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Low dimensional behavior of two ultra-cold atoms trapped in two- and one-dimensional waveg-
uides is investigated in the vicinity of a magnetic Feshbach resonance. A quantitative two-channel
model for the Feshbach mechanism is used, allowing an exhaustive analysis of low-dimensional res-
onant scattering behavior and of the confinement induced bound states. The role of the different
parameters of the resonance is depicted in this context. Results are compared with the ones of
the zero-range approach. The relevance of the effective range approximation in low dimensions is
studied. Examples of known resonances are used to illustrate the bound state properties.

PACS numbers: 34.50.Cx 03.65.Nk 03.65.Ge 05.30.Jp

I. INTRODUCTION

The use of magnetic Feshbach resonances and highly
anisotropic traps offers the possibility to achieve strongly
correlated dilute ultra-cold atomic gases. Feshbach res-
onances permit the tuning of the scattering length (de-
noted a) for two colliding atoms by using an external
magnetic field [1]. The standard expression for the scat-
tering length as a function of the external magnetic field
B for a Feshbach resonance (FR) located at the magnetic
field B = B0 is

a = abg

(
1− ∆B

B −B0

)
, (1)

where abg is the background scattering length, i.e., the
scattering length for large magnetic detuning, and ∆B is
the magnetic width of the FR. Feshbach resonances can
be used for many atomic species and depending on the
value of the magnetic field, the ultracold gas in an opti-
cal trap can be studied in all the scattering regimes from
very small interactions (for a small value of the scattering
length) to the resonant regime (for a large value of the
scattering length). The fine control of the trapping fre-
quencies permits also to reach geometries where the one-
dimensional (1D) or the two-dimensional (2D) behavior
of the ultracold gas can be observed [2, 3]. In the limit of
a purely 1D (respectively 2D) geometry, atoms are free
to move along one (respectively two) direction(s) whereas
the system is frozen in the transverse direction(s). These
configurations can be reached by using a 2D (or 1D)
harmonic trap which plays the role of an atomic waveg-
uide. This transverse trap leads to confinement induced
resonances in low dimensional scattering, predicted in
Refs. [4, 5] and observed in Ref. [6].

For a gas of density n in a trap of atomic frequency
ω⊥ and transverse length a⊥, the D-dimensional be-
havior at temperature T is reached in the limit where
kBT � ~ω⊥ and na3

⊥ � 1. The degenerate regime is
achieved for atomic densities n larger than or of the
order of aD−3

⊥ /λDT where λT is the de Broglie wave-
length. The limit of Tonks-Girardeau and super Tonks-

Girardeau [7, 8] are two celebrated examples of highly
correlated 1D phase which have been achieved thanks to
ultra-cold atoms experiments [9–11]. In the 2D geome-
try the interplay between the Bose-Einstein condensate
(BEC) and the Berezinskii-Kosterlitz-Thouless (BKT)
transitions has been subject to intensive experimental
studies [12, 13].

Aside from the properties of the systems in the strict
1D or 2D limits, i.e., in the monomode regime of the
atomic waveguide, depending on the temperature, the
atomic density, and the trap parameters, the study of
the transition from three-dimensional (3D) to the low-
dimensional physics has also its own fundamental inter-
est. In ongoing studies, the quasi-1D or quasi-2D nature
of the system, i.e., the population of the transverse modes
of the atomic waveguide as a function of the relative
energy in two-body processes is a relevant issue in the
few- and many-body problems. For example, this per-
mits us to understand the emergence of Efimov physics
in confined geometries [14, 15] or also the contribution of
transverse modes in the experimental studies of the BKT
transition [16, 17].

Due to the crucial relevance of binary collisions in
atomic waveguides, this paper is aimed at presenting a
detailed analysis of the two-body problem for atoms in
1D and 2D atomic waveguides in the vicinity of a FR.
This issue has been already the subject to many theo-
retical studies [4, 5, 18–23] where a zero-range potential
approach was used and much more sophisticated multi-
channel studies have been performed in Refs. [24–26]. In
this paper, we use a finite-range two-channel modeling
of the FR resonance. This simple approach permits us
to obtain quantitative results in the dimensional reduc-
tion issue from the 3D to the low-dimensional behavior,
in a broad interval of the colliding energies and of the
external magnetic field. Several examples of known res-
onances illustrate the analysis. The relevance of zero-
range approaches in the context of quasi-1D or quasi-2D
scattering is studied.

The paper is organized as follows. In Sec. II, we present
the two-channel model used in this paper. We also give
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the expression of the transition operator of the model
which permits us to obtain straightforwardly scatter-
ing properties in quasi-1D and quasi-2D geometries. In
Sec. III, we consider two identical atoms without trap-
ping potential. This permits us to recover the mapping
between the two-channel model and the parameters de-
scribing the 3D two-body scattering in the low-energy
regime. In Sec. IV (and V), we study the two-body
scattering problem in a 2D (and 1D) atomic waveguide.
In the monomode regime, the low-dimensional scatter-
ing length and effective range parameter in the 2D (and
1D) geometry are exhibited. In Sec. VI, we focus on
the dimers’ properties in confined geometries: their do-
main of existence, their nature (Feshbach dimers, back-
ground dimers, confinement-induced dimers), the role of
the confinement, the population of the molecular state.
We apply these results to known FR which illustrate
three different regimes of collisions (see Table (II)): (i)
a broad FR of the cesium (133Cs) which is character-
ized also by a large scattering length in the off-resonant
regime (vicinity of a shape resonance); (ii) two examples
of narrow FR with potassium (39K) and sodium (23Na);
and (iii) a broad resonance of the lithium (7Li). We
compare the binding energies of dimers between the two-
channel model and two models of zero-range pseudopo-
tential (the Wigner-Bethe-Peierls model and the effective
range model). Our study permits us to give the regimes
where the effective range approach is relevant.

II. TWO-CHANNEL MODEL

A. Hamiltonian

All the two-channel models used in ultra-cold physics
capture the heart of the Feshbach mechanism: the scat-
tering resonance is a consequence of the coherent cou-
pling between a pair of atoms in the open channel (i.e.
the channel where the scattering process can be observed)
and a molecular state in a closed channel [1]. They have
been introduced in the context of ultra-cold physics in
the study of the BEC-BCS crossover [27].

The two-channel model of this paper has been used
in several studies of the few- and many-body problems.
In the few-body problem, it gives quantitative results
whereas the equations to be solved are of the same de-
gree of complexity than those obtained with zero-range
models [28–32]. The model permits us to describe quan-
titatively the interplay between a shape resonance (where
the scattering resonance is due to the direct pairwise in-
teraction between atoms in the open channel) and the
FR: a relevant issue in the case of Cs atoms [30, 33].
The resonance width is another important feature of the
model, which has important consequences in the few- and
many-boson properties [34–36].

In the model, atoms and molecules are structureless.
The pair of atoms in the open channel, characterized by
a reduced mass µ and a total mass M , is coherently cou-

pled with a molecular state of mass M which belongs to
the closed channel. In what follows, Ĥa

0 denotes the free

Hamiltonian for two atoms and Ĥm
0 is the free Hamil-

tonian for a single molecule. Depending on the system
under study, the free Hamiltonian may include an exter-
nal potential acting on the positions of the atoms and of
the molecule. In this paper we consider only harmonic
external potentials, so that the center of mass and the
relative motions are separable. The quantum numbers
which label the eigenstates of Ĥa

0 are denoted by (αc)
for the center of mass and (αr) for the relative particle.

The eigenstates of Ĥm
0 for the motion of the molecule are

labeled by (αm):

Ĥa
0 |αr, αc〉 = [Ec(αc) + Er(αr)] |αr, αc〉 (2)

Ĥm
0 |αm〉 = [Ec(αm) + Emol] |αm〉, (3)

where Emol is the molecular energy, or internal energy of
the molecule. The zero of the energies has been arbitrar-
ily fixed at the threshold of the atomic continuum in the
free space. The molecular energy varies as a function of
an applied external magnetic field B which permits us
to set the scattering length at a desired value. We make
the hypothesis that the detuning is sufficiently small that
Emol can be considered as an affine function of B. We
then introduce the slope in the vicinity of the FR located
at B = B0:

δM =

(
∂Emol

∂B

)
B0

, (4)

which corresponds to the difference between the magnetic
moments for an atomic pair in the open channel and the
molecular state in the closed channel. The direct inter-
action between two atoms in the open channel V̂d , is
modeled by a separable potential [37]:

V̂d = g|δε〉〈δε|, (5)

where g is the coupling constant and |δε〉 is the ket asso-
ciated with a Gaussian for the relative coordinates of the
pair. In the momentum representation:

〈k|δε〉 ≡ χε(k) ≡ exp(−k2ε2/4). (6)

The parameter ε is of the order of the range of the
interatomic forces, i.e., of the van der Waals range

1
2

(
2µC6

~2

)1/4

where C6 is the London dispersion coeffi-

cient. Typically, ε is of the order of few nanometers. In
this paper, all the calculations are performed for finite
values of ε. The state |δε〉 for the relative particle is also

used in the coupling operator V̂c between a molecular
state (|Ψm〉) in the closed channel and a two-atom state
(|Ψa〉) in the open channel [37]:

〈Ψa|V̂c|Ψm〉 = Λ〈Ψa| (|δε〉 ⊗ |Ψm〉) , (7)

where Λ is a real and positive parameter and the cen-
ter of mass of the pair in the bra 〈Ψa| acts on the ket
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|Ψm〉. Using these notations, the stationary Schrödinger
equation at energy E can be written as

(E − Ĥa
0 )|Ψa〉 = Λ|δε〉 ⊗ |Ψm〉+ g|δε〉 ⊗ 〈δε|Ψa〉, (8)

(E − Ĥm
0 )|Ψm〉 = Λ〈δε|Ψa〉. (9)

B. Transition operator

In this section, we derive the transition operator of
our two-channel model. As it will be shown, the tran-
sition matrix in low dimensions follow straightforwardly
from its expression. For this purpose, we introduce the
resolvents Ĝa

0(λ), for an atomic pair and Ĝm
0 (λ), for a

molecule:

Ĝa
0(λ) = (λ− Ĥa

0 )−1 ; Ĝm
0 (λ) = (λ− Ĥm

0 )−1. (10)

After some algebra, one finds for a scattering process at
energy E with an incoming state in the open channel
|Ψ0〉:

|Ψa〉 = |Ψ0〉+ Ĝa
0(E + i0+)|δε〉

⊗
[
g + Λ2Ĝm

0 (E)
]
〈δε|Ψa〉, (11)

where

〈δε|Ψa〉 =

(
1mol − 〈δε|Ĝa

0(E + i0+)|δε〉

×
[
g + Λ2Ĝm

0 (E)
])−1

〈δε|Ψ0〉. (12)

The incoming state |Ψ0〉 ≡ |α0
r, α

0
c〉 is an eigenstate of

Ĥa
0 . The form of the coherent coupling in Eqs. (8) and

Eq. (9) implies that the center of mass of the molecule
and of the atomic pair have the same quantum numbers:
α0
m = α0

c .
The collisional properties of the atomic pair depend on

the relative energy Erel, i.e., the energy of the pair in its
center-of-mass frame:

Erel ≡ Er(α0
r) = E − Ec(α0

c). (13)

We continue our study in the center of mass frame, where
the wave function for the relative motion of the pair at
energy Erel is denoted by |Ψrel〉. The general expression
for the scattering state is

|Ψrel〉 = |α0
r〉+ Ĝrel

0 (Erel + i0+)T̂ (Erel + i0+)|α0
r〉, (14)

where the transition operator of the two-channel model
is

T̂ (λ) =
|δε〉〈δε|(

g + Λ2

λ−Emol

)−1

− 〈δε|Ĝrel
0 (λ)|δε〉

, (15)

and Ĝrel
0 (λ) is the resolvent for the relative particle which

depends on the external potential:

Ĝrel
0 (λ) =

(
λ− p̂2

2µ
− V̂ rel

trap

)−1

. (16)

In Eq. (16), p̂ is the relative momentum of the pair and

V̂ rel
trap is the part of the trap potential which acts only on

the relative particle.

III. TWO PARTICLES IN THE FREE SPACE

In this section, we recall the mapping between the pa-
rameters of the model (Emol, δM, ε,Λ, g) and the low-
energy scattering features for two particles in the free
space. In this situation, there is no external potential
and αr = k is the momentum of the relative particle.

The on-shell transition matrix for a scattering process
at a relative energy λ = Erel > 0 is deduced from Eq. (15)
which gives the transition matrix of Refs. [28, 30, 37].
The standard expression for the scattering length as a
function of the external magnetic field in Eq. (1) is ob-
tained by the mapping

B −B0 =
Emol

δM
− Λ2

gδM
+ ∆B, (17)

∆B =
2π~2Λ2abg

µg2δM
, (18)

abg =

√
π

2

εg

g − gc
with gc = −

√
2π3/2~2ε

µ
. (19)

In this paper, we also use the width parameter R? [34]

R? =
~2

2µabgδM∆B
. (20)

This length, which is always positive, characterizes the
width of resonance: for narrow resonances, it is large as
compared to the range of the interatomic forces.

Using these definitions, for an incoming wave number
krel and an energy Erel = ~2k2

rel/(2µ), one can introduce
an energy dependent scattering length

aeff(Erel) = [χε(krel)]
2

[
1

a
+

R?(1− abg
a )2k2

rel

R?abg(1− abg
a )k2

rel + 1

]−1

.

(21)
The length aeff permits us to simplify the expression of
the on-shell transition matrix in the free space with:

〈krel|T̂ (Erel)|krel〉 =

2π~2

µ

1
aeff (Erel)

+ ikrelerfc
(
−iεkrel√

2

) . (22)

We close this section by recalling the main results on
the 3D bound states of the model. At this stage, it is
worth pointing out that in this paper, a dimer denotes a
bound state of two particles in the open channel and is
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δM(B −B0) < 0 δM(B −B0) > 0

abg < ε
√

π
2

FD no dimer

abg > ε
√

π
2

FD + BD BD

TABLE I: Domain of existence of the Feshbach dimer (de-
noted FD) and background dimer (denoted BD) in the free
space as a function of the energy detuning δM× (B −B0).

not a molecule which belongs to the closed channel. The

binding energies of the dimers Edim = −~2q2

2µ , where the

binding wave number q is positive (q > 0), are given by
the poles of the transition matrix in Eq. (22). They have
been already studied in Ref. [30]. One can distinguish two
types of dimers: (i) the background dimer (BD), which
results from the direct interaction in the open channel
without interchannel coupling; (ii) the Feshbach dimer
(FD), which results from the coupling between a pair of
atoms and the molecular state. The Feshbach dimer can
be seen as a contamination of the open channel by the
molecular state due to the coupling with pairs of atoms.
For a large and negative energy detuning, the binding
energy of the Feshbach dimer verifies

Edim = Emol +
δM∆B

Emol

~2

2µε2

√
2
π
abg

ε

(1−
√

2
π
abg

ε )2
+ . . . (23)

As expected, it tends to the molecular energy, meaning
that the occupation probability of the pair in the open
channel tends to zero.

In this model, the BD exists only in the domain where
abg >

√
πε/
√

2 and the FD exists for negative-energy de-
tuning, i.e. for δM(B −B0) < 0. In the presence of a
BD, in the intermediate regime of negative energy detun-
ing there is a level crossing between the BD and the FD
corresponding to a large hybridization between the two
types of dimers. Consequently, the denomination of BD
and FD is somehow arbitrary in this region. The domain
of existence of the dimers is summarized in Table (I).

In Table (II), we have gathered the values of the pa-
rameters abg, ε, R

? for FR taken as examples in this pa-
per. The parameter ε is of the order of the range of
the interatomic forces. When spectroscopic data or ab
initio predictions on dimers binding energies are avail-
able, a precise value of the short-range parameter ε can
be determined. In this case, the model permits us to
describe quantitatively the dimer spectrum for large de-
tunings [28, 30]. In other cases, we have set ε at the value
of the van der Waals range.

IV. QUASI-2D GEOMETRY

A. Scattering in a 1D transverse harmonic trap

We consider a planar atomic waveguide consisting of a
harmonic trap of atomic frequency ω⊥ in the x direction.

Species B0 (G) ∆B (G) abg/a0 ε/a0 R?/a0
133Cs −11.7 28.7 1720 100 0.13
39K 752.4 −0.4 −35 65 1200
7Li 736.8 −192.3 −25 33 39.6

23Na 853 0.0025 63 44 2.1× 105

TABLE II: Characteristic lengths of FR considered in this
paper [1, 38]. The length a0 is the Bohr radius, B0 is the
magnetic field value at resonance, abg is the background scat-
tering length and R? is defined in Eq. (20).

The particles are thus free to move along the two other
directions. The characteristic length of the trap for the
relative particle is denoted by

a⊥ =

√
~

µω⊥
. (24)

The quantum numbers for the relative motion are de-
noted by αr ≡ (k, n), where k is a 2D vector and n labels
the states of the harmonic oscillator. The corresponding
eigen-energies are

Er(k, n) =
~2k2

2µ
+ ~ω⊥

(
n+

1

2

)
. (25)

In what follows, φn(x) denotes the eigenfunctions of the
harmonic trap:

φn(x) ≡ 〈x|n〉 =
1

π1/4

exp(− x2

2a2⊥
)

√
a⊥2nn!

Hn(x/a⊥). (26)

For convenience, we use in this paper the following re-
duced parameters:

τ ≡ λ

2~ω⊥
− 1

2D
and η ≡ ε2

2a2
⊥
. (27)

For the planar atomic waveguide, D = 2 and thus
τ = λ/2~ω⊥ − 1/4.

We now consider a scattering process where the incom-
ing wave of relative energy Erel = E0

(
E0 ≥ ~ω⊥

2

)
popu-

lates only one transverse mode n0. The interaction acts
only in the s-wave sector, consequently, scattering occurs
iff n0 is even and the outcoming state can populate only
even transverse modes. We then introduce the integer
p0 = n0/2. The incoming state is characterized by a 2D
momentum k0 [i.e., α0

r = (k0, 2p0)] and E0 = Er(k0, 2p0)
with

E0 =
~2k2

0

2µ
+ ~ω⊥

(
2p0 +

1

2

)
; τ0 =

E0 − ~ω⊥
2

2~ω⊥
.

(28)
The outcoming state is a coherent superposition of cylin-
drical waves characterized by the quantum numbers
αr = (qp, 2p). The conservation of energy gives

qp =

√
2µE0

~2
− 4p+ 1

a2
⊥

. (29)
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Equation (29) shows that after the scattering process,
for a state of relative energy E0 > ~ω⊥/2, only the
transverse modes of quantum numbers smaller or equal
to 2τ0 are populated in the open channel. Hence,
if ~ω⊥

2 < E0 <
5~ω⊥

2 , only the first transverse mode is
populated for large interatomic distances ρ (ρ� ε, a⊥):
this corresponds to the monomode regime of the planar
atomic waveguide. For E0 ≥ 5~ω⊥

2 , the number of even
transverse modes populated after the scattering process
is given by bτ0c where b·c indicates the integer part. For
increasing values of the relative energy E0, a new 2D-
continuum is opened when τ0 crosses an integer value.

Equation (15) shows that the scattering properties in
the planar atomic waveguide are deduced from the be-
havior of the function

〈δε|Ĝrel
0 (λ)|δε〉 =

∫
d2k

(2π)2

∞∑
n=0

|χε(k)〈δ1D
ε |n〉|2

λ− Er(k, n)
. (30)

In Eq. (30), |δ1D
ε 〉 is the Gaussian state associated with

the transverse degree of freedom. In the configuration
space, its representation is

〈x|δ1D
ε 〉 =

1

ε
√
π

exp(−x2/ε2). (31)

The transition matrix between the incoming state
|α0
r〉 = |k0, 2p0〉 and the outcoming state |αr〉 = |qp, 2p〉

can be written:

〈αr|T̂ (E0 + i0+)|α0
r〉 =

(
1− η
1 + η

)p0+p
φ2p(0)φ2p0(0)

|φ0(0)|2

× 2π~2

µ

e
(k20−q

2
p)ε

2

4 e4ηp0

√
π(1+η)a⊥e−η

aeff (E0) + J2(η, τ0 + i0+)
, (32)

where the function J2(η, τ) is defined by:

J2(η, τ) ≡ −2π~2

µ

e4ητ

|〈δ1D
ε |n = 0〉|2

×
[
〈δε|Ĝrel

0 (λ)|δε〉+
µ√

2π3/2~2ε

]
, (33)

where the energy λ is given by Eq. (27). In the configura-
tion space and in the limit of large interparticle distances,
the scattering state is

〈ρ, x|Ψk0,2p0
rel 〉 =

ρ�ε,a⊥
φ2p0(x)eik0·ρ − µ

~2

bτ0c∑
p=0

φ2p(x)

× ei(qpρ+
π
4 )√

2πqpρ
〈qpêρ, 2p|T̂ (E0 + i0+)|k0, 2p0〉. (34)

In what follows, we study the behavior of the function
J2(η, τ) which is in the denominator of the T -matrix in
Eq. (32). For this purpose, we perform the change of
variable y = ka⊥/2 in Eq. (30) and consider the domain

of negative reduced energies: τ < 0. This permits us to
use the transformation

1

τ − y2 − n/2
= −

∫ ∞
0

du eu(τ−n/2−y2). (35)

The summation over the variable n in Eq. (30) is achieved
in the Appendix (VI D). After integration over the vari-
able y, one obtains:

J2(η, τ) =

∫ ∞
0

du

u+ 4η

eτ(u+4η)√
1− e−u

(
1−η
1+η

)2
− (1 + η)e4ητ

√
η

.

(36)
In the limit of a vanishingly small reduced energy
(τ → 0), the function J2(η, τ) exhibits a logarithmic sin-
gularity, which is a characteristic of the quasi-2D geom-
etry:

J2(η, τ) = − ln (−τeγ)−C2D
0 (η)+C2D

1 (η)τ+O(τ2). (37)

In Eq. (37), γ = 0.577 . . . is the Euler constant,

C2D
0 (η) =

√
η −

∫ ∞
0

du

u+ 4η

×

 1√
1− e−u

(
1−η
1+η

)2
− 1√

u+ 4η
− u+ 4η

u+ 1

 (38)

and

C2D
1 (η) = 2 ln

[
2(1 + η)

(1 +
√
η)2

]
− 4η − 4(1 + η)

√
η. (39)

In the general case where τ is a complex variable on the
physical sheet (i.e., the complex plane with the branch
cut R+), the function J2(η, τ) can be represented by the
following series expansion:

J2(η, τ) = − (1 + η)
√
η

(
e4ητ − 1

)
− C2D

0 (η) + ln(4η)

+ E1(−4ητ)−
∞∑
p=1

(
1− η
1 + η

)2p
(2p− 1)!!

(2p)!!

× e4ηp

{
E1(4ηp)− E1[4η(p− τ)]

}
. (40)

When a continuum is opened in the scattering process,
one uses the analytic continuation for the exponential
integral function E1 in the calculation of J2(η, τ0 + i0+)
defined in Eq. (40) [39]:

E1(−x− i0+) = −Ei(x) + iπ (x > 0). (41)

B. Low energy and zero-range limit

In usual situations, the typical radius of interatomic
forces is negligible as compared to the transverse length
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a⊥ (ε� a⊥ or equivalently η � 1). Thus, in Eq. (37) one
can use the zero-range limit of the parameters defined in
Eqs. (38) and (39):

lim
η→0
C2D

0 (η) =

∫ ∞
0

du

u

[
−1√

1− e−u
+

1√
u

+
u

u+ 1

]
(42)

= 1.3605 . . . , (43)

lim
η→0
C2D

1 (η) = 2 ln(2). (44)

We now consider a low-energy process. At large inter-
atomic distances, only few transverse modes are popu-
lated, and the product ητ0 is very small as compared
to unity. One can then use with a high accuracy the
zero-range limit for J2(η, τ) by using the integral repre-
sentation

lim
η→0

J2(η, τ) = Pf

∫ ∞
0

du

u

eτu√
1− e−u

, (45)

where Pf denotes the Hadamard finite part of the integral
[40]. In this regime, one can also perform the zero-range
limit in the series expansion of Eq. (40):

lim
η→0

J2(η, τ0 + i0+) =

∞∑
p=1

(2p− 1)!!

(2p)!!
ln

∣∣∣∣ p

p− τ0

∣∣∣∣
+ ln

(
−B
2πτ0

)
+ iπ

[
(2bτ0c+ 1)!!

(2bτ0c)!!
− 1

]
(46)

where B = 2π × exp
[
−γ − C2D

0 (0)
]

= 0.9049 . . .. Equa-
tion (46) permits to recover the results deduced by using
the zero-range potential approach [18, 21–23].

C. Monomode regime in a 2D atomic waveguide

1. Scattering amplitude and resonance

In the monomode regime, the collisional energy E0 ver-
ifies ~ω⊥

2 < E0 <
5~ω⊥

2 . The 2D scattering amplitude f2D

is defined from the behavior of the wave function at large
distances:

〈ρ, x|Ψk0,0
rel 〉 ∼ φ0(x)

[
eik0·ρ +

√
πf2D(k0)√

2k0ρ
ei(k0ρ+

π
4 )
]
.

(47)
The 2D scattering amplitude f2D is the basic ingredient
which characterizes the two-body interaction in 2D dilute
systems. Near the threshold of the propagating regime(
E0 → ~ω⊥

2

+
)

, in the effective range approximation, the

2D scattering amplitude is of the form

f2D(k0) =
1

ln(k0a2Deγ/2)− a2DR2Dk2
0 − iπ

2

. (48)

In Eq. (48), we have introduced the 2D scattering length

a2D = a⊥ exp

[
C2D

0 (η)− γ
2

−
√
π(1 + η)a⊥e

−η

2aeff(~ω⊥/2)

]
, (49)

and the 2D effective range parameter R2D:

R2D = C2D
1 (η)

a2
⊥

8a2D
+

√
π

2
(1 + η)

a⊥
a2D

[
ε2e−η

2aeff(~ω⊥/2)

+
a4
⊥

R?a2
bg

(
a/abg − 1

a/adiv
2 − 1

)2]
. (50)

The length adiv
2 which appears in Eq. (50) corresponds

to the value of the 3D scattering length a, such that
a2D diverges; more precisely, a2D → +∞ for a→ (adiv

2 )−.
The expression of adiv

2 is given by

adiv
2 =

abg

1 + 2δM∆B/~ω⊥
. (51)

The 2D scattering length a2D in Eq. (49) can be tuned
from 0 to +∞ by playing with the value of the exter-
nal magnetic field. The resonant regime in 2D scattering
occurs for large values of a2D/a⊥, that is, when the 3D
scattering length a is smaller and almost equals to to
adiv

2 . The resonance corresponds to a maximum in the
scattering amplitude which appears at a 2D collisional

momentum k0 ∼ kres = 2e−γ

a2D
. The width of this scatter-

ing resonance ∆k/k0 is of the order of unity.

2. 2D zero-range models

The expression of the 2D scattering amplitude in
Eq. (48) can be deduced exactly from a purely 2D and
zero-range potential model that we denote as the 2D ef-
fective range model (2D-ERM). In this approach, the
two-body wave function for the relative motion denoted
by ψ2D, depends only on the 2D relative coordinates ρ
. The interaction is replaced by imposing the following
contact condition on the wave function:

lim
ρ→0

[
1− ln

(
ρ

a2D

)
ρ∂ρ

+ a2DR2Dρ∂ρ∆ρ

]
〈ρ|Π̂2D

s |ψ2D〉 = 0, (52)

where Π̂2D
s is the projector on the 2D s-wave channel:

〈ρ|Π̂2D
s |ψ2D〉 =

∫
dθ

2π
〈ρ|ψ2D〉 where θ = ∠(ρ, êy). (53)

In the few- and many-body problem, the contact condi-
tion is imposed on the wave function for each interact-
ing pair of atoms and the limit on the relative coordi-
nates is taken for a fixed value of the other coordinates.
Equation (52) generalizes the 2D Wigner-Bethe-Peierls
(WBP) model where the effective range term is set to
zero (R2D = 0).
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V. QUASI-1D GEOMETRY

A. Scattering in a 2D transverse harmonic trap

In this section, the pair of atoms move in a linear
atomic waveguide made of a harmonic trap with the same
atomic frequency ω⊥ in the x and y directions. The
quantum numbers for the relative motion are denoted
by αr ≡ (k, n,m) where m~ is the angular momentum
along z and

Er(k, n,m) =
~2k2

2µ
+ ~ω⊥(2n+ |m|+ 1). (54)

The eigenfunctions of the transverse harmonic oscillator
are given by

〈r⊥|n,m〉 =

[
πa2
⊥(n+ |m|)!

n!

]−1/2(
r⊥
a⊥

)|m|
eimθ

× e− 1
2 (r⊥/a⊥)2L(|m|)

n (r2
⊥/a

2
⊥). (55)

In Eq. (55), L
(α)
n is the generalized Laguerre polynomial

and r⊥ = (r⊥, θ) are the polar coordinates in the x− y
plane.

In this section, we use the reduced energy defined in
Eq. (27) with D = 1 that is τ = λ/(2~ω⊥)− 1/2. For a
scattering state of incoming wave α0

r ≡ (k0, n0,m0), the
reduced energy τ = τ0 is

τ0 =
k2

0a
2
⊥

4
+ n0 +

|m0|
2

. (56)

Similarly to the 2D atomic waveguide, the threshold of
each 1D-continuum corresponds to an integer value of τ0.
The integer bτ0c is the number of occupied transverse
states in the outcoming state. Due to the s-wave charac-
ter of the interaction, the matrix elements are non zero
only between eigenstates with zero angular momentum.
For each transverse state |n,m = 0〉 occupied by the out-
coming wave, we define the wave number qn, obtained by
energy conservation:

qn =

√
2µE0

~2
− 4n+ 2

a2
⊥

. (57)

Using this notation, the T -matrix can be written as

〈qn, n,m|T̂ (E0 + i0+)|k0, n0,m0〉 = δm,0δm0,0
2π~2

µ
√
πa⊥

×
(

1− η
1 + η

)n+n0 e
(k20−q

2
n)ε2

4 e4ηn0

√
πa⊥(1+η)2e−2η

aeff (E0) + J1(η, τ0 + i0+)
,

(58)

where the function J1(η, τ) is defined by

J1(η, τ) ≡ −2π~2

µ

|φ0(0)|2e4ητ

|〈δ1D
ε |n = 0〉|4

×
[
〈δε|Ĝrel

0 (λ)|δε〉+
µ√

2π3/2~2ε

]
, (59)

where the energy λ is given by Eq. (27). In the limit of
large interparticle distances (z � ε, a⊥), the scattering
wave function verifies:

〈z, r⊥|Ψk0,n0,0
rel 〉 =

z�ε,a⊥
〈r⊥|n0, 0〉eik0·z −

iµ

~2

bτ0c∑
n=0

eiqn|z|

qn

× 〈r⊥|n, 0〉〈qn, n, 0|T̂ (E0 + i0+)|k0, n0, 0〉. (60)

Following the same reasoning as in Sec. (IV), one ob-
tains a simple expression of J1(η, τ) for negative values
of τ :

J1(η, τ) =

∫ ∞
0

du√
u+ 4η

eτ(u+4η)

1− e−u
(

1−η
1+η

)2 −
(1 + η)2e4ητ

√
η

.

(61)
In the limit of vanishingly small reduced energy τ → 0,
the function J1(η, τ) has the following behavior:

J1(η, τ) =

√
π

−τ
+ C1D

0 (η) + C1D
1 (η)τ +O(τ2), (62)

where

C1D
0 (η) =

∫ ∞
0

du√
u+ 4η

[
1(

1+η
1−η

)2

eu − 1
− (1 + η)2

4η + u

]
− 4
√
η (63)

and

C1D
1 (η) = −16

3
η

3
2 −4(1 +η)2√η+

∫ ∞
0

du

√
u+ 4η(

1+η
1−η

)2

eu − 1
.

(64)
When the reduced energy is a complex variable in the
physical sheet, one can use a series representation for the
function J1(η, τ):

J1(η, τ) =

√
π

−τ
erfc

(
2
√
−ητ

)
+ 4
√
η + C1D

0 (η)

− (1 + η)2

√
η

[
e4ητ − 1

]
+
√
π

∞∑
p=1

e4ηp

(
1− η
1 + η

)2p

×

erfc
(

2
√
η(p− τ)

)
√
p− τ

−
erfc

(
2
√
ηp
)

√
p

 . (65)

B. Low energy scattering and zero-range limit

As was done for the 2D atomic waveguide in
Sec. (IV B), we consider the relevance of the zero-range
limit. For usual trapping frequencies, the typical ra-
dius of interatomic forces is negligible as compared to
the transverse length a⊥ (ε� a⊥ or equivalently η � 1).
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Thus, one can use the zero-range limits of the parameters
in Eq. (62):

lim
η→0
C1D

0 (η) =
√
πζ(1/2) ; lim

η→0
C1D

1 (η) =

√
π

2
ζ(3/2),

(66)
where ζ is the Riemann zeta function.

In the low-energy regime where only few 1D continua
are opened, the product ητ is small as compared to unity.
In this regime, the function J1(η, τ) can be approximated
by its zero-range limit. From Eq. (65), one finds

J1(0, τ) =
√
π

[
1√
−τ

+ ζ

(
1

2

)
+

∞∑
p=1

(
1√
p− τ

− 1
√
p

)]
,

(67)
so that J1(0, τ) =

√
πζH (1/2,−τ) where ζH is the Hur-

witz zeta function. This coincides with the result ob-
tained by using zero-range potential models [41].

C. Monomode regime

1. Scattering and resonance

The monomode regime occurs for ~ω⊥ ≤ Erel < 3~ω⊥.
At large interatomic distances (z � ε, a⊥), the rela-
tive particle occupies only the lowest transverse mode
(n = 0,m = 0) and one can define the 1D scattering am-
plitude f1D from the behavior of the scattering wave func-
tion

〈z, r⊥|Ψk0,0,0
rel 〉 ∼ 〈r⊥|0, 0〉

[
eik0z + f1D(k0)eik0|z|

]
. (68)

Near the threshold of the propagating regime
(Erel ∼ ~ω⊥), the scattering amplitude can be ap-
proximated at the effective range level:

f1D(k0) = − 1

1 + ik0a1D − ik3
0R1D

3 . (69)

In Eq. (69), a1D is the 1D scattering length and R1D is
the 1D-effective range parameter. They are given by:

a1D =
−a⊥(a− aTG)

2(a− adiv
1 )

[
a⊥a

div
1 (1 + η)2

a2
bg

+
C1D

0 (η)√
π

]
,

(70)

R1D
3 =

a6
⊥(1 + η)2

8R?a2
bg

(
a/abg − 1

a/adiv
1 − 1

)2

+
C1D

1 (η)a3
⊥

8
√
π

+
e−2ηa2

⊥ε
2(1 + η)2

4aeff(~ω⊥)
, (71)

where we have introduced the two parameters adiv
1 and

aTG defined by:

adiv
1 =

abg

1 + δM∆B/~ω⊥
, (72)

aTG =
a⊥
(
R?abg − a2

⊥/2
)

+
C1D0 (η)

(1+η)2
√
π
R?a2

bg

R?a⊥ +
C1D0 (η)

(1+η)2
√
π

(R?abg + a⊥2/2)
. (73)

In the limit where R? → 0 and ε→ 0, one finds from
Eq. (70) the result of Ref. [4], i.e.,

a1D ∼
−a⊥

2

[
ζ

(
1

2

)
+
a⊥
a

]
. (74)

For a 3D scattering length such that a = adiv
1 , the 1D

scattering length a1D diverges. The resonant condi-
tion in 1D, i.e. the regime where the scattering ampli-
tude is maximum, occurs for a = aTG where a1D = 0.
In the many-boson problem, if one neglects the effec-
tive range term, the limit a1D → 0− gives the Tonks-
Girardeau (TG) regime and the limit a1D → 0+ gives the
super Tonks-Girardeau (STG) regime [7, 8].

2. 1D effective range model

Similarly to the 2D-ERM, one can define a 1D effective
range model (1D-ERM) which is a zero-range potential
approach which gives the exact expression of the scatter-
ing amplitude in Eq. (69). In the 1D-ERM, the strictly
1D-wave function for the relative motion (denoted ψ1D)
depends only on the relative coordinate z and solves the
free Schrödinger equation everywhere in the space ex-
cepted at the contact (z = 0). We introduce the projec-
tion operator over even 1D wave functions, denoted by
Π̂1D
s :

〈z|Π̂1D
s |ψ1D〉 =

ψ1D(z) + ψ1D(−z)
2

. (75)

In this approach, the interatomic forces are replaced by
the following contact condition:

lim
z→0+

(
1 + a1D∂z +R1D

3∂3
z

)
〈z|Π̂1D

s |Ψ〉 = 0. (76)

The 1D-ERM generalizes the contact condition of the 1D
Wigner-Bethe-Peierls (1D-WBP) model where R1D = 0
which defines the interaction in the Lieb-Liniger model
of the 1D Bose gas [42].

VI. BOUND STATES IN ATOMIC
WAVEGUIDES

A. Effect of confinement

We now consider the consequence of the transverse
confinement on the properties of the dimers. The two
main results of this part are as follows: (i) the threshold
where the FD appears is shifted at a magnetic field BD0 :

BD0 = B0 + ∆B +
~ω⊥
DδM

, (77)

(ii) a background dimer is induced by the confinement
for negative values of the background scattering length.
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When the domain of existence of the FD (or BD) is ex-
tended as a consequence of the confinement, we intro-
duce the notion of confinement-induced Feshbach dimer
(CIFD) [or of confinement-induced background dimer
(CIBD)].

In presence of a transverse harmonic trap, the energy
of a bound state is below the threshold of the first contin-
uum, i.e., E < ~ω⊥

D , where D = 2 in a 2D atomic waveg-
uide and D = 1 for a 1D atomic waveguide. In what
follows, we use the reduced energy τ defined in Eq. (27)
with λ = E. For the dimers, the reduced energy is thus
negative. We also define the binding energy of a bound
state Edim in a D-dimensional waveguide with respect to
the threshold of the monomode regime:

Edim = E − ~ω⊥
D

. (78)

The spectrum of the dimers is given by the poles of the
transition matrix in Eq. (32) or (58) which verify:(

2τ +
1

D

)
+
δM∆B

~ω⊥
FD(η, τ)

FD(η, τ)− 1
=
δM(B −B0)

~ω⊥
,

(79)

where FD(η, τ) =
−abge

−4ητJD(η, τ)

a⊥
√
π(1 + η)3−D . (80)

The left-hand of Eq. (79) is an increasing function of τ

which varies from −∞ for τ → −∞ to
(

1
D + δM∆B

~ω⊥

)
for

τ → 0−. This last limit gives the threshold in Eq. (77)
at which the CIFD appears. For 0 < abg < ε

√
π
2 , it is

a continuous function in the interval τ ∈]−∞, 0[ and
Eq. (79) admits thus at most one solution. In the other
cases, the left-hand side of Eq. (79) diverges for a given
negative value of the reduced energy τ . As a conse-
quence, depending on the value of abg and of the detuning
δM(B −B0), there are one or two dimers. The behav-
ior of the left-hand side of Eq. (79) in this last regime
is illustrated in Fig. (1) using the example of the Cs FR

FIG. 1: Left-hand side of Eq. (79), in a 2D atomic waveg-
uide, using the parameters of the Cs FR from Tab. (II) and
a⊥ = 1000a0.

FIG. 2: Number and nature of dimers in reduced dimen-
sion depending on the value of abg and of the detuning
δM(B −B0). The Feshbach dimer (FD) and background
dimer (BD) denote dimers that exist in the free space [see
Table (I)]. In situations where the transverse trap extends
the domain of existence of the FD (or BD) dimer, we have in-
troduced the notion of confinement-induced Feshbach dimer
(CIFD) [or confinement-induced background dimer (CIBD)].
In the case b), the domain of existence of the FD is reduced
as compared to the 3D case.

in Table (II). We have summarized the domain of exis-
tence of the dimers in Fig. (2). For standard FR studied
experimentally, the ratio |δM∆B|/~ω⊥ = a2

⊥/(2R
?|abg|)

is very large and |δM∆B| > ~ω⊥/D. Consequently,
δM∆B + ~ω⊥/D has the same sign as abg [see Eq. (18)].
However, for ultra-narrow resonances where the ratio
|δM∆B|/~ω⊥ is very small, δM∆B + ~ω⊥/D is thus
positive. In this particular case, the domain of existence
of the dimers is thus modified with respect to standard
FR for abg < 0: there is still a CIBD whatever the value
of the energy detuning, but also a CIFD exists in the in-
terval 0 < δM(B −B0) < δM∆B + ~ω⊥/D [case a) of
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Fig. (2)].
In the limit of large reduced binding energies, one re-

covers the expected 3D result of Eq. (23).

B. Shallow bound states and zero-range approach

The bound states can be considered shallow in the
atomic waveguides for small reduced binding energies
|τ | � 1. Consequently, they can be studied in the
monomode regime by using zero-range models.

1. 2D geometry

In the 2D geometry, the scattering length a2D is always
positive and thus the 2D-WBP model admits always one
single bound state of binding energy Edim = EWBP

D=2 with

EWBP
2 = −2~2e−2γ

µa2
2D

. (81)

Equation (81) can be generalized by consider-
ing an energy-dependent 2D scattering length
a2(Erel) [43]. This last approach considered with
a2(Erel) = a2D exp(−2µa2DR2DErel/~2), is equivalent to
the 2D-ERM and the binding energy Edim of the 2D
bound state is then found by solving

ln

(
Edim

EWBP
2

)
=
−8R2De

−2γ

a2D

Edim

EWBP
2

. (82)

In Eqs. (81) and (82), |Edim| � ~ω⊥ for large values of
the 2D scattering length (a2D � a⊥ ), i.e., in the resonant
regime, as is the case for example near the threshold of
appearance of the CIFD.

Examples of binding energies for different FR of Ta-
ble (II) are plotted in Fig. (3) using the two-channel
model, the WBP model, and the 2D-ERM. We have cho-
sen a common transverse length (a⊥ = 1000a0) for all
species. The Cs resonance has been intensively stud-
ied in the group of Insbrück and has been used for the
first achievement of 2D BEC with ultracold atoms [44].
It illustrates a FR in the vicinity of a shape resonance
(|abg| � ε) with a shallow background dimer in the 3D
free space. The FR chosen for 39K illustrates a narrow
FR (R? � |abg|) and for 7Li it illustrates a standard
broad FR. In these last two examples, the background
scattering length is negative, and there is thus a CIBD.
Moreover, the scattering length is small compared to the
transverse length, and in a large interval of detuning the
ratio a⊥/aeff(~ω⊥/2) ∼ a⊥/abg is large and negative and
the 2D scattering length in Eq. (49) is thus extremely
large due to the exponential law. Consequently in a large
interval of detuning, the CIBD is an ultra shallow bound
state with |Edim| � ~ω⊥. The three resonances admit
one or two bound states depending on the detuning.

FIG. 3: Spectrum of quasi-2D dimers for three FR of Ta-
ble (II) with a⊥ = 1000a0. Solid line: two-channel model;
dotted line: 2D-WBP model; dashed line: 2D-ERM; dou-
ble dotted dashed line: 3D spectrum. For 39K and 7Li,
only one dimer branch can be seen. The other branch is
very close to zero and exists for (B −B0)/∆B & 1. When

δM(B −B0) tends to δM∆B + ~ω⊥
D

by positive values, the
two-dimensional scattering length tends to zero and there is
no shallow dimer in the two-channel model. Nevertheless, in
this regime the quasi-vertical dashed line in the Cs case illus-
trates the fact that the 2D-ERM predicts a spurious dimer in
a tiny interval of the relative detuning.

2. 1D geometry

The 1D-WBP model supports one bound state iff the
1D scattering length is positive a1D > 0 with the binding
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energy Edim = EWBP
D=1 :

EWBP
1 = − ~2

2µa2
1D

. (83)

Referring to the usual pairwise pseudo-potential geffδ(z)
used in 1D systems, one has geff = −~2/(µa1D) and
Eq. (83) is thus relevant in the regime of small and at-
tractive effective interaction (geff → 0−). The 1D-ERM
allows zero, one, or two bound states, depending on the
values of the parameters R1D and a1D. The binding en-
ergies Edim = −~2q2/(2µ) are given by the positive roots

FIG. 4: Spectrum of quasi-1D dimers for three FR of Ta-
ble (II) with a⊥ = 1000a0. Solid line: two-channel model;
dotted line: 1D-WBP model; dashed line: 1D-ERM; double
dotted dashed line: 3D spectrum. In the inserts, the low-
dimensional predictions are too close to be distinguished. The
vertical dashed-dotted lines indicate the detuning where the
1D resonance (a1D = 0) occurs. As in the 2D case, in a tiny
interval of the relative detuning where δM(B −B0) tends to

δM∆B + ~ω⊥
D

by positive values, the quasi-vertical dashed
lines illustrate the fact the 1D-ERM predicts the existence of
a spurious dimer branch.

of the equation

1− a1Dq −R3
1Dq

3 = 0. (84)

We plotted in Fig. (4) the binding energies in the
1D atomic waveguide for three different resonances of
Tab. (II) and a⊥ = 1000a0. This figure permits to com-
pare the binding energy of shallow dimers obtained from
the two-channel model, the 1D-WBP model and the 1D-
ERM. In the 1D resonant regime where the 1D scattering
length tends to zero the WBP model cannot describe a
possible shallow dimer whereas the 1D-ERM can give a
quantitative approximation [see Fig. (4)].

C. Relevance of the effective range approximation
in low dimensions

We first investigate the regime where the effec-
tive range term gives a perturbative contribution to
the bound state energy in the monomode regime for
D = 1 or 2: Edim = EWBP

D + δED. Linearizing Eqs. (84)
and (82), in the regime of large and positive value of
a1D/R1D or a2D/R2D, one finds:

δED=1

EWBP
D=1

= − 2

3 +
(
a1D
R1D

)3 , (85)

δED=2

EWBP
D=2

= − 1

1 + e2γ

8

(
a2D
R2D

) . (86)

When the detuning δM(B −B0) tends to δM∆B + ~ω⊥
D

by positive values, for D = 2, a2D tends to zero, whereas
for D = 1, a1D tends to minus infinity. In this regime,
no shallow dimer exists in the two-channel model and
in the WBP model. Nevertheless, the ERM predicts a
spurious binding energy in a narrow interval of the rel-
ative magnetic detuning. This can be seen in Figs. (3)
and (4) by the existence of a quasi-vertical dashed line
in the spectrum. Interestingly, as a consequence of the
non trivial dependence of the effective range parameters
R1D and R2D as a function of R?, the 1D-ERM and 2D-
ERM are much more predictive than the WBP models
for binding energies of the shallow 1D bound states even
for broad FR where the 3D effective range parameter is
small [for instance, for the Cs FR in Figs. (3) and (4)].
Moreover, the 1D-ERM and 2D-ERM provide still quan-
titative results for binding energies of the order of the
trapping energy ~ω⊥.

We now identify in the 1D atomic waveguide a new
regime where the effective range approximation is rele-
vant non perturbatively. This happens in the resonant
limit, i.e. for a ∼ aTG where a1D → 0 and for a large
effective range parameter R1D:

R1D � a⊥ and |a1D| � a⊥. (87)

When Eq. (87) is satisfied, the effective range term
can be anomalously large with k|a1D| � (k|R1D|)3 in
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FIG. 5: Energies of the dimer as a function of the reduced
detuning in the 1D monomode regime (a⊥ = 3000a0) for the
FR of 23Na at B0 = 853 G [see Table (II)]. Solid line: two-
channel model; dotted line: 1D-WBP model; dashed line: 1D-
ERM. The vertical dashed-dotted line indicates the detuning
where the 1D resonance (a1D = 0) occurs.

the monomode regime and for small relative momen-
tum (k � 1/a⊥) (typically for k ∼ 1/R1D). In the strict
resonant limit (a1D = 0) and for positive value of R1D,
there is a shallow dimer of binding energy ~2/(2µR2

1D).
This is in strong contrast with the result of the WBP
model where the dimer is infinitely bound in the STG
limit (a1D → 0+) and does not exist in the TG limit
(a1D → 0−). Equation (87) defines a regime which has
not yet been explored at the many-body level. In this
context, it is interesting to address more closely the va-
lidity of the effective range approximation for the binding
energy |k| ∼ 1/R1D. For this purpose, one evaluates the
ratio between the effective range term in the denominator
in Eq. (68) and the next term in the low-energy expan-
sion obtained from Eq. (58) at k = i/R1D and a = aTG.
For η � 1, one finds the following criterion:∣∣∣∣∣abg

a⊥

(
R?

a⊥ + abgζ(1/2)

)1/3
∣∣∣∣∣� 1. (88)

Moreover, in view of a future achievement of this regime,
it is essential to know the necessary conditions to reach
large values of the ratio R?/a⊥. In the TG regime [where
the second condition in Eq. (87) is satisfied] and neglect-
ing η, Eq. (71) gives(

R1D

a⊥

)3

a=aTG

' R?

2a⊥

[
1 + ζ(1/2)

abg

a⊥

]2

. (89)

Hence, the first condition in Eq. (87) can be satisfied for
large enough values of the ratio R?/a⊥. However, this
ratio cannot be too large in order to satisfy Eq. (88).
Hopefully, species which verify the two conditions in
Eqs. (87) and (88) can be found. One example is given
by 23Na near the narrow FR at 853 G with a realistic

axial confinement with a⊥ = 3000a0 [see Tab. (II)]. At
resonance a1D = 0, one finds R1D/a⊥ ∼ 3.2 and the value
of the left-hand side of the criterion in Eq. (88) is about
(0.087). The binding energy is plotted as a function of
relative detuning in Fig. (5). Close to the resonance, the
dimer is shallow and this plot illustrates the breakdown
of the WBP model in this regime. As expected, the ERM
model gives a quantitatively good approximation of the
binding energy.

D. Occupation probability of the closed channel

The mean number of molecules in the closed channel
highlights the crossover between the different types of
dimers. It is equal here to the occupation probability of
the molecular state 〈Ψm|Ψm〉 = dE

dB /δM [32]. In the off-
resonant regime, for the BD the occupation probability
in the closed channel vanishes, whereas for the FD its
tends to unity (for large detunings and thus large binding
energies, the FD populates mainly the molecular state).

FIG. 6: Dashed-dotted lines: binding energy for dimers in
a 1D atomic waveguide (a⊥ = 1000a0) for the 133Cs FR in
Table (II); solid lines: occupation probability of the closed
channel for the corresponding dimer. a) Results for the dimers
of the upper branch in the spectrum; b) results for the lower
branch.

We plotted the occupation probability in the closed
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channel in Fig. (6) for the two bound states in a 1D
atomic waveguide for the 133Cs FR at B0 = −11.7 G with
a transverse length a⊥ = 1000a0.

In this example, the background scattering length abg

is positive and larger than ε
√

π
2 : this resonance corre-

sponds to the case d) in Fig. (2). The figure illustrates
the crossover between the CIFD and the BD [Fig. (6-a)]
and the BD and the FD [Fig. (6-b)]. At the threshold
where the CIFD appears, the occupation probability in
the closed channel is small. In the off-resonant regime,
the BD has also a vanishingly small occupation proba-
bility in the closed channel. Conversely, for large and
negative magnetic detuning, the FD occupies mainly the
closed channel as expected from Eq. (23).

CONCLUSIONS

In this paper, we use a finite-range two-channel model
to solve the two-body problem for atoms in a 1D and
a 2D atomic waveguide. The model which was already
used in Refs. [28–32], gives quantitative results in a large
interval of magnetic detuning and colliding energies and
permits us to derive analytical expressions for two-body
scattering in low dimensions. The model gives substan-
tial improvement with respect to the pure WBP models
of the interaction [45]. We compare the results of the
two-channel model with purely 2D (or 1D) zero-range
models (WBP models and effective range models), and
give conditions where these approaches are relevant. The
effective range model is shown to be a quantitative ap-
proach in a large interval of magnetic detuning. For 1D
atomic waveguides, we identify a regime of scattering res-
onance (the 1D scattering length tends to zero) where
the effective range term is dominant in the 1D scatter-
ing amplitude. We exhibit a possible achievement of this
regime by using a narrow FR of 23Na atoms. In this
regime, contrary to the standard 1D-resonant regime, a
shallow dimer exists. The consequences of these findings
at the few- and many-body levels are an open issue. One
expects large deviations from the TG and STG proper-
ties as for instance the nature ground state [46, 47] as a
function of the effective range parameter.
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Appendix: A USEFUL EXPRESSION

In this appendix, we give an analytical expression for
the infinite sum

Sη(u) =

∞∑
n=0

|〈δ1D
ε |n〉|2 × e−nu/2. (90)

Formally, one recognizes in Eq. (90) the density oper-
ator ρ̂, of the harmonic oscillator in the x-direction,
considered in the representation |n〉 at a temperature
kBT = 2~ω⊥/u:

Sη(u) = 〈δ1D
ε |ρ̂|δ1D

ε 〉 × eu/4. (91)

We perform the calculation in the configuration space,
where the density matrix ρ(x, x′) ≡ 〈x|ρ̂|x′〉 is

ρ(x, x′) = 〈x| exp

[
−
(
p̂2

2µ
+
µ

2
ω2
⊥x̂

2

)
× u

2~ω⊥

]
|x′〉.

(92)
One can then use the known result for the density matrix:

ρ(x, x′) =

exp

{
− [cosh(u2 )(x2+x′ 2)−2xx′]

2a2⊥ sinh(u2 )

}
a⊥

√
2π sinh

(
u
2

) (93)

together with the expression of 〈x|δ1D
ε 〉 in Eq. (31). The

integration over x and x′ implies only Gaussian functions
and one finds

Sη(u) =
1

a⊥
√
π

1√
(1 + η)2 − e−u(1− η)2

(94)
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[40] L. Schwartz, Théorie des distributions, Hermann (Paris,
1978).

[41] T. Bergeman, M. G. Moore, and M. Olshanii, Phys. Rev.
Lett. 91, 163201 (2003).

[42] E. H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963).
[43] K. Kanjilal, D. Blume, Phys. Rev. A 73, 060701 (2006).
[44] D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm,
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