d'OBDD, même laélimination d'une seule variable est difficile (l'idée est que la -combinaison des deux formules peut s'obtenir en -éliminant une variable supplémentaire). 4.8. ADD, SLDD + , SLDD × et AADD ne satisfont pas C, Elim ou S Elim, quelle que soit l'opération ∈ {max, min, +, ×}.

	Proposition La question de la combinaison bornée est plus dé-
	licate. Sanner & McAllester

Des noeuds N et M sont dits isomorphes s'ils sont étiquetés par la même variable x, portent (le cas échéant) le même ϕ-label, et qu'il existe une bijection B de Out(N) dans Out(M) telle que ∀a ∈ Out(N), a et B(a) ont le même noeud terminal, partagent la même valeur de Dx, et ϕ(a) = ϕ(B(a)).

Remerciements

Ces travaux ont été en partie soutenus par le projet BR4CP ANR-11-BS02-008 de l'Agence Nationale de la Recherche.