
HAL Id: hal-01095501
https://hal.science/hal-01095501v1

Submitted on 15 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and Exploitation of Natural Software Diversity:
The Case of API Usages

Diego Mendez, Benoit Baudry, Martin Monperrus

To cite this version:
Diego Mendez, Benoit Baudry, Martin Monperrus. Analysis and Exploitation of Natural Software
Diversity: The Case of API Usages. [Research Report] hal-01095501, Inria. 2014. �hal-01095501�

https://hal.science/hal-01095501v1
https://hal.archives-ouvertes.fr

Analysis and Exploitation of Natural Software
Diversity: The Case of API Usages

Diego Mendez, Benoit Baudry, Martin Monperrus
University of Lille & Inria

Abstract—In this paper, we study how object-oriented classes
are used across thousands of software packages. We concentrate
on “usage diversity”, defined as the different statically observable
combinations of methods called on the same object. We present
empirical evidence that there is a significant usage diversity
for many classes. For instance, we observe in our dataset that
Java’s String is used in 2 460 manners. Beyond those empirical
observations, we show that we can use this API usage diversity
to reason on the core design of object-oriented classes. We think
that our pieces of evidence on API usage diversity shake up some
established ideas on the nature of software and how to engineer it.
Hence, we discuss those empirical results in the general context of
software engineering: what are the reasons behind this diversity?
what are the implications of this diversity?

I. INTRODUCTION

Gabel and Su [10] have published fascinating results,
showing that most pieces of code of less than 35 tokens
are redundant. They appear elsewhere in the same project,
or, for small sequences, elsewhere in the space of all ever-
written software. In ecology, a sister concept of redundancy
is diversity. In ecosystems, species are said to be redundant if
they have the same functional role, and are said to be diverse
if many different species occupy different niches.

There are many kinds of diversity in software [9]. In this
paper, we focus on one kind of diversity: the usage diversity
of classes of object-oriented code. Our main research question
reads as follows.

Do all developers use a given class in the same way?
or in diverse ways?’

By “usage diversity”, we mean ways of using a class
in terms of method calls. We consider software from the
viewpoint of type-usages, an abstraction introduced in [18],
[19]. This concept abstracts over tokens, control flow and
variables interplay. In a nutshell, a type-usage is a set of
method calls done on a variable, parameter or field in a code
base. For instance, Figure 1 presents a method body and three
corresponding type-usages.

From a dataset of hundreds of thousands of Java classes,
we have extracted millions of type-usages and measured their
diversity (as defined by the number of different type-usages
that can be observed). For instance, we have found that the
Java class “String” is used in 2 460 different ways. This is
not an exception, our experiment provides us with empirical

evidence that a large scale diversity exists in “API usage”1 of
certain object-oriented classes.

We then provide original results on how to exploit the
diversity of API usage in an actionable way. We demonstrate
that the diverse usages of a given class capture valuable
information about the number of responsibilities of that class.
We also point how the API usage diversity can be analyzed
to compare the expected usage by the class designer and the
actual usage.

Our contributions are:
• a set of new software metrics, inspired by biodiversity

metrics, that quantify the amount and the structure of
diversity of API usage;

• the empirical observation of diversity of API usage in a
large dataset;

• the exploitation of API diversity to reason on the design
of object-oriented classes;

• a discussion of those results in the general context of
software engineering: what are the reasons behind this
diversity? what are the implications of this diversity?

If the literature includes a large amount of work on the
synthesis of artificial diversity in software systems [9], to
our opinion, our work is the first study that empirically
quantifies the presence of diversity in object-oriented API
usage. Hence, our work can be classified as ecology-inspired
software engineering research [2], [21].

We think that our pieces of evidence on API usage diversity
shake up some established ideas on the nature of software
and how to engineer it. Some of our points are of speculative
nature, but they aim at fostering a collaborative research effort
on understanding the factors behind this API usage diversity.
This paper is an extension of conference paper published at
the 2013 International Working Conference on Source Code
Analysis and Manipulation [16]: the new section VI discusses
how we can use the topology of type-usages to reason on
a class’ semantics; section VII now clearly differentiates
between reasons and implications of API diversity.

The rest of the paper reads as follows. Section II gives some
background on object-orientation and type-usages. Section III
describes our experimental design. Section IV exposes our
empirical results and findings, while section V investigates

1We use the term “API usage” to reuse the same term as close work [12]. In
this case, “API” refers to “Application Programming Interface”, which at the
level of a class, is defined by the set of exposed methods (whether “exposed”
means public, documented of callable).

Source Code:

void saveNames(String inputPath) {
ArrayList filenames = new ArrayList();
File inputFile = new File(inputPath);
if (inputFile.isDirectory()) {

for (File f : inputFile.listFiles()) {
filenames.add(f.getName()); }

}
}

Abstraction:
// type usage #1 corresponds to "inputFile"
type:File
calls:{Constructor(String), isDirectory(), listFiles()}

// type usage #2 corresponds to "filenames"
type:ArrayList
calls:{Constructor(), add(String)}

// type usage #3 corresponds to "f"
type:File
calls:{getName()}

Fig. 1. Illustration of the concept of “types-usage”. An extractor transforms the Java source code at the left hand-side into the abstraction at the right hand-side.
Type-usages abstract over tokens, control flow and variables interplay.

potential biases in these observations. Section VI analyzes the
diversity of usages with respect to the number of responsi-
bilities of a class and the essentiality of methods in an API.
Section VII discusses possible reasons for this diversity as well
as possible implications on software engineering practices.
Finally, related work (Section VIII) and conclusion (Section
IX) close the paper.

II. BACKGROUND

A. Object-oriented software

In object-oriented software, a class defines a set of functions
(called methods) meant to be used in conjunction, in order
to perform computations in a certain problem domain. For
instance, in the problem domain of manipulating character
strings, the Java class String defines 76 methods to use and
transform strings in a variety of manners. The term “object”
refers to an instance of a class.

In object-oriented software, variables can point to objects,
and one “calls” methods on variables. Syntactically, this is
written with a dot. Calling method "getFirstLetter" on a string
variable is written a.getFirstLetter(). The method
operates on the data that is encapsulated within the object.
Designing the scope of methods and where to put them is all
the art of object-oriented design.

B. Type-Usages

We consider software from the viewpoint of type-usages,
an abstraction introduced in [18], [19]. A type-usage is an
unordered set of method calls on the same variable of a given
type occurring somewhere within the context of a particular
class [19]. Type-usages abstract over tokens, control flow
and variables interplay. Calls must be made on the same
variable (whether local variable, method parameter or field),
are unordered (the location in source code is not taken into
account) and unique (observing several times the same call on
the same variable is not taken into account). A call consists
of the signature of the method to be called, that is, in Java,
the method name, the parameter types (the methods void
init(String) and void init(File) are considered as two different
calls), and the return type. There is no distinction between
instance methods and class methods (“static” in Java). A

constructor call resulting in an object assigned to a variable is
considered as a method call on this variable.

Example type-usages are shown in Figure 1. The left-hand
side contains a piece of Java source code. The right-hand side
lists the corresponding type-usages. For instance, type-usage
#1 corresponds to variable inputFile which refers to an object
created by a constructor call, on which two methods are called:
“isDirectory” and “listFiles”.

We say that type-usages are of the same “kind” when they
have the same declared type the same set of calls. In the
following, when we use “type-usage”, we mean this aggre-
gated set of identical items. To refer to a concrete type-usage
(say, the one corresponding to variable “inputFile” in Figure
1), we will use the term “type-usage instance” (programming
terminology) or “type-usage specimen” (ecology terminology).
Along this line of thought, a type-usage corresponds to a
species (as opposed to type-usage instances which are indi-
viduals).

III. EXPERIMENTAL DESIGN

Our experiment consists of collecting a large number of
type-usages across open-source Java applications and comput-
ing the corresponding values of novel bio-inspired software
metrics.

A. Dataset

We have collected all Jar files present on a machine used
for performing software mining experiments for 7 years. A
Jar file is an archive containing compiled Java code under
the form of a collection of “.class” files. We remove some
duplicate Jar files with a heuristics based on file names. The
resulting dataset contains 3 418 Jar files. Some Jars are still
duplicated (the same version or very close versions) but this is
no threat for the diversity measurement since the duplication
does not introduce new type-usages. The residual duplication
may still have an impact on the abundance of type-usages.
The dataset only contains real code (mostly open-source code,
but also binary proprietary code and student project code)
and no artificial code that may have arisen along software
mining. It represents 11 GB of Java bytecode and refers to
382 774 different types (classes or interfaces). The list of Jar
files is given in the companion web page [15] and the raw

Abundance
abundanceproject(typeusage) is the number of type-usages instances of a given type-usage for a single project (in [0,∞[).
abundanceecosystem(typeusage) is the number of type-usages instances of a given type-usage in the ecosystem (in [0,∞[).
abundanceproject(class) is the sum of all type-usage instances that are typed by the same class in a given project

(
∑

abundanceproject(typeusage), in [0,∞[).
abundanceecosystem(class) is the sum of all type-usage instances that are typed by the same class in the ecosystem

(
∑

abundanceproject(class), in [0,∞[).
Diversity
diversityproject(class) is the number of different type-usages of a given class for a single project (in [0,∞[).
diversityecosystem(class) is the number of different type-usages of a given class in the whole ecosystem (in [0,∞[).

TABLE I
ECOLOGY-INSPIRED DIVERSITY METRICS FOR TYPES-USAGES.

data is available upon request. In this paper, for the ecological
metaphor, we call this dataset the “ecosystem” under study.

B. Extraction Software

The extraction software extracts the type-usages described
in II-B from Java code. It uses the analysis library Soot [24].
It works at the method body scope for local variables and
method parameters and class scope for method calls done on
fields. The extractor takes as input either Java source code or
Java bytecode. It is publicly available on Github2.

C. Metrics

The extraction of type-usages on our dataset yielded
9 022 262 type-usage specimen. We post-processed those type-
usages to compute the metrics described in Table I. There are
two groups of metrics: “abundance metrics” and “diversity
metrics”. Metrics have two dimensions: 1) whether they are
computed at the type-usage or class level 2) whether the are
computed for a single project or for the whole dataset.

Those metrics are inspired from ecology. The abundance of
species is the number of specimens (individuals), we define
the abundance at the level of type-usages and classes. The
abundance of a type-usage is the number of times it is observed
in a given scope, i.e. the number of type-usage instances.

The richness of an ecosystem is one measure of diversity, it
is the absolute number of species that can be observed in this
ecosystem. In our context, the richness of an object-oriented
class is the absolute number of different type-usages found in a
given domain. We call this metric diversityecosystem(class).
A more precise definition is given in table I.

IV. EVIDENCE OF API USAGE DIVERSITY

For us, a very intriguing research question is: what is the
diversity of usages of object-oriented APIs?

In other terms, do all developers use a given class in
the same way? More formally, what are the values of
diversityecosystem as defined in table I? For us, a class would
be “diverse” if we observe many different type-usages of this
type in the ecosystem under study.

A. Abundance and Diversity Distribution

Figure 2 shows the distribution of the abundance and
diversity at the level of classes in the ecosystem as boxplots

2https://github.com/monperrus/typeusage

Abundance Diversity
0

2

4

6

8

10

12

14

Fig. 2. The Type-usage Abundance and Diversity of All Classes of the Dataset
Under Study. The outliers are not represented for sake of scale.

(abundanceecosystem(class) and diversityecosystem(class)
of Table I). The median abundance is 3 (an abundance of 3
means that we have collected 3 type-usage instances for this
class). The abundance boxplot shows that across the 382 774
classes of our dataset, a large majority are used a small number
of times. This is due to the fact that many classes are only
used in a single project (Jar file) of the dataset and within this
project at most a handful of times.

The boxplot representing the distribution of diversity (sec-
ond boxplot starting from left) shows that classes have a
median number of 3 type-usages3. The upper quartile is 5.
In other terms, for 75% of the classes, we observe between 1
and 5 ways of using of the class. However, the data contains
many extreme points that are not represented on the boxplot
since their order of magnitude dwarfes this low diversity.

B. Classes with High Usage Diversity

Let us now concentrate on the upper quartile of the diversity
metric, those classes with high usage diversity. In our dataset,
there are 748 classes for which we observe more than 100
different type-usages and 48 classes for which we observe

3Note that the maximum diversity of a class is necessarily its abundance
in the case where each type-usage specimen is different. It thus makes sense
that the median diversity is 3 given a median abundance of 4.

https://github.com/monperrus/typeusage

Class Name Diversity # Methods |TU|=1 |TU|=2 |TU|=3 |TU|=4 |TU|=5 |TU|=6 |TU|=7 |TU|>7

java.lang.String 2460 69 69 529 638 614 396 145 51 18
java.io.File 2166 47 45 373 775 613 264 69 17 10
java.lang.StringBuffer 1312 51 41 142 238 316 290 176 83 26
java.util.ArrayList 1236 36 36 179 307 328 236 115 29 6
java.lang.Class 872 62 62 333 286 115 45 18 8 5
java.util.List 724 31 30 149 235 194 86 23 5 2
java.lang.StringBuilder 643 44 42 92 139 142 132 63 22 11
org.eclipse.swt.widgets.Composite 639 227 135 222 131 86 41 16 4 4
javax.swing.JButton 625 143 83 119 141 102 72 43 21 44
javax.swing.JLabel 570 101 76 145 153 108 47 16 13 12
org.w3c.dom.Element 534 60 60 198 165 76 19 9 4 3
javax.swing.JPanel 530 108 77 115 116 112 65 31 12 2
org.w3c.dom.Node 516 39 38 128 150 95 46 29 18 12
java.util.HashMap 471 22 20 92 125 123 74 30 6 1
org.eclipse.core.resources.IFile 456 68 59 167 120 55 30 12 6 7
java.util.HashSet 453 23 23 75 134 120 77 19 5 0
org.eclipse.core.runtime.IPath 360 36 34 148 114 43 14 4 2 1
org.eclipse.swt.widgets.Label 312 97 56 83 68 68 23 8 3 3
javax.swing.JScrollPane 308 105 73 77 77 45 18 11 4 3
org.eclipse.swt.widgets.Display 247 157 108 86 34 9 4 1 2 3
org.w3c.dom.Document 209 61 56 79 45 17 6 3 2 1
org.eclipse.core.runtime.Path 192 48 25 61 62 33 7 4 0 0
org.eclipse.emf.common.util.EList 128 29 29 50 31 10 4 3 1 0
org.eclipse.core.runtime.IConfigurationElement 119 21 20 31 46 16 5 1 0 0
org.osgi.framework.Bundle 115 33 33 55 22 4 1 0 0 0
org.eclipse.core.runtime.IStatus 100 13 12 25 31 17 7 5 3 0
org.xml.sax.XMLReader 100 15 15 20 20 21 13 6 4 1
org.w3c.dom.Attr 94 22 19 33 22 14 3 1 1 1
org.eclipse.core.resources.IWorkspaceRoot 88 37 37 39 7 5 0 0 0 0
java.lang.Object 31 10 10 16 5 0 0 0 0 0

TABLE II
THE DIVERSITY OF 30 WIDELY USED API CLASSES AND THEIR NUMBER OF TYPE-USAGES PER SIZE IN NUMBER OF METHOD CALLS. THE COLUMNS
|TU | = n GIVE THE NUMBER OF TYPE-USAGES CONSISTING OF n METHOD CALLS (E.G.; THERE ARE 69 TYPE-USAGES OF ONE SINGLE METHOD CALLS

FOR JAVA’S STRING).

more than 500 type-usages. The extreme case is Java’s String.
For this class, we observe 2 460 type-usages (among 394 959
type-usages specimen – instances – of type “String”).

Table II gives the diversity of 30 diverse classes. The first
column is diversityecosystem(class) as defined in III-C. The
second column is the number of called methods in the dataset.
The columns |TU | = n give the number of type-usages
consisting of n method calls (e.g.; there are 69 type-usages of
one single method calls for Java’s String). Those 30 classes
come from the following stratified sampling: the 10 most used
classes of the Java Development Kit (JDK) in number of
projects, the 10 most used classes of Eclipse (an important
sub-ecosystem of our ecosystem) and the 10 most used classes
that are neither from Eclipse nor from the JDK. We refer to the
latter as “non-JDK classes”, we show them to show that usage
diversity does not only appear in JDK classes. For instance,
there are 534 different type-usages for W3’s “Element” and
639 for Eclipse’s Composite.

As programmers, we were really surprised by this richness.
Why were we surprised? Probably because of the implicit
principle of software engineering stating that an abstraction
(whether function, class or method) should do one single thing
(coined the “Single Responsibility Principle” by Robert Martin
[14]). In the perspective of type-usages, this principle reads
as: 1) a class should have a small number of methods; 2) all
methods should be used in the same way with some small
variations. However, in our opinion, having hundreds of type-

usages for certain classes is not a small variation.
Let us first deepen our understanding of this diversity before

exploring the factors behind it.

C. Type-usage Dominance

Certain object-oriented classes give birth to a large diversity
of type-usages. Now we would like to understand the structure
of this diversity: are there type-usage that are much more used
than the others?

Let us assume that we observe 1000 type-usage instances
spread over 100 different type-usages. If 800 of them are of the
same type-usage, that would mean that the type-usage diversity
is actually dominated by a single one. To characterize this
phenomenon, we define the dominance metric (called dom)
as follows:

freqecosystem(typeusage) is the frequency of a type-usage
in the dataset (in [0, 1]).

=
abundanceecosystem(typeusage)∑
i abundanceecosystem(typeusagei)

domecosystem(class) is the maximum observed frequency
among type-usages referring to the same class (in [0, 1]).

domecosystem(class) = max({freqi)|type(i) = class})

We have computed the type-usage dominance of the 382 774
classes of our dataset. Figure 3 gives the distribution as an

0.0 0.2 0.4 0.6 0.8 1.0
domecosystem(class)

All classes

diversity≥100

Fig. 3. The Distribution of Dominance as an Histogram, for all classes of
the ecosystem and for very diverse ones. Diverse classes have no dominant
type-usages.

histogram (the plain, unhatched bars). We observe two peaks
around 0.5 and around 1. A dominance of 1 means that all
type-usage specimens of a given class correspond to the same
type-usage, i.e. that there is no diversity at all. A dominance of
0.5 means that half of the type-usage specimens are identical.
Both cases are peculiarities of our dataset, corresponding to
classes for which we observe one or two type-usage specimen.
The rest of the distribution contains “dominated” classes
(dom > 0.5) as well as classes for which there is no observed
dominant type-usages (low dominance value, e.g. dom < 0.3).
The latter correspond to classes where there is a real API usage
diversity: nonetheless there are many type-usages but all of
them are used in equal proportion. Now, let us come back to
to the high diversity observed for certain classes.

Let us concentrate on those 748 classes for which we
have observed more than 100 different type-usages. Are those
classes really diverse? Java’s String has a dominance of 0.083,
the most frequent type-usage is indeed not dominant. Does
this hold for the other very diverse classes as well? The
hatched bars of Figure 3 give the dominance distribution of
those 750 very diverse classes. Most classes have type-usage
dominance lower than 0.2. The largest bin (the tallest hatched
bar) corresponds to a dominance in the interval [0, 0.1]. For
those classes, there is no “standard way” of using the class
and the type-usage diversity does not correspond to “exotic
variations”.

To further demonstrate this point, Figure 4 plots the diversity
and dominance values for each class of the ecosystem. The
X axis is the diversity metric, the Y axis is the dominance
metric. Each dot is a class. We can clearly see that there
is a correlation between diversity and dominance: the more
diversity, the less dominance. This confirms the findings on the
748 most diverse classes. Those pieces of evidence converge to
state that the API usage diversity we have observed previously
is actually a true diversity.

Fig. 4. Correlation between Diversity and Dominance. Each point of the
graphic is a class. The more diverse a class’ type-usage, the less dominance.

D. Usage Entropy of Classes

The dominance metric reflects the skewness of the distri-
bution of the abundance of type-usages. However, it neglects
the distribution of the rest of the distribution, the 2nd most
abundant type-usage, the 3rd, etc. To compute the overall
skewness, we propose to use Shannon’s entropy. This enables
us to deepen our answer to the research question on type-usage
dominance.

In ecology, Shannon’s entropy is an established diversity
metric [11] (“diversity index” in the ecological terminology).
In our context, the entropy formula for type-usages, which we
call u-entropy, reads as follows:

u-entropy(class) = −
∑

freq(i)ln2(freq(i))

where the i are all observed type-usages of a class and freq
is an abbreviation of freqecosystem(typeusage). The entropy
is correlated to diversity: the more entropy, the more diversity.

The entropy is maximum when all type-usages are
equally distributed (i.e. of equal importance, with no
dominance at all). In this case, maxentropy(class) =
−ln2(diversityecosystem(class)). This value is the theoret-
ical maximum of the entropy, i.e. the maximum level of
diversity. For all classes of the ecosystem, let us draw
maxentropy(class) versus entropy(class), in order to see
whether the maximum diversity is often approached or not.

Figure 5 is a scatter plot of the u-entropy(class) (X
axis on a logarithmic scale) versus ln2(diversity(class))
(Y axis), i.e. the maximum theoretical entropy. Those axes
represent the two components of what ecologists call “species
evenness”. One dot is a class among the 382 774 classes of
the ecosystem. The diagonal lines emerging from the points
correspond to the theoretical maximum entropy (when the
type-usages are uniformly distributed). There are no point for
which entropy(class) > ln2(diversity(class)) for obvious
theoretical reasons. The vertical lines at the left-hand side
of the figure correspond to all classes with a small number
of type-usages (one line is ln(diversity = 3), one line is

Fig. 5. The Type-Usage Entropy of Classes (Y axis) as a function of the API
Usage Diversity (X axis). Each point of the graphic is a class. Most classes
are grouped just below the maximum entropy, i.e. the diversity is almost
systematic.

ln(diversity = 4), etc). The main striking point of this figure
is that the cloud of points sticks to the maximum entropy.

First, it further validates the finding of Figure 4. While the
dominance only takes into account the most frequent type-
usages, the entropy reflects the skewness of the whole distribu-
tion. Since the points are grouped along the maximum entropy,
with no gap between, this also shows there is a tendency to real
diversity (the type-usages are all used frequently). We would
rephrase it as the API usage diversity is systematic.

Second, let us concentrate on classes which have the same
diversity value (according to metric diversity of Table I). This
corresponds to a vertical line of points. We see that those lines
can be quite high, especially for low values of diversity.
This means that there is a kind of a “meta-diversity”: the
distribution of type-usage abundance does not follow a simple
rule for all classes.

V. DISCUSSION

We have reported in Section IV that there exists classes with
very diverse API usages. This has never been observed before.
Before going further in explaining and exploiting this diversity,
let us dwell on the threats to the construct validity, i.e., on the
threats that our measurement actually reflects the reality we
claim to observe. In other terms, the research question we ask
is: what is the reasonableness of our results?

A. An Artifact of the Extraction Software?

When we observed this phenomenon that has never been
reported before, the first thing we did was to check our
extraction software. We carefully browsed the list of type-
usages for classes Map and String to check whether 1) they
make sense, 2) they actually appear in code. The answer
was positive. More generally, during our experiments, for
six months, we browsed many extracted type-usages and the
corresponding source code and this gives us confidence in our
results.

B. Type-usages Result From Combinations of Method Calls

One reason behind this diversity is that type-usages are
combinations of public methods. The second column of Table
II is the number of externally used methods on instances of
those classes (in-class and inherited methods). One sees that all
diverse classes have a large number of methods, and that most
methods appear in atomic type-usage with a single method
call (e.g. for String, there are 69 used methods and 69 type-
usages of size 1). To check whether the usage diversity only
depends on the number of methods for very diverse classes,
we compute the the Spearman correlation between the usage
diversity and the number of public methods. The Spearman
correlation is based on the ranks hence is independent of the
exponential combinations of methods. On the 748 classes, the
Spearman correlation is 0.25, which is low. The Spearman
correlation is composed of numerical comparisons of the ranks
of all pairs of classes. A low value of 0.25 means that there
are many pairs of diverse classes whose diversity and number
of methods go in opposite directions. indeed there are 40% of
class pairs for which the diversity goes in opposite directions
(less methods but greater diversity). This shows that the usage
diversity is driven by more factors than only the number of
public methods.

C. Objects are Used across Different Methods

Our analysis statically creates type-usages for local vari-
ables, method parameters and fields. If at runtime, an object
is passed from methods to other ones, our analysis would
output several type-usages, while at the runtime object level,
all method calls would be done on the same object. For
instance, let us consider a developer who wants to create a
list, add elements and print them if the list is not empty. For
some reasons, this developer would initialize the list in the
class constructor, declare a new method for adding elements
and at last, define a method that prints the elements and also
checks that the list is not empty. As a result, we would have
3 different type-usages: <init>, <add>, <isEmpty, get>. We
call those type-usages “type-usage fragments”. However, at
the object level, all method calls are done on the same object
and the type-usage would be: <init, add, isEmpty, get>. In
the extreme case, if 10 methods are called in ten different
methods, we would produce 10 type-usages, while there would
be actually one. In such case, our diversity measures would
be artificially 10x too big.

To explore this hypothesis, we propose to study the size
of type usages of a given class. The idea is that if we only
have very small type-usages, our static analysis has probably
only captured small, non atomic type-usage fragments. On
the contrary, if there are large type-usages, the analysis is
able to capture real interactions between methods on the same
variable.

Table II presents the distribution of type-usages per type-
usage size for the 30 reference classes. Recall that the columns
|TU | = n give the number of type-usages consisting of n
method calls. Hence, the left-hand side columns contain small
type-usages which are likely to be fragments. For instance,

Class #cc Explanation
Java Collection 2 One connected component (cc) is related to iterating over the elements a collection, the other one is about modifying

the collection (adding elements).
Java Set 2 The same as Collection. This indeed makes sense because Set is a subtype of Collection in Java. This shows that the

type-usage lattice reflects the inheritance of contracts.
Java Properties 2 One cc is related to getting properties (getProperty), the other one to creating properties. Interestingly, the intercession

cc clearly contains the 4 main methods for creating property files: load, setProperty, put, putAll).
Java Class 2 One cc is related to class reflection, the other to array reflection. (In Java, an array is a class, but a special one. In

particular, the component type of the array is accessible via a non regular, array-specific reflection method).
Java Matcher 2 One cc is related to testing the presence of patterns (“match” method), the other one to finding concrete occurrences (“find”

method). This corresponds to 2 out of 3 documented responsibilities4 of the class. The missing official responsibility
(“lookingAt”) is much less used in practice and consequently does not appear, given our filtering.

Java Thread 2 One cc is related to starting new threads, the other one is related to manipulating the class loader. Indeed, they are both
actual, really different, responsibilities of Java’s “Thread”.

Java String 2 Both connected components are related to manipulating the string (“substring”, “indexOf”, etc.). One is structured around
“substring”, the other cc around “endsWith”. This is not meaningful, it is an artifact of this particular threshold.

W3C Element 3 A class for representing XML nodes. Two connected components are about reading capabilities using methods for
instance method and “getLocalName”, “getAttribute”), the other one is about writing capabilities with “setAttribute” and
“appendChild”.

TABLE III
THE VALIDATION OF USING THE TYPE-USAGE LATTICE AS PROXY FOR REASONING ON THE NUMBER OF RESPONSIBILITIES OF A CLASS (#CC IS THE
NUMBER OF CONNECTED COMPONENTS IN THE TYPE-USAGE LATTICE WITH A THRESHOLD OF 100 TYPE-USAGE SPECIMEN). FOR ALL CLASSES BUT

STRING, THE CONNECTED COMPONENTS INDEED REPRESENT CLEAR RESPONSIBILITIES OF THE CLASS.

for Java’s String (the first row), we observe in our dataset 69
different type-usages of size 1.

So if one discards those small type-usages, do we still
have a large diversity of type-usages? The answer is yes. For
21/30 classes, there are more than 50% of type-usages whose
size is greater or equal to 3 method calls. Those at least 3
method calls are done on the same variable and likely on the
same object. Those results show that our empirical data is
noisy and that our static analysis indeed capture type-usage
fragments. However, with a conservative assumption that small
type-usages are noisy artificial fragments, we still observe a
large diversity in API usage.

VI. EXPLOITING API DIVERSITY: REASONING ON THE
CLASS SEMANTICS USING THE TYPE-USAGE LATTICE

We are now confident that, beyond the empirical noise,
there exists a large diversity in API usage for some classes.
We now want to transform this observational knowledge into
actionable knowledge. In this section, we show that the the
relation between type-usages can be used as proxy to reason
on the class’ semantics. As a result, the designers of a class
are provided with feedback on the design, and the users are
given pieces of documentation that are rarely present in the
official documentation.

A. The Lattice of Type-usages

To conduct formal reasoning, we propose to model the type-
usages of a given class as a graph. Each type-usage is a node
in the graph. The edges should capture the fact that a type-
usage is semantically related to another. We model this with a
subset relationship. If all the method calls of type-usage x are
contained into type-usage y, there is an edge from x to y. By
construction, this yields a lattice, since the subset relationship
can not be cyclic. Hence we refer to as the lattice of type-

Method essentiality Description
put 0.41 Adds a key-value pair in the map
get 0.29 Gets the value associated with the key
entrySet 0.05 Returns the list of key-value pairs for iterating
. . .
getClass 0.0006 Gets the class by introspection (from Object)
wait 0.0001 Tells the current thread to wait (from Object).
notifyAll 0.0001 Wakes up waiting threads (from Object).

TABLE IV
THE MOST AND LEAST ESSENTIAL METHODS OF JAVA’S MAP AS

MEASURED BY essentiality(class,method). NOT ONLY THERE IS A
LARGE DIVERSITY OF METHOD COMBINATIONS BUT THERE IS ALSO A

LARGE DIVERSITY OF METHOD IMPORTANCE.

usages5.
For example, Figure 8 gives an excerpt of such a lattice for

Java’s StringBuilder. The visual representation of such those
lattices will be discussed in depth in Section VI-D.

If one takes into account all type-usages observed in our
dataset, the lattice topology is noisy. For instance, a novice
developer may have written an exotic non-meaningful type-
usage in one of the applications of our dataset. To remove
the noise and have more accurate analyses, the lattice is
parametrized with a threshold, which is responsible for fil-
tering out the unimportant type-usages. The threshold is set
on abundanceecosystem(typeusage): if a type-usage has been
observed at least N times, it is represented, otherwise it is
discarded. The rationale is that if a type-usage often appears, it
is likely that the corresponding code has been written by many
different developers in different context hence is meaningful.

B. Number of Responsibilities

In software engineering, the single responsibility principle
(SRP) states that a class should have a single responsibility. It
means that all methods of a class should be related to the same
single responsibility and work in concert to fulfill it. How does

5The formal infimum is a type-usage with no method call, the formal
supremum is the set of all methods.

{getName, newInstance} (213)

{isArray} (461)

{isArray, getComponentType} (218)

{getClassLoader} (1153)

{getName, getClassLoader} (223)

{getSuperclass} (375)

{getInterfaces, getSuperclass} (162)

{isAssignableFrom} (916)

{isAssignableFrom, getName} (231)

{getInterfaces} (218){getName} (2381) {getComponentType} (385){newInstance} (1105)

Fig. 6. API Diversity Map of “java.lang.Class”. As a piece of documentation, it enables developers to grasp in one glimpse the different responsibilities of
the class.

diversity of type-usages relate to this design principle? In this
section, we define a metric based on the lattice of type-usages
to reason on the responsibilities of a class.

a) Intuition: Our intuition is that the single responsibility
principle reflects itself on the type-usage lattice as follows. If a
class has one single responsibility, all type-usages are seman-
tically related and the lattice is fully interconnected. If a class
has several responsibilities, several groups of semantically-
related type-usages emerge, each of them corresponding to
a responsibility.

For instance, in the lattice depicted in Figure 6, there are
three different separated groups of type-usages that corre-
spond, as we shall see later, to different responsibilities. In
classical terms, this can also be seen as a low class cohesion.
In other words, we can reason on the class’ semantics by
analyzing the topology of the lattice of type-usages.

b) Metric:

responsibilities(class, threshold) = |cc(typeusages(class))|

where cc is the number of the separated connected compo-
nents in the undirected version of the type-usage lattice; the
threshold is the minimum number of type-usage specimen
required for a type-usage to be considered in the lattice. The
threshold enables us to filter the noisy non-semantic type-
usages discussed in V-C.

c) Validation: We compute responsibilities for the 748
most diverse classes of our dataset and a threshold of minimum
100 type-usage specimens. We manually analyze all 8 classes
for which there are at least two responsibilities. Those classes
correspond to the classes that violate the single responsibility
principle. The analysis consists of understanding whether the
separated groups of type-usages (each group being a connected
component) actually correspond to different responsibilities.
This is done based on our own experience as Java developer
and on carefully reading the corresponding API documenta-
tion.

Table III gives the results of this evaluation. For each of the
8 classes with at least 2 responsibilities, we give the number
of connected components in the type-usage lattice and the
explanation on their meaning. For instance, the type-usage
lattice of Java’s interface “Collection” contains 2 connected
components: one connected component (cc) is related to
iterating over the elements a collection, the other one is about
modifying the collection (adding elements). Those two respon-
sibilities make sense according to the API documentation of
the class. For “Collection”, metric responsibilitiesecosystem
is validated.

As shown in Table III, the connected components of
7/8 classes with at least 2 responsibilities make sense and
correspond to actual responsibilities. Java’s “String” is again
an outlier, given a threshold of 100 type-usage specimen by
type-usage, the two emerging connected components do not
correspond to clear different responsibilities. Interestingly, the
API documentation of Java’s “Matcher” explicitly mentions at
the beginning of the class documentation three responsibilities:
our metric identifies with no doubt two of them. For the third
one, although it was considered as important as the others at
the time of designing and documenting the class, it is much
less used in practice. Consequently it does not appear in the
filtered type-usage lattice.

We could not check whether all the classes in which there
is a single connected component have a single responsibility
because of the lack of gold standard. This validation shows
that the type-usage lattice enables us to reason on the number
of responsibilities of the class. The type-usage diversity is a
proxy to the class’ semantics.

The diversity of type-usages is actionable, it enables one to
reason on the responsibilities of a class.

C. Essentiality of Methods

We leave the level of type-usages and try to reason at the
method level directly. We have observed in Section IV-C that
not all type-usages are of equal importance. Our goal is to
analyze the importance of each method again based on the
diversity of type-usages.

We assume that if all methods are of equal importance, then
we should find them in similar proportions in type-usages. To
reason on this point, we propose the following measure:

essentiality(class,meth) =
|{tus|tus contains meth}|
abundanceecosystem(class)

where tus refers to “type-usage specimens” and meth is an
abbreviation for “method”.

The measure essentiality is a ratio between 0 and 1. If
essentiality(c,m) is close to 0, it means that few type-usages
contain a call to method m and that m is optional. If it is close
to 1, it means that most type-usages contain m, hence the
method is essential. This measure is the sibling of frequency
presented in Section IV-C. While frequency considers type-
usages, essentiality focuses on the granularity of methods.

For instance, Table IV gives the essentiality values of meth-
ods of Java’s Map, which represents a key-value dictionary.
The measure captures the most important methods of a Map,
the ones that contain the essence of the class: put adds a
key-value pair, get retrieves the value associated with a key

0 5 10 15 20 25
m-entropy

0

20

40

60

80

100

cl
as

se
s

Fig. 7. The distribution of entropy of method essentiality for the most diverse
classes.

passed as parameter, entrySet enables one to iterate over all
pairs. Similarly, the least important methods come from the
root class Object, hence are not specific at all with respect to
the semantics of the class.

This measure is actionable. Based on this measure, the
designer of a class understands what the real usages of meth-
ods are. She can compare the empirical importance against
the foreseen usages. For instance, the designer of Java’s
Matcher envisioned method “lookingAt” as very important and
explicitly documented it as such in the API documentation6.
In practice, less than 1% of all type-usage specimens use this
method. Also, the novice user of a class might use this measure
for prioritizing the methods she has to learn.

Beyond this practical implication, this measure reflects the
diversity of method importance. For all diverse classes of our
dataset, the essentiality of methods considerably varies from
0.5 (half of type-usages contain this method) to very small
values.

We observe two levels of diversity in API usage, the
diversity of method importance (as reflected by essentiality)
and the diversity of method combinations (as reflected by the
diversity and entropy).

The measure diversity associates a single number to a
class. To analyze the measure frequency, we used Shannon’s
entropy to summarize the distribution of values for each
type-usage of a class. Similarly, we propose to measure the
entropy of method essentiality, which we call m-entropy. If
this measure is low, it means that the design of the class relies
on a small number of important methods. If it is high, it means
that there is a large number of equally important methods.

To some extent, m-entropy captures the difficulty of learning
a class: if it is high, the user of the class must know many
methods, if it is low she can productively work with the class
by only knowing a couple of methods. Some consider entropy

6http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html

as a measure of surprise. This is exactly along the same line
as difficulty of learning: if most type-usages use the same
method, they all are variations around the same goal, which
is embodied by the method and there is no surprise. On the
contrary, a high m-entropy means that the developer would
regularly be surprised by a type-usage that contains a new
method and no already known method. For instance, the m-
entropy of Java’s String (the most diverse class of our dataset)
is 1.1, which is low compared to other diverse classes. This
fits to the experience of Java developers that String is not a
class that is complex to understand and use.

Figure 7 shows the distribution of entropy of method essen-
tiality for all the 748 most diverse classes of our dataset. We
observe interesting phenomena on this figure. First, there are
two modes. There is a pack of classes with an m-entropy ≤ 2.
Despite diverse in their method combinations, those classes are
easy to learn because they are built one or two central methods.
Then, there is a maximum density of classes for classes around
m-entropy = 7. Let us take again a concept from ecology
to explain this phenomenon. This tend to show that there is
a sweet spot in terms of design, a kind of ecological niche
where many classes converge. An open intriguing question is:
what does this value of 7 mean? Future work might answer
this question by proposing and comparing different generative
models of API usage.

Finally, the classes with the maximum m-entropy culminate
at m-entropy ≥ 20. First , many of those classes are generated,
and we find in particular many generated parsers. Those
classes are not “natural”, and this is reflected in the high
artificial m-entropy. But beyond those outliers, we observe that
this average maximum entropy is higher than the entropy of
type-usages presented in Section IV-D where the maximum
values were around 10.

There are two drivers in entropy computation in discrete
spaces: the number of considered elements and the uniformity
of the distribution: the entropy is proportional to the number
of elements (the number of methods in this case), and to the
uniformity (a uniform distribution yields maximum entropy as
discussed in IV-D). For all classes under consideration, there
are much more type-usages than methods (see Table II). Con-
sequently, since m-entropy has higher values than u-entropy,
it means that the distribution of essentiality is much more
uniform and that methods less dominate the distribution than
for type-usages. This indicates that method combinations are
not randomly chosen based on the importance of methods but
that there is some kind of structure behind the combinations: if
methods a and b both have an essentiality of 0.3 (they appear
in 30% of all type-usage specimens), it does not mean that
one observe X types usages with only a and X with only b.
Methods a and b may frequently occur together and peak as
a single dominating type-usage. In this case, this is reflected
by u-entropy higher than m-entropy.

Intuitively, software design is analyzed with discrete con-
cepts. For instance, the 6 metrics of Chidamber and Kemerer

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html

for analyzing object-oriented design [8] are all discrete7. The
reason might be that the basic elements of software are
either binary or enumerated. However, the analysis we have
presented in this section lets us think it makes sense to reason
on the design of real classes with a continuous conceptual
framework. In real classes, there are dozens of methods,
adding or removing methods, even many does not make any
significant difference on the design quality as long the design
of responsibilities remains consistent. In this case, the number
of methods, which is discrete, is less meaningful than the m-
entropy. What matters is that the class is still built around
one or two clear flagship methods and a very continuous
concept using probabilities (entropy) seems to capture this
design property.

D. Visual Representation of Usage Diversity

We propose to use the lattice of type-usages as a piece of
documentation. An “API diversity map” is a graphical repre-
sentation of the lattice, laid out so that the largest type-usages
(in number of method calls) are at the top and the smallest at
the bottom. The filtering threshold on the abundance enables
one to tune the size of the API diversity map.

Figure 8 gives the diversity map of Java’s String-
Builder. The values for each type-usage correspond to
abundanceecosystem(typeusage). StringBuffer is a class used
for manipulating strings in an efficient manner.

The threshold on a minimum abundance of 150 spec-
imen per type-usage results in 8 nodes which makes it
very readable. The unfiltered noisy lattice would contain
diversity(StringBuilder) = 643 different nodes. This map
is very layered, due to the semantics of edges (“subset of”).
One sees that there is a “master” type-usage in which all
common methods of StringBuffer are used (“init” refers to
a constructor call). One also sees that some type-usages
are more popular than others. For instance, {init, append,
toString} appears 2434 in our dataset. For developers who
know StringBuilder, this reflects well its different usages. For
instance, on one end of the usage spectrum, one often only
calls “append” on a StringBuilder passed as parameter. On the
other end of the usage spectrum, one uses all main methods
of StringBuilder in a same method.

Now consider the diversity map of Java’s “Class” repre-
sented in Figure 6, the class handling the reflection of any
object (the meta-object is obtained by calling “getClass”).
Compared to the diversity map of StringBuilder, we observe
that: first the map is divided in three separated trees (the
different responsibilities already discussed); second, the top
layer of the map is composed of 5 different type-usages. Both
phenomena are due to the fact that Java’s “Class” has different
responsibilities: creating objects (“newInstance”), proxying
the current thread’s class loader (“getClassLoader”), testing
instance-of relationships (“isAssignableFrom”), handling Java
array special semantics (“isArray”), and subtyping introspec-
tion (“getInterfaces, getSuperClass”).

7Only WMC may not be discrete depending on how one compute the
complexity)

{append} (7300)

{append, toString} (179) {init, append} (5376)

{toString} (2218)

{init, toString} (243)

{init, append, toString} (2434)

{init, length, append, toString} (266)

{init} (320)

Fig. 8. API Diversity Map of “java.lang.StringBuilder”. The numbers in
bracket is abundanceecosystem(typeusage).

API diversity maps make diversity actionable. Based on
the maps we analyzed, they convey in one glimpse the usage
spectrum of class. This may be valuable for both the designers
and the new users of a class.

VII. DISCUSSION

We have observed a large-scale diversity in the usage of
object-oriented classes. To what extent, does this phenomenon
impact our software engineering knowledge? In particular,
what are the reasons behind this diversity? what are the
implications of this diversity? In this section, we speculate
about those two points, reasons and implications in order to
identify new fruitful research directions.

A. Speculative Reasons of API Diversity

1) Diversity and Cognition: When programming with ob-
ject oriented APIs, the bulk of the cognitive load consists
of remembering identifiers related to tasks (whether package,
class or methods). With this respect, remembering one single
class name is easier than remembering three of them. If Java’s
String would have been split in several classes, each one han-
dling one fine-grain responsibility (one subset of type-usages),
this would have increased the cognitive load of developers.
This argument applies to all classes and is related to research
on API usability, in which we have not found studies about
diversity. This argument would mean that, in terms of object-
oriented API design, there is a trade-off between responsibility
decomposition and usability. We think that future research on
this point would be of great interest.

2) Diversity and Plasticity: Second, let us define “class
plasticity” as the ability of a class to be used in many different
ways. Many factors influence the “class plasticity”. First,
we have seen that the number of public methods increases
the number of possible method call combinations, hence is
correlated with the plasticity (although slightly as witnessed by
the Spearman coefficient). Second, all kinds of checks have an
impact on the plasticity as well. For instance, overly restrictive
pre-condition and post-condition checks hinder plasticity. We
tend to think that a high usage diversity reflects a high class
plasticity.

3) Diversity and Reusability: High usage diversity may
correlate with reusability. It can reflect the fact that client
code was able to use the class in ways that were unanticipated

by the class designer. For instance, if one high level method
is defined on three sub-routines, providing the subroutines as
public would probably provoke unanticipated reuse of those
routines, which would consequently increase the class API
usage diversity. Having maps of API diversity as proposed
in VI-D may guide reuse. With those maps, developers are
aware of whether certain type-usages are popular or not and
can make informed decisions on how to use a class.

4) Diversity and Immutability: It is to be noted that one can
add as many public methods to an immutable object without
breaking anything: there are neither state-changing risks nor
usage protocol issues. In other terms, an immutable class easily
gives birth to a high API usage diversity. Java’s String being
immutable, this argument probably contributes to the massive
usage diversity we have observed.

5) Diversity and Success: Innovators try to write “suc-
cessful code”. In a commercial perspective, to make a lot
of money; in an open-source perspective , to gather a lot
of users. For an object-oriented library, “successful” means
having many client pieces code. For a class, “successful”
means having many client type-usages across many different
software projects. Certain classes of the Java Development
Kit are successful, as are classes of external libraries (e.g. the
Apache Commons libraries).

How to write successful classes? There is no clear recipe
and there are probably many factors influencing the success:
technical, social and commercial. However, it is generally
accepted that a badly designed class has little chances to
survive and become popular.

We have observed many classes that are successful (widely
used across a large ecosystem), and that have a large number of
public methods as well as a large diversity of possible different
usages. Even if those characteristics are sometimes considered
as bad design (as a violation of the single responsibility
principle aforementioned), they did not prevent those classes to
become successful. This holds for JDK classes as well as for
non JDK classes (e.g. W3C’s Node). To sum up, according
to our results, a high API usage diversity does not prevent
success.

We are also tempted to go further: if a class supports a high
API usage diversity, it may favor its success. The following
section presents arguments in favor of diversity in API design.

B. Speculative Implications of API Diversity

We have just discussed development practices that could
explain the emergence of high degrees of usage diversity. In
this section we discuss the impact of such diversity on several
aspects of software quality.

1) Diversity and Testability: Object-orientation has been a
major concern in the software testing community: does it favor
or hinder error finding? In particular, increased encapsulation,
modularity and coupling issues brought by the object-oriented
paradigm led to a large amount of work that discuss the
impact on testability [5], [1], [20]. Today, there is no doubt
about the utility of object-orientation, and testers have found
effective ways to reveal and fix errors in object-oriented code.

However, the observations that we make in this paper seem
to raise new questions about testability and maintainability of
object-oriented libraries. How to ensure that all possible type-
usages are correct? Should there be one test per observed API
usage (i.e. 2 460 test cases for Java’s String), or even one test
per acceptable method call combinations? This highlights a
particularly intriguing relation between diversity and oracles,
which we would put as diversity and correctness. Does API
usage diversity reflect a fuzzier notion of correctness? Does
API usage diversity means that we can only have “partial”
oracles? This is an open question calling for future research
on software testing.

2) Diversity and Bug Detection: The type-usage abstraction
has been introduced for sake of static bug detection [18],
[19]. In this previous research, our mantra was to find a
definition of “anomaly” among type-usages, a definition that
yields a low number of false positive. An intuitive threshold
on the abundance, even drastic, does not work. However, we
achieved a false positive ratio to the price of adding strong
criteria in the definition of “type-usage anomaly”: first, with
respect to the context of the type-usage (the enclosing method),
second, with respect to a type-usage distance expressed in
terms of methods calls. The new results presented in this
paper illuminate our previous work: the diversity of type-
usages makes it impossible to easily define an “anomaly”.
When an observed world is too diverse, there is no such thing
as “anomaly” or “out of the norm”. In general, we tend to
think that the more diversity in code (resp. at runtime), the less
possible it is to define high confidence static (resp. dynamic)
bug detection rules.

3) Diversity and Repair: However, beyond bug detection,
for automated bug repair, diversity may also as be a major
opportunity. The existence of a large number of similar,
yet diverse type usages provides a wonderful ‘reservoir’ of
alternative code to fix bugs. This goes in the direction of recent
results by Carzaniga and colleagues [7] showing that the API
usage diversity and plasticity can be used to fix certain bugs at
runtime. In such cases, the diversity gives a kind of mutational
robustness [23].

4) Diversity and Diversification: In this work we make
original observations about the presence of large scale diversity
in software. This diversity is present and has emerged spon-
taneously through the development of a large number of Java
classes. One question that emerges with the observation of this
spontaneous emergence of diversity is: should we support or
encourage the diversity in object-oriented software? Beyond
the impact of diversity on success discussed in VII-A5, what
about inventing techniques that automatically diversify a class
API, using novel code synthesis mechanisms?

For example, let us imagine a developer who wants to use a
class X . The developer calls a number of methods of this class’
API, based on previous experiences with this API and a rather
intuitive comprehension of what this class should do. There is
a chance that the developer calls a method that is not part of the
API, but that relates to the services offered by this API. If this
case happens, there may be a possibility that the yet unknown

method can be implemented as a combination of existing
methods. One way to automatically diversify a class API
would be to automatically synthesize this new method, using
the code provided by the developer as the specification (if
the code executes correctly, the generated method is correct).
This kind of code synthesis would, by definition, increase the
diversity of type usages over the API, and its principles would
be similar to the theories underlying mediator synthesis for
middleware interoperability [4], [6].

C. Recapitulation

We think that our observations on object-oriented API usage
diversity have questioned different parts of the software engi-
neering knowledge in particular with respect to the principles
of good API design. We also think that it opens new research
questions in terms of API usability and software testing.

VIII. RELATED WORK

Gabel and Su [10] have studied the uniqueness and redun-
dancy of source at the level of tokens. Our study explores a
different facet at a difference granularity: the diversity at the
level of object-oriented type usages.

Baxter et al. [3] have studied the “shape” of Java software.
They discuss the empirical distribution of many software
metrics, in particular size based metrics. However, they don’t
discuss at all diversity metrics as we do in this paper.

At the level of object-oriented APIs, an early paper by
Michail [17] discusses object-oriented usage patterns that were
observed in a large-scale study. He did not mention “diversity”
although it was somehow implicit in the large reported number
of patterns mined (51308 only for KDE classes). On the
contrary, we focus on measuring, analyzing and understanding
this diversity.

Ma and colleagues [13] only focus on Java classes and
prevalence metrics. Laemmel et al. [12] talk about API foot-
print and coverage (the number of API classes and methods
used within client projects). They do not mention the usage
diversity.

To our knowledge, Veldhuizen [25] is the only one who has
looked at entropy in software in a similar meaning as we have.
However, his point on entropy and reuse is more theoretical
than empirical, and the presented results are at the level of low-
level C library. To our knowledge, we are the first to report on
the existence, with precise numbers, of large scale diversity at
the API usage level.

Recently, Posnett et al. [21] explored a facet of diversity in
software development. In their paper, they define the notions of
“artifact diversity” and “authorship diversity” and extensively
discuss the pros and cons of high diversity. For instance;
for a module, it is beneficial to have a high diversity of
contributors. Posnett et al. and we both specifically aim at
measuring and understanding diversity in software. But we
focus on different facets: “artifact diversity” and “authorship
diversity” are orthogonal to “API usage diversity”.

IX. CONCLUSION

We have mined 9 022 262 type-usages in 3 418 Jar files
totaling 382 774 Java classes. In this data, we wanted to
specifically measure the diversity, in the sense of ecological
biodiversity. To our surprise, we observed a large-scale usage
diversity of API usage: 748 classes are used in more than 100
different ways. To our knowledge, this phenomenon has never
been reported before.

Then, we have put this diversity to work. We have shown
how to use the diversity of API usages as proxy to reason
on a class’ semantics, for instance to reason on the number
of responsibilities. Finally, we have discussed those empirical
results in the general context of software engineering: what are
the reasons behind this diversity? what are the implications of
this diversity?

As future work, it would be interesting to define measures
of “diversity” at other levels of abstraction (e.g. tokens or
control flow structures) to analyze the scale effect of this
software metric [22]. Diversity may also vary depending on
the application domains, and programming languages. To
conclude, the diversity advocated by Stephanie Forrest [9]
may have already emerged at many layers of the software
stack and this work provides new empirical insights about this
phenomenon.

ACKNOWLEDGMENTS

This work is partially supported by the EU FP7-ICT-2011-9
No. 600654 DIVERSIFY project and the INRIA Internships
program. We thank Benoit Gauzens for detailed feedback as
well as Yann-Gaël Guéhéneuc, Vivek Nallur and all members
of the DIVERSIFY project for insightful discussions.

REFERENCES

[1] B. Baudry, Y. Le Traon, and G. Sunyé. Testability analysis of a UML
class diagram. In Software Metrics, 2002. Proceedings. Eighth IEEE
Symposium on, pages 54–63. IEEE, 2002.

[2] B. Baudry and M. Monperrus. Towards Ecology-Inspired Software
Engineering. arXiv preprint arXiv:1205.1102, 2012.

[3] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. Tempero. Understanding the shape of Java software.
In Proceedings of Object-oriented Programming Systems Languages and
Applications (OOPSLA). ACM, 2006.

[4] G. Blair, A. Bennaceur, N. Georgantas, P. Grace, V. Issarny, V. Nundloll,
and M. Paolucci. The Role of Ontologies in Emergent Middleware: Sup-
porting Interoperability in Complex Distributed Systems. Middleware
2011, pages 410–430, 2011.

[5] M. Bruntink and A. Van Deursen. Predicting Class Testability using
Object-oriented Metrics. In Source Code Analysis and Manipulation,
2004. Fourth IEEE International Workshop on, pages 136–145. IEEE,
2004.

[6] C. Canal, P. Poizat, and G. Salaun. Model-based Adaptation of
Behavioral Mismatching Components. IEEE Transactions on Software
Engineering, 34(4):546–563, 2008.

[7] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezzè.
Automatic Recovery from Runtime Failures. In Proceedings of ICSE’13,
2013.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493,
1994.

[9] S. Forrest, A. Somayaji, and D. Ackley. Building Diverse Computer
Systems. In Proceedings of the 6th Workshop on Hot Topics in Operating
Systems (HotOS-VI), HOTOS ’97, pages 67–, Washington, DC, USA,
1997. IEEE Computer Society.

[10] M. Gabel and Z. Su. A study of the uniqueness of source code. In
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, pages 147–156. ACM, 2010.

[11] I. J. Good. The population frequencies of species and the estimation of
population parameters. Biometrika, 40(3-4):237–264, 1953.

[12] R. Lämmel, E. Pek, and J. Starek. Large-scale, AST-based API-
usage Analysis of Open-source Java Projects. In SAC’11 - ACM 2011
Symposium on Applied Computing, Technical Track on “Programming
Languages”, 2011.

[13] H. Ma, R. Amor, and E. Tempero. Usage Patterns of the Java Standard
API. In Proceedings of APSEC, pages 342–352. IEEE, 2006.

[14] R. C. Martin. Agile software development: principles, patterns, and
practices. Prentice Hall PTR, 2003.

[15] D. Mendez, B. Baudry, and M. Monperrus. Companion Web
Page for "Empirical Evidence of Large-Scale Diversity in API Us-
age of Object-Oriented Software". http://www.monperrus.net/martin/
companion-diversity-api-usages, 2013.

[16] D. Mendez, B. Baudry, and M. Monperrus. Empirical evidence of large-
scale diversity in api usage of object-oriented software. In Proceedings
of the IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM), 2013.

[17] A. Michail. Data mining library reuse patterns using generalized
association rules. In Proceedings of the International Conference on
Software Engineering, pages 167–176, 2000.

[18] M. Monperrus, M. Bruch, and M. Mezini. Detecting Missing Method
Calls in Object-Oriented Software. In Proceedings of the 24th European
Conference on Object-Oriented Programming. Springer, 2010.

[19] M. Monperrus and M. Mezini. Detecting Missing Method Calls as
Violations of the Majority Rule. ACM Transactions on Software
Engineering and Methodology, 22(1), 2012.

[20] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson. A fault
model for subtype inheritance and polymorphism. In Software Relia-
bility Engineering, 2001. ISSRE 2001. Proceedings. 12th International
Symposium on, pages 84–93. IEEE, 2001.

[21] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov. Dual Ecological
Measures of Focus in Software Development. In Proceedings of ICSE,
2013.

[22] D. Posnett, V. Filkov, and P. T. Devanbu. Ecological inference in
empirical software engineering. In Proceedings of ASE, pages 362–371,
2011.

[23] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest. Software
Mutational Robustness. arXiv preprint arXiv:1204.4224, 2012.

[24] R. Vallée-Rai, L. Hendren, V. Sundaresan, E. G. Patrick Lam, and P. Co.
Soot - a Java Optimization Framework. In Proceedings of CASCON
1999, pages 125–135, 1999.

[25] T. L. Veldhuizen. Software Libraries and their Reuse: Entropy, Kol-
mogorov Complexity, and Zipf’s Law. arXiv preprint cs/0508023, 2005.

http://www.monperrus.net/martin/companion-diversity-api-usages
http://www.monperrus.net/martin/companion-diversity-api-usages

	Introduction
	Background
	Object-oriented software
	Type-Usages

	Experimental Design
	Dataset
	Extraction Software
	Metrics

	Evidence of API Usage Diversity
	Abundance and Diversity Distribution
	Classes with High Usage Diversity
	Type-usage Dominance
	Usage Entropy of Classes

	Discussion
	An Artifact of the Extraction Software?
	Type-usages Result From Combinations of Method Calls
	Objects are Used across Different Methods

	Exploiting API Diversity: Reasoning on the Class Semantics using the Type-usage Lattice
	The Lattice of Type-usages
	Number of Responsibilities
	Essentiality of Methods
	Visual Representation of Usage Diversity

	Discussion
	Speculative Reasons of API Diversity
	Diversity and Cognition
	Diversity and Plasticity
	Diversity and Reusability
	Diversity and Immutability
	Diversity and Success

	Speculative Implications of API Diversity
	Diversity and Testability
	Diversity and Bug Detection
	Diversity and Repair
	Diversity and Diversification

	Recapitulation

	Related Work
	Conclusion
	References

