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Abstract. First-class constraints constitute a potential obstacle to the computation

of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the

pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets

between the constraints, we show that a Dirac-Poisson bracket can be constructed,

even if it corresponds to an incomplete reduction of the original Hamiltonian system.

The uniqueness of Dirac brackets is discussed.
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1. Introduction

We consider an N -dimensional Hamiltonian system with phase space variables z =

(z1, z2, . . . , zN) given by its Hamiltonian H(z) and its Poisson bracket {·, ·}. We impose

a set of K constraints Φn(z) = 0 for n = 1, . . . , K on this dynamical system. We define

the Dirac bracket as

{F,G}∗ = {F,G} − {F,Φn}Dnm{Φm, G}, (1)

with implicit summation over repeated indices. Usually the matrix D whose elements

are Dnm is taken as the inverse of the matrix C whose elements are

Cnm = {Φn,Φm},

if it is invertible [1, 2, 3, 4, 5, 6]. In this case, it has been shown that the usual Dirac

bracket (1) is a Poisson bracket [1], in particular, that it satisfies the Jacobi identity

everywhere in phase space (and not just on the surface defined by the constraints).

Dirac’s theory of constrained Hamiltonian systems has been used in a wide variety of

contexts [6]. Recently, it has been used to derived reduced models in fluid and plasma

physics [7, 8, 9, 10].

In the literature there are some tentative definitions of weak Dirac bracket [11, 12,

13, 14] with the aim of defining a Dirac bracket even in situations where the matrix

C is not invertible. The non-invertibility of C is linked to the existence of first class

constraints, i.e., constraints that commute with all the other constraints (in the weak

sense). The tentatives to define such a generalization of the Dirac bracket so far did

not result in the definition of a well defined Poisson bracket, i.e., which satisfies the

Jacobi identity everywhere in phase space. More specifically, in these tentatives, the

Jacobi identity together with the commutation of the constraints with any function

only happens on the surface defined by the constraints.

Here we generalize the Dirac bracket to cases where C is not invertible by taking D

as the Moore-Penrose pseudoinverse of C. The conditions which D has to satisfy are

C = CDC, (2)

D = DCD, (3)

CD = DC. (4)

In finite dimensions, the pseudoinverse always exists, so a Dirac bracket of the form (1)

can always be computed regardless of the constraints and the original Poisson bracket.

If the Poisson bracket is given by

{F,G} =
∂F

∂z
· J(z)

∂G

∂z
, (5)

where J is the Poisson matrix, the Dirac bracket {·, ·}∗ has the same expression as

Eq. (5) where J is replaced by

J∗ = J− JQ̂†
DQ̂J, (6)
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where Q̂ has elements Q̂ni = ∂Φn/∂zi. The linear operator P∗ = 1 − Q̂†DQ̂J is a

projector, called Dirac projector [10]. In order to prove this we need condition (3).

From this projector, we have the following identities :

J∗ = P†
∗JP∗ = JP∗,

which means that the Dirac bracket is the same as the original bracket with the exception

that the derivatives ∂F/∂z in the Poisson bracket have to be replaced by the constrained

derivatives defined by
∂F

∂z

∣

∣

∣

∣

c

= P∗

∂F

∂z
.

The constraints Φn(z) are Casimir invariants of the Dirac bracket, i.e., {Φn(z), G}∗ = 0

for all functionals G, if and only if J∗Q̂
† = 0. Therefore a complete reduction

corresponds to the case where all constraints are Casimir invariants of the bracket (1).

However even if the Dirac bracket can always be computed (at least for finite dimensional

systems), J∗Q̂ = JQ̂(1−DC) is non-zero in general. We will see below that the obstacle

to the complete reduction corresponds to the primary constraints which are not Casimir

invariants of the original bracket {·, ·}.

It has been shown in Ref. [10] that if the reduction is complete, then the Dirac

bracket (1) is a Poisson bracket, i.e., it satisfies the Jacobi identity everywhere in phase

space. Here we prove that, even in the case of an incomplete reduction, the generalized

Dirac bracket defined by Eq. (1) with the conditions (2)-(4) is still a Poisson bracket,

i.e., in Sec. 2 we prove that the bracket (1) satisfies the Jacobi identity everywhere in

phase space. In Sec. 5, we apply the generalized Dirac bracket to several examples,

finite and infinite dimensional ones.

2. Proof of the Jacobi identity

First, we recall that first-class constraints are constraints which Poisson-commute with

all the other constraints for the original bracket {·, ·}. In particular, constraints which

are Casimir invariants of the original bracket are first-class constraints, but obviously

first-class constraints are not restricted to Casimir invariants of the original Poisson

bracket.

Using a local change of variables, we use the constraints as part of the variables,

i.e., we assume Φk(z) = zk for k = 1, . . . , K. We divide this set of constraints/variables

into three groups:

• the first-class constraints which are not Casimir invariants (of the original bracket),

for k = 1, . . . , k1,

• the (first-class) constraints which are Casimir invariants, for k = k1+1, . . . , k1+kc,

• the second-class constraints, for k = k1 + kc + 1, . . . , k1 + kc + k2,

where K = k1 + kc + k2. The arrangement of the constraints is done such that there is

no linear combination of second-class constraints which is a first-class constraint. The
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rest of the variables are unchanged. Using this partition of the variables, we rewrite the

Poisson matrix J as

J =











0 0 0 −c†

0 0 0 0

0 0 A −B
†

c 0 B J̄











.

Since zk for k = 1, . . . , k1 are first-class constraints, the first column has three zeros, but

the last element is non-zero (otherwise they would be Casimir invariants). The second

column is zero since zk are Casimir invariants for k = k1 + 1, . . . , k1 + kc. The matrix A

is invertible, since otherwise there would exist a linear combination of the second-class

constraints which would be a first-class constraints, which is excluded by construction.

The operator Q̂ is given by

Q̂ =







1k1 0 0 0

0 1kc 0 0

0 0 1k2 0






,

where 1k is the k-dimensional identity matrix. The matrix C = Q̂JQ̂† is given by

C =







0 0 0

0 0 0

0 0 A






.

The pseudoinverse of C is given by

D =







0 0 0

0 0 0

0 0 A−1






.

The Poisson matrix associated with the Dirac bracket (1) is obtained from Eq. (6) as

J
∗ =











0 0 0 −c†

0 0 0 0

0 0 0 0

c 0 0 J̄+ BA−1B†











. (7)

From this expression, we readily see that the first-class constraints that are not

Casimir invariants of the original bracket, are not Casimir invariants of the Dirac bracket.

The only way to resolve these first-class constraints in a Hamiltonian way, i.e., to have

these constraints as conserved quantities, is to modify the Hamiltonian (by removing the

dependence of the Hamiltonian on the variables corresponding to first-class non-Casimir

constraints).

In this section, the goal is to prove the Jacobi identity for J∗ given by Eq. (7) under

the hypothesis that J satisfies the Jacobi identity, i.e.,

Jil∂lJjk+ 	(i,j,k)= 0, (8)
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for all (i, j, k). In what follows we denote I1 the set of indices k for which zk is a non-

Casimir first-class constraints, Ic the set of indices such that zk is a Casimir invariant

of J, I2 the set of indices such that zk is a second-class constraint, and In all the other

indices. From Eq. (8) there are seven non-trivial identities listed below:

• If (i, j) ∈ I1 and k ∈ In,

cli∂lckj − clj∂lcki = 0. (9)

• If i ∈ I1 and j, k ∈ I2,

cli∂lAjk = 0. (10)

• If i ∈ I1, j ∈ I2 and k ∈ In

cli∂lBkj + Ajl∂lcki − Blj∂lcki = 0. (11)

• If i ∈ I1 and j, k ∈ In

− cli∂lJ̄jk − ckl∂lcji + cjl∂lcki − Bkl∂lcji +Bjl∂lcki

− J̄kl∂lcji + J̄jl∂lcki = 0. (12)

• If i, j, k ∈ In

cil∂lJ̄jk +Bil∂lJ̄jk + J̄il∂lJ̄jk+ 	(i,j,k)= 0. (13)

• If i, j ∈ In and k ∈ I2

cil∂lBjk − cjl∂lBik +Bil∂lBjk − Bjl∂lBik + J̄il∂lBjk − J̄jl∂lBik

− Blk∂lJ̄ij + Akl∂lJ̄ij = 0. (14)

• If i ∈ In and j, k ∈ I2

cil∂lAjk + Akl∂lBij −Ajl∂lBik +Bil∂lAjk − Blk∂lBij

+Blj∂lBik + J̄il∂lAjk = 0. (15)

• If i, j, k ∈ I2

Ail∂lAjk −Bli∂lAjk+ 	(i,j,k)= 0. (16)

We denote

Sijk = J∗
il∂lJ

∗
jk+ 	(i,j,k) . (17)

Using Eqs. (9)-(16), we prove below that Sijk = 0 for all i, j, k. Several cases have to be

envisaged, depending on which set i, j and k belong to. There are only two cases where

the derivation of the Jacobi identity is non-trivial, one corresponding to i, j, k ∈ In and

the other one corresponding to i ∈ I1 and j, k ∈ In.

• If one of the indices i, j, k belong to I2 or Ic, then all the terms J∗
il∂lJ

∗
jk vanish

individually and the Jacobi identity is trivially satisfied. Consequently i, j, k belong

to either I1 or In.

• If i, j, k ∈ I1, then J
∗
jk = 0 and hence the Jacobi identity is trivially satisfied.
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• If i, j ∈ I1 and k ∈ In,

Sijk = cli∂lckj − clj∂lcki,

which vanishes considering Eq. (9).

• If i ∈ I1 and j, k ∈ In,

Sijk = − cli∂l(J̄ + BA
−1

B
†)jk − ckl∂lcji + cjl∂lcki

− (J̄+ BA
−1

B
†)kl∂lcji + (J̄+ BA

−1
B
†)jl∂lcki. (18)

In order to show that Sijk = 0, we need Eqs. (10), (11) and (12). Using Eq. (12),

Sijk is rewritten as

Sijk = −cli∂l(BA
−1

B
†)jk − (BA

−1
B
†)kl∂lcji + (BA

−1
B
†)jl∂lcki +Bkl∂lcji − Bjl∂lcki.

From AA
−1 = 1k2 , we have

A−1
βγ ∂lAαβ + Aαβ∂lA

−1
βγ = 0.

Multiplying the previous identity by cli and using Eq. (10), we have

cliAαβ∂lA
−1
βγ = 0.

Since A is invertible, this identity becomes equivalent to

cli∂lA
−1
βγ = 0,

which is analogous to Eq. (10) for A−1. In order to prove that Sijk = 0, we compute

cli∂l(BA−1B†)jk:

cli∂l(BA
−1

B
†)jk = cli∂lBjαA

−1
αβBkβ + cli∂lBkβA

−1
αβBjα + cliBjαBkβ∂lA

−1
αβ .

Using cli∂lA
−1
αβ = 0 and Eq. (11) to rewrite cli∂lBjα and cli∂lBkβ, we obtain

cli∂l(BA
−1

B
†)jk = (−Aαl∂lcji +Blα∂lcji)A

−1
αβBkβ + (−Aβl∂lcki +Blβ∂lcki)A

−1
αβBjα.

Since A is antisymmetric, we rewrite this expression as

cli∂l(BA
−1

B
†)jk = Bkl∂lcji −Bjl∂lcki + (BA

−1
B
†)lk∂lcji − (BA

−1
B
†)lj∂lcki,

from which we deduce that Sijk = 0.

• The case i, j, k ∈ In is the most involved one. The expression of Sijk is given by

Sijk = cil∂l(J̄ + BA
−1

B
†)jk + (J̄+ BA

−1
B
†)il∂l(J̄+ BA

−1
B
†)jk+ 	(i,j,k) .

We start by inserting Eq. (13) into Sijk :

Sijk = cil∂l(BA
−1

B
†)jk+J̄il∂l(BA

−1
B
†)jk+(BA

−1
B
†)il∂l(J̄+BA

−1
B
†)jk−Bil∂lJ̄jk+ 	(i,j,k) .
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Expanding the above expression leads to

Sijk = cil∂lBjαA
−1
αβBkβ + cilBjαA

−1
αβ∂lBkβ

+ J̄il∂lBjαA
−1
αβBkβ + J̄ilBjαA

−1
αβ∂lBkβ

+BiαA
−1
αβBlβ∂lBjγA

−1
γδ Bkδ +BiαA

−1
αβBlβBjγA

−1
γδ ∂lBkδ

+ cilBjαBkβ∂lA
−1
αβ + J̄ilBjαBkβ∂lA

−1
αβ +BiαA

−1
αβBlβBjγBkδ∂lA

−1
γδ

+BiαA
−1
αβBlβ∂lJ̄jk − Bil∂lJ̄jk+ 	(i,j,k) .

Using a circular permutation and antisymmetry of A−1 with which cilBjαA
−1
αβ∂lBkβ

is replaced by −cjl∂lBiαA
−1
αβBkβ, the expression for Sijk becomes

Sijk = (cil∂lBjα − cjl∂lBiα + J̄il∂lBjα − J̄jl∂lBiα)A
−1
αβBkβ

+BiαA
−1
αβBlβ∂lBjγA

−1
γδ Bkδ +BiαA

−1
αβBlβBjγA

−1
γδ ∂lBkδ

+ cilBjαBkβ∂lA
−1
αβ + J̄ilBjαBkβ∂lA

−1
αβ +BiαA

−1
αβBlβBjγBkδ∂lA

−1
γδ

+BiαA
−1
αβBlβ∂lJ̄jk − Bil∂lJ̄jk+ 	(i,j,k),

where we have also replaced BiαBjγ∂lBkδ by BkαBiγ∂lBjδ by a circular permutation

of (i, j, k). Inserting Eq. (14) inside Sijk gives

Sijk = (−Bil∂lBjα +Bjl∂lBiα +Blα∂lJ̄ij −Aαl∂lJ̄ij)A
−1
αβBkβ

+ cilBjαBkβ∂lA
−1
αβ + J̄ilBjαBkβ∂lA

−1
αβ +BiαA

−1
αβBlβBjγBkδ∂lA

−1
γδ

+BiαA
−1
αβBlβ∂lBjγA

−1
γδ Bkδ +BiαA

−1
αβBlβBjγA

−1
γδ ∂lBkδ

+BiαA
−1
αβBlβ∂lJ̄jk − Bil∂lJ̄jk+ 	(i,j,k) . (19)

Since Aαl∂lJ̄ijA
−1
αβBkβ = −Bkl∂lJ̄ij , the term Bkl∂lJ̄ij cancels with −Bil∂lJ̄jk by

using a permutation on the indices i, j, k. Similarly, the term BkβA
−1
αβBlα∂lJ̄ij

cancels with BiαA
−1
αβBlβ∂lJ̄jk with a permutation of the indices i, j, k and the

antisymmetry of A−1. Next, we rewrite the terms

Uijk ≡ BiαA
−1
αβBlβ∂lBjγA

−1
γδ Bkδ +BiαA

−1
αβBlβBjγA

−1
γδ ∂lBkδ+ 	(i,j,k),

into

Uijk = BiαA
−1
αβA

−1
γδ Bkδ (Blβ∂lBjγ − Blγ∂lBjβ) + 	(i,j,k),

using a circular permutation of (i, j, k) and a relabeling of the silent indices

(α, β, γ, δ) as well as the antisymmetry of A−1. Inserting Eq. (15) gives

Uijk = BilA
−1
γδ Bkδ∂lBjγ +BiαA

−1
αβBkl∂lBjβ

+BiαA
−1
αβA

−1
γδ Bkδcjl∂lAγβ +BiαA

−1
αβA

−1
γδ BkδBjl∂lAγβ

+BiαA
−1
αβA

−1
γδ BkδJ̄jl∂lAγβ+ 	(i,j,k) .

From the identity A−1
βγ∂lAαβ = −Aαβ∂lA

−1
βγ (which comes from differentiating

AA−1 = 1k2), we notice the following cancellations using circular permutations

of (i, j, k): The term BiαA
−1
αβA

−1
γδ Bkδcjl∂lAγβ cancels with cilBjαBkβ∂lA

−1
αβ , and the

same holds for BiαA
−1
αβA

−1
γδ BkδJ̄jl∂lAγβ which cancels with J̄ilBjαBkβ∂lA

−1
αβ . The
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first two terms in Uijk cancel with the first two terms of Sijk in Eq. (19). It follows

that

Sijk = BiαBjγBkδBlβA
−1
αβ∂lA

−1
γδ +BiαBkδA

−1
αβA

−1
γδ Bjl∂lAγβ+ 	(i,j,k) .(20)

By differentiating AA
−1 = 1k2 and using the antisymmetry of A, we have

∂lA
−1
γδ = A−1

γmA
−1
δn ∂lAmn.

Inserting this expression into the first term of Sijk in Eq. (20) gives

Sijk = BiαBjγBkδA
−1
αβA

−1
δmA

−1
nγ

(

Blβ∂lAmn+ 	(β,n,m)

)

+
(

BiαBkδA
−1
αβA

−1
γδ Bjl∂lAγβ+ 	(i,j,k)

)

,

since

BiαBjγBkδBlβA
−1
αβ∂lA

−1
γδ + 	(i,j,k)= BiαBjγBkδ

(

BlβA
−1
αβ∂lA

−1
γδ + 	(α,γ,δ)

)

.

Now we use Eq. (16) from which we obtain

Sijk = BiαBjγBkδ

(

A−1
γmA

−1
δn ∂αAmn+ 	(α,γ,δ)

)

+
(

BiαBkδA
−1
αβA

−1
γδ Bjl∂lAγβ+ 	(i,j,k)

)

,

= BilBjγBkδA
−1
γmA

−1
δn ∂lAmn +BiαBkδA

−1
αβA

−1
γδ Bjl∂lAγβ+ 	(i,j,k) .

By using a circular permutation of (i, j, k), a relabeling of the silent indices and

the antisymmetry of A−1, we show that the two terms in the last equation for Sijk

cancel each other. Therefore Sijk = 0, and the Jacobi identity is satisfied.

3. Non-unicity of Dirac brackets

Conditions (2)-(4) on the determination of the pseudoinverse D corresponds to a unique

D for finite dimensional Hamiltonian systems. A natural question is whether or not one

of these conditions can be relaxed with the requirement that the resulting matrix J∗

given by Eq. (6) still satisfies the Jacobi identity. In other words, what is the minimal set

of equations which has to be satisfied by D such that the resulting bracket is a Poisson

bracket and the second class constraints are Casimir invariants?

We consider a general (antisymmetric) matrix D written in the same coordinates

as in the previous section :

D =







D(11) D(12) D(13)

−D(12)† D(22) D(23)

−D(13)† −D(23)† D(33)






.

From the computation of J∗ given by Eq. (7), we notice that the resulting Dirac bracket

is independent of D(12), D(22) and D(23). The second line and second column correspond

to the Casimir invariants of the original Poisson bracket. In what follows, we choose
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these matrices to be zero. In addition, a natural choice for D(33) is A−1 in order to

resolve the second class constraints. As a result, the matrix J∗ is given by

J
∗ =











0 0 0 −c†

0 0 0 0

0 0 0 −AD(13)†c†

c 0 −cD(13)A J̄∗











,

where J̄∗ = J̄+BA−1B†+cD(11)c†+cD(13)B†−BD(13)†c†. This matrix J∗ does not satisfy

the Jacobi identity in general. The goal is to find the conditions on D(11) and D(13) such

that the resulting Dirac bracket satisfies the Jacobi identity regardless of the specific

form of the original Poisson bracket (i.e., for all c, A, B and J̄ satisfying Eqs. (9)-(13)).

For this purpose we first consider Sijk given by Eq. (17) for i ∈ I2 and j, k ∈ In and look

at the terms proportional to D
(13)
αβ . After some algebra, the condition Sijk = 0 reduces

to

D
(13)
αβ

[

ckαcjl − cjαckl + ckα(J̄+ BA
−1

B
†)jl − cjα(J̄ + BA

−1
B
†)kl

]

∂lAiβ = 0.

Since the coefficient of D
(13)
αβ is non-zero in general, it implies that D(13) = 0. The

condition D(13) = 0 implies that the second class constraints are Casimir invariants of

the Dirac bracket (1). In other terms it is necessary to have the second class constraints

as Casimir invariants in order to satisfy the Jacobi identity for the bracket (1). This

result echoes the one in Ref. [10] where it was proven that if all the constraints are

Casimir invariants (which is the case for a complete reduction) then the Dirac bracket

is a Poisson bracket, i.e., it satisfies the Jacobi identity everywhere in phase space.

Concerning D(11), there are two conditions to be satisfied :

• The first condition is given by Sijk = 0 when i ∈ I1 and j, k ∈ In. This condition

reduces to

Sijk = −cli∂l(cD
(11)c†)jk − (cD(11)c†)kl∂lcji + (cD(11)c†)jl∂lcki = 0.

The terms proportional to D
(11)
αβ vanish due to Eq. (9) and the antisymmetry of

D(11). What is left are terms proportional to the derivatives of D(11) :

Sijk = −cjαckβcli∂lD
(11)
αβ .

Since Sijk should vanish regardless of c, it implies that D(11) does not depend on the

variables zl for l ∈ In (i.e., the variables which are neither constraints nor Casimir

invariants).

• The second condition is obtained for i, j, k ∈ In as

Sijk = cil∂l(cD
(11)c†)jk + (cD(11)c†)il∂l(J̄+ BA

−1
B
†)jk

+ (J̄ + BA
−1

B
†)il∂l(cD

(11)c†)jk + (cD(11)c†)il∂l(cD
(11)c†)jk+ 	(i,j,k) .

This decomposes in three series of terms, the ones linearly proportional to the

coefficients of D(11), the ones proportional to the derivatives of these coefficients,
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and the ones which are quadratic in the coefficients of D(11) and their derivatives.

The first series of terms is equal to

S
(1)
ijk = D

(11)
αβ

[

cil∂l(cjαckβ) + ciαclβ∂l(J̄+ BA
−1

B
†)jk + (J̄ + BA

−1
B
†)il∂l(cjαckβ)

]

+ 	(i,j,k) .

Using Eq. (18) together with a circular permutation of the indices (i, j, k) and the

antisymmetry of D(11), all these terms vanish, i.e., S
(1)
ijk = 0. For the second series

of terms, we have

S
(2)
ijk = cjαckβ

(

cil + (J̄+ BA
−1

B
†)il

)

∂lD
(11)
αβ + 	(i,j,k) .

These terms are in general non-zero, except when D(33) does not depend on the

variables zl for l ∈ I1 and l ∈ In. As for the third series of terms, it is written as

S
(3)
ijk = ciαcjγckδclβD

(11)
αβ ∂lD

(11)
γδ + 	(i,j,k) .

The conditions S
(3)
ijk = 0 implies that D(11) does not depend on zl for l ∈ In, which

is again the condition found in the previous case i ∈ I1 and j, k ∈ In.

In summary, the Jacobi identity is satisfied when D(13) = 0 and when D(11) does

not depend on the variables zl for l ∈ I1 and l ∈ In, i.e., D
(11) could have a dependence

on the Casimir invariants of the bracket {·, ·}∗ (whether these invariants originate from

the Casimir invariants of the original bracket {·, ·} or from the reduction of the second-

class constraints). Of course, depending on the specific choice of Poisson matrix J, less

restrictive cases can be considered for D(13) or D(11). An example is provided in Sec. 5.

Here we provided the conditions on these two matrices such that the Jacobi identity is

satisfied regardless of the specific form of the original Poisson matrix.

Consequently, given that there are other possible choices for D(11), the Dirac

bracket (1) as a Poisson bracket is not unique even if all the second class constraints

are imposed as Casimir invariants. We notice that with a non-zero D(11), the resulting

matrix D satisfies the conditions (2) and (4), but the condition (3) is not satisfied. As a

consequence, P∗ = 1− Q̂†DQ̂J is not a projector (with the additional assumption that

c† does not belong to the kernel of D(11)).

4. Reduced dynamics

We consider the Dirac-Poisson bracket given by the matrix

J
∗ =











0 0 0 −c†

0 0 0 0

0 0 0 0

c 0 0 J̄∗











,

where J̄∗ = J̄+ BA−1B† + cD(11)c†. The equations of motion for zl for l ∈ I1 and l ∈ In
are given by

ż1 = −c†
∂H

∂zn
,

żn = J̄∗

∂H

∂zn
+ c

∂H

∂z1
,
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where H is the Hamiltonian which a priori depends on z1 and zn (since z2 and zc are

Casimir invariants, they can be forgotten in the analysis). In order to have a complete

reduction, the first-class constraints have to be conserved quantities (even if they are

not Casimir invariants) which is obtained under the condition

c†
∂H

∂zn
= 0. (21)

Under this condition, we notice that the resulting system of dynamical equations is

unique, i.e., it does not depend on D(11) since the additional term in the equations

cD(11)c†∂H/∂zn vanishes.

The condition (21) is rewritten as {z1, H}∗ = 0 since {z1, z2}∗ = {z1, zc}∗ = 0

(where z2 denotes zl with l ∈ I2 and zc denotes zl with l ∈ Ic), which means that the

Hamiltonian after the reduction has to commute with the first-class constraints. In

other terms, the Hamiltonian has to be changed so that the first-class constraints are

conserved quantities of the Dirac bracket.

5. Examples

There are two trivial examples and they correspond to the two limits of the Dirac

reduction, one for which all the constraints are first-class and another for which all the

constraints are second-class. For the case where all the constraints are first-class, the

matrix C is zero and its pseudoinverse D is also zero. Hence the Dirac bracket is the

same as the original bracket, which means that the reduction has failed. The second

limit example corresponds to the case where the matrix C is invertible. The reduction

is complete and the Dirac bracket is the usual one.

Between these two limit cases, there are examples where the reduction is incomplete.

Several examples are given below.

5.1. Finite dimensional examples

If we consider only one constraint, it is necessary a first-class constraint since it Poisson

commutes with itself. Therefore the Dirac bracket computed with the pseudoinverse is

identical to the original Poisson bracket.

If we consider two constraints, there are two cases: one in which they do not

commute and hence both constraints are second class, and another one where they

commute and hence they are both first-class. In the first case, the Dirac bracket is

identical to the usual one since the matrix C is invertible. In the second case, the Dirac

bracket is identical to the original one since C = 0.

More interesting cases occur when there are three constraints, one of which is first-
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class. The simplest example is afforded by the Poisson bracket

J =











0 0 0 1

0 0 −1 1

0 1 0 −1

−1 −1 1 0











,

with the three constraints Φ1(z) = z1, Φ2(z) = z2 and Φ3(z) = z3. We notice that Φ1 is

a first-class constraint whereas Φ2 and Φ3 are second-class. The matrix C is given by

C =







0 0 0

0 0 −1

0 1 0






,

and its pseudoinverse by

D =







0 0 0

0 0 1

0 −1 0






.

The Dirac bracket computed from the pseudoinverse is given by

J∗ =











0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0











,

where we notice that Φ2 and Φ3 are Casimir invariants of J∗, but Φ1 is not.

The second example in finite dimensions is given by

J =



















0 −z3 z2 0 −w3 w2

z3 0 −z1 w3 0 −w1

−z2 z1 0 −w2 w1 0

0 −w3 w2 0 0 0

w3 0 −w1 0 0 0

−w2 w1 0 0 0 0



















,

which corresponds to the Poisson matrix for the rigid body [15], and three constraints

given by Φ1(z,w) = z3, Φ2(z,w) = w2 and Φ3(z,w) = w3. We notice that Φ3 is a

first-class constraint. The matrix C is given by

C =







0 w1 0

−w1 0 0

0 0 0






,

and its pseudoinverse by

D =







0 −1/w1 0

1/w1 0 0

0 0 0






.
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The Dirac bracket computed from the pseudoinverse is given by

J∗ =



















0 z1w3/w1 − z3 0 −w2w3/w1 0 w2

−z1w3/w1 + z3 0 0 w3 0 −w1

0 0 0 0 0 0

w2w3/w1 −w3 0 0 0 0

0 0 0 0 0 0

−w2 w1 0 0 0 0



















, (22)

with the same remark as above, Φ3 is not a Casimir invariant of the Dirac bracket.

In order to illustrate the remark above on the unicity of the Dirac bracket, we

consider matrices D which only satisfy condition (2). For instance a possible matrix is

D =







0 −1/w1 0

1/w1 0 −w2

0 w2 0






,

which satisfies C = CDC and D = DCD but not CD = DC. This choice leads to the

Dirac bracket with the following Poisson matrix :

J∗ =



















0 −w1w2w3 + z1w3/w1 − z3 w1w
2
2 −w2w3/w1 0 w2

w1w2w3 − z1w3/w1 + z3 0 −w2
1w2 w3 0 −w1

−w1w
2
2 w2

1w2 0 0 0 0

w2w3/w1 −w3 0 0 0 0

0 0 0 0 0 0

−w2 w1 0 0 0 0



















,

which is different from J∗ given by Eq. (22).

5.2. Infinite dimensional example: two-dimensional Euler’s equation

For an infinite-dimensional Hamiltonian system with dynamical field variables χ(x), the

generalized Dirac bracket is written as

{F,G}∗ = {F,G} −

∫

dNx

∫

dNx′{F,Φn(x)}Dnm(x,x
′){Φm(x

′), G},

where D satisfies

Cnm(x,x
′) =

∫

dNy

∫

dNy′Cnl(x,y)Dlp(y,y
′)Cpm(y

′,x′),

Dnm(x,x
′) =

∫

dNy

∫

dNy′Dnl(x,y)Clp(y,y
′)Dpm(y

′,x′),
∫

dNyCnl(x,y)Dlm(y,x
′) =

∫

dNyDnl(x,y)Clm(y,x
′),

which generalize the conditions (2)-(4). The existence of such a pseudoinverse D is more

complicated than in the finite dimensional case, and is beyond the scope of the present

work. On a practical basis it has to be assessed case by case. In the infinite dimensional
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case, it is very difficult to separate first class and second class constraints as we shall

see it below using an example. However it should be noted that the principles of the

definition of the Dirac bracket does not rely on the separation between first class and

second class constraints.

Here we consider the two dimensional Euler equations for the density ρ(x), the fluid

velocity v(x) and the entropy s(x) where x = (x, y) ∈ T
2 (the two-dimensional torus)

given by

ρ̇ = −∇ · (ρv),

v̇ = −v · ∇v − ρ−1∇P,

ṡ = −v · ∇s.

The Hamiltonian of the system is a function of the dynamical field variables ρ, v and

s, given by

H [ρ,v, s] =

∫

d2x

(

ρ
v2

2
+ ρU(ρ, s)

)

, (23)

where U is the internal energy such that the pressure is given by P = ρ2∂U/∂ρ, and the

Poisson bracket is

{F,G} = −

∫

d2x
[

Fρ∇ ·G
v
+ F

v
· ∇Gρ − ρ−1(∇× v) · F

v
×G

v

+ρ−1∇s · (FsGv
− F

v
Gs)

]

, (24)

where Fρ denotes the functional derivative of the observable F with respect to the field

variable ρ (and equivalently for F
v
and Fs). The associated Poisson operator is

J =







0 −∇· 0

−∇ −ρ−1(∇× v)× ρ−1∇s

0 −ρ−1∇s 0






,

from which the Poisson bracket is defined as

{F,G} =

∫

d2xFχ · JGχ,

where Fχ = (Fρ, Fv
, Fs).

In order to find reduced systems defined from some constraints imposed on the

above Hamiltonian system, a first obvious choice would be to impose ρ(x) = ρ0(x) with

a prescribed density ρ0. Since {ρ(x), ρ(x′)} = 0, these constraints are all first class

constraints and not of them are Casimir invariants. The matrix C is zero and hence

its pseudo-inverse is also zero. The associated Dirac bracket is the same as the original

bracket. The reduction has failed.

A second choice is to impose a local constraint as divergence-free velocity field which

consists of an infinite number of constraints, Φ(x) = ∇·v(x) = 0. The idea behind this

calculation is to have a divergence free velocity field (incompressibility) but keeping the

density as a dynamical field variable. It should be noted that none of these constraints

are Casimir invariants of the bracket (24).
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The operator C = Q̂JQ̂† where Q̂ = (0,∇·, 0), is given by

C = ∇ · (ρ−1(∇× v)×∇).

We rewrite this operator using q(x, y) = ρ−1(∇× v) · ẑ :

C = −[q, ·],

where the bracket [·, ·] is given by

[f, g] =
∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
.

The operator C is not invertible since any function of q belongs to its kernel. Therefore

the constraints form a complicated admixture of first-class and second-class constraints.

In order to see whether or not C has a pseudoinverse, we consider the characteristics

associated with the linear operator C which are fictitious trajectories with q(x, y) as

Hamiltonian. In this fictitious dynamics, the variables are x and y. Locally, we change

variables to action-angle variables (ϕ,A) so that q(x, y) = q0(A). Since this change of

fictitious variables is canonical, the expression of the linear operator C becomes

C = q′0(A)
∂

∂ϕ
.

In Fourier series, it is straightforward to see that C has a pseudoinverse D, and the

action of these two operators are given by

Cf = q′0(A)
∑

k

ikfke
ikϕ,

Df =
1

q′0(A)

∑

k 6=0

fk
ik
eikϕ.

The Poisson operator J∗ associated with the Dirac bracket defined from the

pseudoinverse D is given by

J∗ =







∆D∆ −∇ · P −∆D∇ · (ρ−1∇s•)

−P†∇ −ρ−1(∇× v)× P P†(ρ−1∇s•)

ρ−1∇s · ∇D∆ −ρ−1∇s · P −ρ−1∇s · ∇D∇ · (ρ−1∇s•)






,

where • indicates where the operator acts, and P = 1 − ∇D∇ · (ρ−1(∇ × v) × •) is a

projector with the following properties :

∇× P = P,

P∇ = ∇(1− DC),

where 1− DC is the projector onto the kernel of C. In fictitious action-angle variables,

this projector is given by

1− DC =

∫

dϕ.
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From the Poisson matrix J∗ the Dirac bracket becomes :

{F,G}∗ =

∫

d2x
[

(∇Fρ − ρ−1∇sFs) · Ḡv
− F̄

v
· (∇Gρ − ρ−1∇sGs)

+ρ−1(∇× v) · F̄
v
× Ḡ

v

]

, (25)

where the constrained derivative F̄
v
is defined from the Dirac projector P∗ = 1−Q̂†DQ̂J

as

F̄
v
= PF

v
−∇D∇ · (∇Fρ − ρ−1∇sFs).

For Hamiltonian (23), the constrained derivative H̄
v

leads to the definition of a

constrained velocity field v̄ such that H̄
v
= ρv̄ with

v̄ = v − ρ−1∇D∇ · [(v · ∇)v + ρ−1∇P ].

It should be noted that a priori ∇· v̄ is non-zero. Functionals C satisfying the following

conditions :

∇Cρ − ρ−1∇sCs = 0,

PC
v
= 0,

are Casimir invariants of the bracket (25). The first condition leads to C =
∫

d2xρψ(s)

which are also Casimir invariants of the original bracket (24). The reduction procedure

has preserved the Casimir invariants as expected. The second equation states that the

second-class constraints are Casimir invariants. However due to the intricacy of first

and second class constraints, it is cumbersome to explicit those invariants.

The resulting equations of motion are the following ones :

ρ̇ = −∇ · (ρv̄),

v̇ = −P
†

(

(v · ∇)v +
1

ρ
∇P

)

,

ṡ = −v̄ · ∇s.

Not all the constraints have been fulfilled since

∇ · v̇ = −(1− CD)∇ ·
[

(v · ∇)v + ρ−1∇P
]

,

which is in general non-zero since C is not invertible. In order to have a fully

incompressible (in the sense of ∇ · v = 0) model, the pressure needs to be adjusted

such that ∇ · v̇ = 0 when ∇ · v = 0 as it is the case in the standard incompressible

model. In summary, the Dirac procedure as outlined above provides a Dirac bracket

which is a Poisson bracket, given by Eq. (25), but does not have all the constraints as

Casimir invariants, contrary to the usual procedure where the matrix of the Poisson

brackets between the various constraints is invertible. The origin of this incomplete

reduction is the presence of first class constraints which are not Casimir invariants of

the original bracket [21].
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