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Efficient computation of pairings on
Jacobi quartic elliptic curves

Sylvain Duquesne, Nadia El Mrabet and Emmanuel Fouotsa

Communicated by Neal Koblitz

Abstract. This paper proposes the computation of the Tate pairing, Ate pairing and its
variations on the special Jacobi quartic elliptic curve Y 2 D dX4 C Z4. We improve the
doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the
birational equivalence between Jacobi quartic curves and Weierstrass curves, together with
a specific point representation to obtain the best result to date among curves with quartic
twists. For the doubling and addition steps in Miller’s algorithm for the computation of the
Tate pairing, we obtain a theoretical gain up to 27% and 39%, depending on the embedding
degree and the extension field arithmetic, with respect to Weierstrass curves and previous
results on Jacobi quartic curves. Furthermore and for the first time, we compute and
implement Ate, twisted Ate and optimal pairings on the Jacobi quartic curves. Our results
are up to 27% more efficient compared to the case of Weierstrass curves with quartic
twists.
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1 Introduction

Bilinear pairings were first used to solve the discrete logarithm problem on elliptic
curve groups [14, 24]. But they are now useful to construct many public key pro-
tocols for which no other efficient implementation is known [5, 21]. A survey of
some of these protocols can be found in [12]. The efficient computation of pair-
ings depends on the model chosen for the elliptic curve. Pairing computation on
the Edwards model of elliptic curves has been done successively in [9], [20] and
[1]. The recent results on pairing computation using elliptic curves of Weierstrass
form can be found in [7, 8]. Recently in [30], Wang et al. have computed the Tate
pairing on Jacobi quartic elliptic curves using the geometric interpretation of the

This work was supported in part by French ANR project no. 12-BS01-0010-01 “PEACE”, INS 2012
SIMPATIC project and LIRIMA 2013 MACISA project. This work is an improved and extended
version of [10].
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2 S. Duquesne, N. El Mrabet and E. Fouotsa

group law. An earlier work in the same direction as the previous one is done by
Kaondera in [22]. Kaondera’s work appears to be the first that tried to completely
describe the geometric interpretation of the group law on Jacobi curves. But that
work lacks some codes or an implementation for the verification of the correct-
ness of the formulas obtained. In the present paper, we focus on the special Jacobi
quartic elliptic curve Y 2 D dX4 C Z4 over fields of large characteristic p � 5
not congruent to 3 modulo 4.

For pairing computation with embedding degree divisible by 4, we define and
use the quartic twist of the curve Y 2 D dX4 C Z4. Our results improve those
obtained by Wang et al. in [30] and they are more efficient than those concerning
the Tate pairing computation in Weierstrass elliptic curves [8].

Furthermore, the Miller algorithm is the main tool in the Tate pairing computa-
tion, and its efficiency has been successfully improved in the last years leading to
other pairings:

� The Eta-pairing [3] on supersingular elliptic curves.

� Ate and twisted Ate pairings introduced in [18] that are closely related to the
Eta-pairing, but can be used efficiently with ordinary elliptic curves. These
pairings can be more efficient than the Tate pairing, essentially due to the
reduction of the number of iterations in the Miller algorithm.

� Vercauteren [29] and Hess [17] generalize the method with the notion of
optimal pairings and pairing lattices that can be computed using the smallest
number of basic Miller iterations.

The computation of these different pairings has been done by Costello et al. [8] in
the case of Weierstrass curves. As a second contribution of this work, we extend
the results on the special Jacobi quartic in [10] to the computation of the Ate
pairing and its variations. We show that among known curves with quartic twists,
the Jacobi model Y 2 D dX4 C Z4 offers the best performances for all these
different pairings.

The rest of this paper is organized as follows. Section 2 provides a background
on the Jacobi elliptic curve and notions on pairings that are useful in the paper.
In Section 3, we present the computation of the Tate pairing on the Jacobi quartic
curve mentioned above using birational equivalence and we compare our results
to others in the literature. In Section 4, we determine the Miller function and
rewrite the addition formulas for the Ate pairing. We also provide a comparative
study of these pairings on the curves in Jacobi and Weierstrass forms. In Section 5
we provide an example of a pairing friendly curve of embedding degree 8. An
implementation of the Tate, Ate and optimal Ate pairings based on this example
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Efficient computation of pairings on Jacobi quartic elliptic curves 3

has been done using the Magma computer algebra system. This enables us to
verify all the formulas given in this paper. Finally, we conclude in Section 6.

The following notations are used in this work.
Fq: A finite field of characteristic p � 5, not congruent to 3 modulo 4.
mk , sk: Cost of multiplication and squaring in the field Fqk for any integer k.
mc: Cost of the multiplication by a constant in Fq .

2 Background on pairings and on Jacobi elliptic curves

In this section, we briefly review pairings on elliptic curves and the Jacobi quartic
curves. We also define twists of Jacobi’s curves.

2.1 The Jacobi quartic curve

A Jacobi quartic elliptic curve over a finite field Fq is defined by

Ed;� W y
2
D dx4 C 2�x2 C 1

with discriminant � D 256d.�2 � d/2 ¤ 0. In [4], Billet and Joye proved that
if the Weierstrass curve E W y2 D x3 C ax C b has a rational point of order 2
denoted .�; 0/, then it is birationally equivalent to the Jacobi quartic Ed;� with
d D �.3�2 C 4a/=16 and � D �3�=4. In the remainder of this paper, we will
focus our interest on the special Jacobi quartic curve

Ed;0 W y
2
D dx4 C 1

because this curve has interesting properties such as a quartic twist which will
contribute to an efficient computation of pairings.

The addition and doubling formulas on Ed;0 are deduced from [19].
The point addition .x3; y3/ D .x1; y1/C .x2; y2/ is given by

x3 D
x21 � x

2
2

x1y2 � y1x2
; y3 D

.x1 � x2/
2

.x1y2 � y1x2/2
.y1y2 C 1C dx

2
1x
2
2/ � 1:

The point doubling .x3; y3/ D 2.x1; y1/ on Ed;0 is given by

x3 D
2y1

2 � y21
x1; y3 D

2y1

2 � y21

� 2y1

2 � y21
� y1

�
� 1:

The birational equivalence, deduced from [4], between the Weierstrass curveWd W
y2 D x3 � 4dx and the Jacobi quartic curve Ed;0 is given by

' W Ed;0 ! Wd ; .0; 1/ 7! P1; .0;�1/ 7! .0; 0/;

.x; y/ 7!
�
2
y C 1

x2
; 4
y C 1

x3

�
;
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4 S. Duquesne, N. El Mrabet and E. Fouotsa

'�1 W Wd ! Ed;0; P1 7! .0; 1/; .0; 0/ 7! .0;�1/;

.x; y/ 7!
�2x
y
;
2x3 � y2

y2

�
:

From now on and for efficiency reasons, we adopt, for the first time in the compu-
tation of pairings, a specific representation of points, namely .x; y/ D .X

Z
; Y
Z2
/.

The curve Ed;0 is then equivalent to

Ed W Y
2
D dX4 CZ4:

The addition and doubling formulas on Ed are as follows. The point addition
ŒX3 W Y3 W Z3� D ŒX1 W Y1 W Z1�C ŒX2 W Y2 W Z2� on Ed is given by

X3 D X
2
1Z

2
2 �Z

2
1X

2
2 ;

Z3 D X1Z1Y2 �X2Z2Y1;

Y3 D .X1Z2 �X2Z1/
2
�
Y1Y2 C .Z1Z2/

2
C d.X1X2/

2
�
�Z23 :

The point doubling ŒX3 W Y3 W Z3� D 2ŒX1 W Y1 W Z1� on Ed is given by

X3 D 2X1Y1Z1; Z3 D Z
4
1 � dX

4
1 ; Y3 D 2Y

4
1 �Z

2
3 :

The birational equivalence between the projective model Ed W Y 2 D dX4 C Z4

and the Weierstrass curve Wd W y2 D x3 � 4dx becomes

' W Ed ! Wd ; Œ0 W 1 W 1� 7! P1; Œ0 W �1 W 1� 7! .0; 0/;

ŒX W Y W Z� 7!
�
2
Y CZ2

X2
; 4
Z.Y CZ2/

X3

�
;

'�1 W Wd ! Ed ; P1 7! Œ0 W 1 W 1�; .0; 0/ 7! Œ0 W �1 W 1�;

.x; y/ 7! Œ2x W 2x3 � y2 W y�:

The Sage software code to verify the correctness of our formulas is available at
[26].

2.2 Pairings on elliptic curves

In this section, we first recall the Tate pairing. Then, the notion of twists of elliptic
curves is defined to recall the definition of the Ate pairing and its variations. Let
E be an elliptic curve defined over a finite field Fq . The neutral element of the
additive group law defined on the set of rational points of E is denoted by P1.
Let r be a large prime divisor of the group order ]E.Fq/ and k be the embedding
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Efficient computation of pairings on Jacobi quartic elliptic curves 5

degree of E with respect to r , i.e., the smallest integer such that r divides qk � 1.
The set E.Fq/Œr� D ¹P 2 E.Fq/ W Œr�P D P1º is the set of r-torsion points
with coordinates in an algebraic closure Fq of Fq , where Œ � W P 7! Œr�P is the
endomorphism defined onE.Fq/which consists of adding P to itself r times. The
integer k is also the smallest integer such thatE.Fq/Œr� � E.Fqk /; this is the main
property that we use in this work.

2.2.1 The Tate pairing

Consider a point P 2 E.Fq/Œr� and the divisor D D r.P /� r.P1/, then accord-
ing to [28, Corollary 3.5, p. 67],D is principal and so there is a function fr;P with
divisor Div.fr;P / D D. Let Q be a point of order r with coordinates in Fqk and
�r be the group of r-th roots of unity in F�

qk
. The reduced Tate pairing er is a

bilinear and non-degenerate map defined as

er W E.Fq/Œr� �E.Fqk /Œr�! �r ; .P;Q/ 7! fr;P .Q/
qk�1
r :

The value fr;P .Q/ can be determined efficiently using Miller’s algorithm [25].
Indeed, for any integer i , consider the divisorDi D i.P /� .Œi �P /� .i � 1/.P1/.
We observe that Di is a principal divisor and so there is a function fi;P such that
Div.fi;P / D i.P / � .Œi �P / � .i � 1/.P1/. Observe that for i D r one has

Dr D r.P / � r.P1/ D Div.fr;P /:

Thus, to obtain the value of fr;P .Q/, it suffices to apply an iterative algorithm
using an addition chain for r , that is, a sequence .1; i1; i2; : : : ; r/ such that each ik
is the sum of two previous terms of the sequence. This is justified by the fact that
the functions fi;P satisfy the following conditions:

f1;P D 1 and fiCj;P D fi;Pfj;PhŒi�P;Œj �P ; (2.1)

where hR;S denotes a rational function such that

Div.hR;S / D .R/C .S/ � .S CR/ � .P1/;

with R and S two arbitrary points on the elliptic curve. In the case of elliptic
curves in Weierstrass form, hR;S D

`R;S
vRCS

, where `R;S is the straight line defining
RC S and vRCS is the corresponding vertical line passing through RC S .

Miller uses the double-and-add method for the addition chains for r and the
properties of fi;P to compute fr;P .Q/ (for more details on addition chains see
[2, Chapter 9]). The Miller algorithm that computes efficiently the pairing of two
points is given in Algorithm 1.
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6 S. Duquesne, N. El Mrabet and E. Fouotsa

Algorithm 1 The Miller algorithm for the computation of the reduced Tate pairing.

Input: P 2 E.Fq/Œr�, Q 2 E.Fqk /Œr�, r D .1; rn�2; : : : ; r1; r0/2.

Output: The reduced Tate pairing of P and Q : fr;P .Q/.q
k�1/=r

1: Set f  1 and R P

2: for i D n � 2 down to 0 do
3: f  f 2 � hR;R.Q/

4: R 2R

5: if ri D 1 then
6: f  f � hR;P .Q/

7: R RC P

8: end if
9: end for

10: return f .q
k�1/=r

More information on pairings can be found in [11, 15].
Let us now define twists of elliptic curves and specialize to the case of Jacobi

quartic curves. This notion of twists enables us to work on smaller base fields for
the computation of pairings.

2.2.2 Twists of elliptic curves

A twist of an elliptic curve E defined over a finite field Fq is an elliptic curve
E 0 defined over Fq that is isomorphic to E over an algebraic closure of Fq . The
smallest integer ı such that E and E 0 are isomorphic over Fqı is called the degree
of the twist.

Let E W y2 D x3CaxCb be an elliptic curve in Weierstrass form defined over
Fq . The equation defining the twist E 0 has the form y2 D x3 C a!4x C b!6,
where ! belongs to an extension Fqk of Fq and the isomorphism between E 0 and
E is

 W E 0 ! E; .x0; y0/ 7! .x0=!2; y0=!3/:

More details on twists can be found in [8].

2.2.3 Twist of Jacobi quartic curves

To obtain the twist of the Jacobi quartic curve Y 2 D dX4 C Z4, we use the
birational maps defined in Section 2.1 and the twist of Weierstrass curves defined
above. Let k be an integer divisible by 4.
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Efficient computation of pairings on Jacobi quartic elliptic curves 7

Definition 2.1 ([10]). A quartic twist of the Jacobi quartic curve Y 2 D dX4CZ4

defined over the extension Fqk=4 of Fq is a curve given by the equation

E!d W Y
2
D d!4X4 CZ4;

where ! 2 Fqk is such that !2 2 Fqk=2 , !3 2 FqknFqk=2 and !4 2 Fqk=4 .
In other terms ¹1; !; !2; !3º is a basis of Fqk as a vector space over Fqk=4 .

Proposition 2.2. Let E!
d

defined over Fqk=4 be a twist of Ed . The Fqk -isomor-
phism between E!

d
and Ed is given by

 W E!d ! Ed ; ŒX W Y W Z� 7! Œ!X W Y W Z�:

In Sections 2.3 and 3.1, we explain why twists are useful for an efficient com-
putation of pairings.

2.2.4 Ate pairing and its variations

In this section, we briefly define Ate and twisted Ate pairings. The results in this
section are very well described in the original article of Hess et al. [18]. We recall
that fi;R is the function with divisor

Div.fi;R/ D i.R/ � .Œi �R/ � .i � 1/.P1/:

Let
�q W E.Fq/! E.Fq/; .x; y/ 7! .xq; yq/

be the Frobenius endomorphism on the curve, and t be its trace. The characteristic
polynomial of �q is X2 � tX C q, see [31, Chapter 4]. Using the fact that �q
satisfies its characteristic polynomial (Cayley–Hamilton theorem), we have the
following equality:

�2q � t�q C q D 0:

The relation between the trace t of the Frobenius endomorphism and the group
order is given by

]E.Fq/ D q C 1 � t I

see [31, Theorem 4.3]. The Frobenius endomorphism �q has exactly two eigen-
values. Indeed, using the Lagrange theorem in the multiplicative group .F�q ;�/,
it is clear that 1 is an eigenvalue. We then use the characteristic polynomial to
conclude that q is the other one. This enables us to consider

P 2 G1 D E.Fq/Œr� \ Ker.�q � Œ1�/ D E.Fq/Œr�;

Q 2 G2 D E.Fq/Œr� \ Ker.�q � Œq�/:

The Ate pairing is defined as follows:
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8 S. Duquesne, N. El Mrabet and E. Fouotsa

Definition 2.3 (Ate pairing). The reduced Ate pairing is the map

eA W G2 �G1 ! �r ; .Q;P / 7! fT;Q.P /
qk�1
r ;

where T D t � 1.

The following theorem gives some properties of the Ate pairing, in particular its
relation with the Tate pairing. This relation shows that the Ate pairing is a power
of the Tate pairing and therefore is a pairing. A complete proof can be found in
[18].

Theorem 2.4 ([18]). Let N D gcd.T k � 1; qk � 1/ and T k � 1 D LN . We have

eA.Q;P /
rc
D .fr;Q.P /

.qk�1/=r/LN ;

where c D
Pk�1
iD0 T

k�1�iqi � kqk�1 mod r . Moreover, for r −L, the Ate pair-
ing eA is non-degenerate.

Remark 2.5. The Tate pairing is defined on G1 � E.Fqk /, while the Ate pairing
is defined on G2 �G1 with G2 � E.Fqk /. This means that during the execution
of the Miller algorithm in the computation of the Ate pairing, the point addition is
performed in an extension field of Fq whereas it was performed in Fq in the case
of the Tate pairing. As the arithmetic over Fqk is much more expensive than the
arithmetic over Fq , each step of the Ate pairing is more expensive than a step of
the Tate pairing. However the Miller loop length in the case of the Ate pairing is
log2 T which is less (generally the half) than log2 r , the loop length for the Tate
pairing.

Observe that if the Ate pairing were defined on G1�G2, then it would be faster
than the Tate pairing since its Miller loop length would approximately be halved.
This remark leads to the following definition of the twisted Ate pairing [18].

Definition 2.6 (Twisted Ate pairing [18]). Assume that E has a twist of degree ı
and m D gcd.k; ı/. Let e D k=m and Te D T e mod r . Then the reduced twisted
Ate pairing is defined by

eTe W G1 �G2 ! �r ; .P;Q/ 7! fTe;P .Q/
qk�1
r :

As in the case of the Ate pairing, the following theorem ensures that eTe is a
pairing.
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Efficient computation of pairings on Jacobi quartic elliptic curves 9

Theorem 2.7 ([18]). For the Tate pairing eT .P;Q/ we have

eTe .P;Q/
rc
D eT .P;Q/

LN ;

where c D
Pm�1
iD0 T

e.m�1�i/qei � mqe.m�1/ mod r . Moreover, for r −L, the
twisted Ate pairing eTe is non-degenerate.

Remark 2.8. The reduced Tate and twisted Ate pairings are defined on G1 �

E.Fqk / and G1 � G2, respectively. So they have the same complexity for each
iteration of the Miller algorithm, but the Miller loop parameter is T e mod r for the
reduced twisted Ate pairing and r for the Tate pairing. Consequently, the twisted
Ate pairing will be more efficient than the reduced Tate pairing only for curves
with trace t such that T e mod r is significantly less than r .

2.2.5 Optimal pairings

The reduction of Miller’s loop length is an important way to improve the compu-
tation of pairings. The latest work is a generalized method to find the shortest loop
when possible, which leads to the concept of optimal pairing [29]. Indeed, observe
that if k is the embedding degree with respect to r , then r j qk � 1 but r − qi � 1
for any 1 � i < k. This implies that r jˆk.q/, where ˆk is the k-th cyclotomic
polynomial. Since T � q mod r , where T D t � 1, we have r jˆk.T /. More
generally, if we consider the Ate-i pairing, which is a generalization of the Ate
pairing with Miller function fTi ;Q, where Ti � qi mod r , then

r jˆk=g.Ti /; where g D gcd.i; k/;

so that the minimal value for Ti is r1='.k=g/ (where ' is Euler’s totient function)
and the lowest bound is r1='.k/, obtained for g D 1. We then give the following
definition of an optimal pairing, which is a pairing that can be computed with the
smallest number of iterations in the Miller loop.

Definition 2.9 ([29]). Let e W G1 � G2 ! GT be a non-degenerate, bilinear
pairing with jG1j D jG2j D jGT j D r , where the field of definition of GT is
Fqk . Then e is called an optimal pairing if it can be evaluated with about at most
.log2 r/='.k/C ".k/ Miller iterations, where ".k/ is less than log2 k.

The lowest bound is attained for several families of elliptic curves. The follow-
ing theorem gives the construction of an optimal pairing.

Theorem 2.10 ([29, Theorem 4]). Let E be an elliptic curve defined over Fq . The
embedding degree with respect to a large integer r dividing the order of the group
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10 S. Duquesne, N. El Mrabet and E. Fouotsa

]E.Fq/ is denoted k. Let � D mr be a multiple of r such that r −m and write
� D

Pl
iD0 ciq

i . Remember hR;S is the function with divisor

Div.hR;S / D .R/C .S/ � .S CR/ � .P1/

and R, S being two arbitrary points on the elliptic curve E. If si D
Pl
jDi cj q

j ,
the map eo W G2 �G1 ! �r defined as

.Q;P / 7!

� lY
iD0

f
qi

ci ;Q
.P / �

l�1Y
iD0

hŒsiC1�Q;Œciqi �Q.P /

�qk�1
r

defines a bilinear pairing. Furthermore, the pairing is non-degenerate if

mkqk ¤
qk � 1

r
�

lX
iD0

iciq
i�1 mod r:

In Section 5, we apply Theorem 2.10 to provide an example of optimal pairing
on Jacobi quartic curves of embedding degree 8. Observe that the computation of
optimal pairings follows the same approach as the computation of the Ate pairing.

2.3 Use of twists for efficient computation of pairings

For the applications of twists, observe that the point addition of the Tate pairing,
Ate pairing, twisted Ate or optimal pairing on a curve of embedding degree k takes
the form P 2 E.Fq/ and Q 2 E.Fqk /. In the case of the Tate pairing and the
twisted Ate pairing, the evaluation of the Miller function is done at the point Q in
the full extension Fqk whereas in the case of Ate and optimal Ate pairings, it is the
point addition that is performed there. In both cases, this can affect the efficiency
of computations. However many authors (see, e.g., [8, 13]) have shown that one
can use the isomorphism between the curve and its twist of degree ı to take the
point Q in a particular form which allows to perform some computations more
efficiently in the subfield Fqk=ı instead of Fqk . More precisely, if E is an elliptic
curve defined over Fq ,E 0 its twist of degree ı defined over Fqk=ı and  W E 0 ! E

the isomorphism betweenE andE 0, then the pointQ is taken as the image by of
a point on the twisted curve E 0.Fqk=ı /. In this case, the present form of Q allows
many computations either for point addition or evaluation of the Miller functions
to be done more efficiently in the subfield Fqk=ı . For example in the present case
of this work and from Proposition 2.2, instead of taking Q with full coordinates
in Fqk , it can be taken in the form Œ!X W Y W Z�, where X; Y;Z 2 Fqk=4 . In
this work, we use this technique for the computation of the Tate, Ate, twisted Ate
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Efficient computation of pairings on Jacobi quartic elliptic curves 11

and optimal pairings. As a consequence, the twists can be used to eliminate the
denominator of the function hR;S in the Miller algorithm. See Section 3.1 for
applications.

3 The Tate pairing and twisted Ate pairing computation on
Ed W Y 2 D dX4 C Z 4

In [30], Wang et al. considered pairings on Jacobi quartics and gave the geometric
interpretation of the group law. We use a different way to obtain the formulas,
namely the birational equivalence between Jacobi quartic curves and Weierstrass
curves. We specialize to the particular curves Ed W Y 2 D dX4 C Z4 to obtain
better results for these up to 39% improvement compared to the results in [30].
The results in this section are from [10].

Given two points P1 D .x1; y1/ and P2 D .x2; y2/ on the Weierstrass curve
Wd W y

2 D x3 � 4dx such that P3 D .x3; y3/ D P1 C P2, consider

R D ŒX1 W Y1 W Z1�; S D ŒX2 W Y2 W Z2�;

ŒX3 W Y3 W Z3� D ŒX1 W Y1 W Z1�C ŒX2 W Y2 W Z2�;

the corresponding points on the Jacobi quartic Ed . To derive the Miller func-
tion hR;S .X; Y;Z/ for Ed , we first write the Miller function hP1;P2.x; y/ on the
Weierstrass curve Wd :

hP1;P2.x; y/ D
y � �x � ˛

x � x3
;

where

� D

8<:
y2�y1
x2�x1

if P1 ¤ P2;
3x21�4d

2y1
if P1 D P2;

and ˛ D y1 � �x1:

Using the birational equivalence, the Miller function for the Jacobi quartic Ed W
Y 2 D dX4 CZ4 is given by hR;S .X; Y;Z/ D hP1;P2.'.X; Y;Z//. We have

hR;S .X; Y;Z/ D
4X23X

2

2X23 .Y CZ
2/ � 2X2.Y3 CZ

2
3/

�

�ZY CZ3
X3

�
1

2
�
�Y CZ2

X2

�
�
˛

4

�
;

where

� D

8<:
�2X31Z2.Y2CZ

2
2/C2X

3
2Z1.Y1CZ

2
1/

X1X2Œ�X
2
1 .Y2CZ

2
2/CX

2
2 .Y1CZ

2
1/�

if P1 ¤ P2;

Y1C2Z
2
1

X1Z1
if P1 D P2;

(3.1)
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˛ D

8̂<̂
:
�4.Y1CZ

2
1/.Y2CZ

2
2/.Z2X1�Z1X2/

X1X2Œ�X
2
1 .Y2CZ

2
2/CX

2
2 .Y1CZ

2
1/�

if P1 ¤ P2;

�2Y1.Y1CZ
2
1/

X31Z1
if P1 D P2:

(3.2)

Remark 3.1. It is easy to verify that our formulas obtained by change of variables
are exactly the same obtained by Wang et al. in [30] using the geometric interpre-
tation of the group law. Indeed, by setting

x1 D
X1

Z1
; x2 D

X2

Z2
; y1 D

Y1

Z21
; y2 D

Y2

Z22

in their Miller function obtained for the curve Ed;� W y2 D dx4 C 2�x C 1 (by
taking � D 0), we get exactly the same result that we found above. However,
we have an advantage based on our coordinates system to obtain more efficient
formulas in the computation of pairings. The correctness of the formulas in this
work can be checked using the code provided at [26].

3.1 Simplification of the Miller function

We apply the twist technique described in Section 2.3 to the present case of quartic
twist (see the isomorphism in Proposition 2.2). This enables the point Q in the
computation of Tate and twisted Ate pairings to be chosen as Œ!XQ W YQ W ZQ�
or ŒxQ! W yQ W 1� in affine coordinates, where XQ, YQ, ZQ, xQ and yQ are in
Fqk=4 . Thus

hR;S .xQ!; yQ; 1/ D
2X23x

2
Q!

2

X23 .yQ C 1/ � x
2
Q!

2.Y3 CZ
2
3/

�

�
�
1

2
�
�yQ C 1
x2Q!

4

�
!2 C

�yQ C 1
x3Q!

4

�
! �

˛

4

�
:

Write �˛
4
D

A
D

and �1
2
� D B

D
. Then

hR;S .xQ!; yQ; 1/ D
2X23x

2
Q!

2

D.X23 .yQ C 1/ � x
2
Q!

2.Y3 CZ
2
3//

�

�
B
�yQ C 1
x2Q!

4

�
!2 CD

�yQ C 1
x3Q!

4

�
! C A

�
:

We can easily see that the denominator D.X23 .yQ C 1/ � x
2
Q!

2.Y3 CZ
2
3// and

the factor 2X23x
2
Q!

2 of hR;S belong to Fqk=2 . As qk=2 � 1 divides qk � 1, they
are sent to 1 during the final exponentiation (last step in Algorithm 1). So they can
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be discarded in the computation of the pairing and we only have to evaluate

QhR;S .xQ!; yQ; 1/ D B
�yQ C 1
x2Q!

4

�
!2 CD

�yQ C 1
x3Q!

4

�
! C A:

SinceQ D .xQ!; yQ; 1/ is fixed during the computation of the pairing, the quan-
tities .yQC1/=.x3Q!

4/ and .yQC1/=.x2Q!
4/ can be precomputed in Fqk=4 , once

for all steps. Note that each of the multiplications

D
�yQ C 1
x3Q!

4

�
and B

�yQ C 1
x2Q!

4

�
costs k

4
m1, since A;B;D 2 Fq .

3.1.1 Efficient computation of the main multiplication in Miller’s algorithm

Depending on the form of the function QhR;S and the field Fqk , the main multipli-
cation in Miller’s algorithm which enables us to update the function f can be done
efficiently. In this work, the expression of QhR;S has a nice form: the term !3 is
absent and A 2 Fq . So, the multiplication by QhR;S will be more efficient than the
multiplication with an ordinary element of Fqk (which is denoted by mk).
� If the schoolbook multiplication is used for the multiplication in Fqk , the cost

of the multiplication by QhR;S is not mk but . 1
k
C
1
2
/mk . See Appendix A for

details.
� If we use pairing friendly fields for elliptic curves with quartic twists, the

embedding degree will be of the form k D 2i (see [13]). Then we follow
[23] and the cost of a multiplication or a squaring in the field Fqk is 3i multi-
plications or squaring in Fq using Karatsuba’s multiplication method. Thus,
the cost of a multiplication by QhR;S is�2 � 3i�1 C 2i�1

3i

�
mk :

See Appendix A for details.

In the remainder of Section 3, ˇ stands for 1
k
C
1
2

or 2�3
i�1C2i�1

3i
so that the cost

of the multiplication of the function f in the Miller algorithm by QhR;S is ˇmk
instead of mk for an ordinary multiplication in Fqk .

In what follows, we will compute A, B and D. For efficiency the point is
represented by .X W Y W Z W X2 W Z2/ with Z ¤ 0. This is the first time that this
representation is used when d ¤ 1. Thus we will use the points

P1 D .X1 W Y1 W Z1 W U1 W V1/ and P2 D .X2 W Y2 W Z2 W U2 W V2/;

where Ui D X2i , Vi D Z2i , i D 1; 2.
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14 S. Duquesne, N. El Mrabet and E. Fouotsa

Remark 3.2. Note that if X2 and Z2 are known, then expressions of the form
XZ can be computed using the formula ..X C Z/2 � X2 � Z2/=2. This allows
the replacement of a multiplication by a squaring presuming a squaring and three
additions are more efficient than a multiplication. In Tables 1 and 2, the operations
concerned with this remark are indicated by �.

3.2 Doubling step in the Miller algorithm

When P1 D P2, from equations (3.1) and (3.2), we have

A D Y1.Y1 CZ
2
1/; B D �X21 .Y1 C 2Z

2
1/; D D 2X31Z1:

The computation of A, B , D and the point doubling can be done using the al-
gorithm in Table 1 with 3m1 C 7s1 C 1mc (or 4m1 C 6s1 C 1mc according to
Remark 3.2). Thus, the doubling step in the Miller algorithm requires a total of
ˇmkC1skC .

k
2
C3/m1C7s1C1mc (or ˇmkC1skC .k2 C4/m1C6s1C1mc).

3.3 Addition step in the Miller algorithm

When P1 ¤ P2, from equations (3.1) and (3.2), we have

A D .Y1 CZ
2
1/.Y2 CZ

2
2/.Z1X2 �Z2X1/;

B D X31Z2.Y2 CZ
2
2/ �X

3
2Z1.Y1 CZ

2
1/;

D D X1X2Œ�X
2
1 .Y2 CZ

2
2/CX

2
2 .Y1 CZ

2
1/�:

Using the algorithm in Table 2 the computation of A, B , D and the point addition
can be done in 12m1C 11s1C 1mc (or 18m1C 5s1C 1mc according to Remark
3.2). Applying mixed addition (Z2 D 1), which can always be done in our case,
this cost is reduced to 12m1C7s1C1mc (or 15m1C4s1C1mc). Thus, the addition
step in the Miller algorithm requires a total of ˇmk C .k2 C 12/m1 C 7s1 C 1mc
(or ˇmk C .k2 C 15/m1 C 4s1 C 1mc).

3.4 Comparison

The comparison of results is summarized in Tables 3 and 4. The costs presented
are for one iteration of the Miller algorithm and are both for the Tate and twisted
Ate pairings and curves with a quartic twist. In each case, we also present an
example of comparison in the cases k D 8 and k D 16, since these values are the
most appropriate for cryptographic applications when a quartic twist is used [13].
In Table 3, we assume that the schoolbook multiplication method is used for the
arithmetic in the extension fields Fqk .
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Operations Values Cost

U WD U 21 U D X41 1s1

V WD V 21 V D Z41 1s1

Z3 WD V � dU Z3 D Z
4
1 � dX

4
1 1mc

E WD ..X1 CZ1/
2 � U1 � V1/=2

� E D X1Z1 1s1 (or 1m1)
D WD 2U1E D D 2X31Z1 1m1

A WD .2Y1 C V1/
2=4 � U A D Y1.Y1 CZ

2
1/ 1s1

B WD �U1.Y1 C 2V1/ B D �X21 .Y1 C 2Z
2
1/ 1m1

X3 WD 2EY1 X3 D 2X1Y1Z1 1m1

V3 WD Z
2
3 V3 D Z

2
3 1s1

Y3 WD 2V �Z3 Y3 D dX
4
1 CZ

4
1 D Y

2
1 —

Y3 WD 2Y
2
3 � V3 Y3 D 2Y

4
1 �Z

2
3 1s1

U3 WD X
2
3 U3 D X

2
3 1s1

Total cost: 3m1 C 7s1 C 1mc (or 4m1 C 6s1 C 1mc)

Table 1. Combined formulas for the doubling step.

Remark 3.3. If we assume that m1 D s1 D mc and k D 16, then we obtain in
this work a theoretical gain of 26% and 27% with respect to Weierstrass curves
and previous work on Jacobi quartic curves for the doubling step. Similarly, for
the addition step we obtain a theoretical gain of 38% and 39% over Weierstrass
and Jacobi quartic curves, respectively. In the case k D 8, the theoretical gain is
22% and 26% with respect to Weierstrass curves and Jacobi quartic curves for the
addition step and 26% for the doubling step, see Table 3.

In Table 4, we assume that Karatsuba’s method is used for the arithmetic in Fqk
for curves with k D 2i .

Remark 3.4. We assume again that m1 D s1 D mc. For k D 8 and for the dou-
bling step we obtain a theoretical gain of 8% over Weierstrass curves and Jacobi
quartic curves (a D 0); see [30]. For the addition step, the improvement is up to
6% over the result on Jacobi quartic curves in [30]. When k D 16, the gain is
11% for the doubling step over Weierstrass curves. The improvement is 16% in
the addition step over Jacobi quartic curves, see Table 4.

Remark 3.5. The security and the efficiency of pairing-based systems require us-
ing pairing-friendly curves. The Jacobi models of elliptic curves studied in this
work are isomorphic to Weierstrass curves. Thus we can obtain pairing friendly
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curves of such models using the construction given by Galbraith et al. [16] or by
Freeman et al. [13]. Some examples of pairing friendly curves of Jacobi quartic
form can be found in [30].

4 Formulas for the Ate pairing and optimal pairing on the Jacobi
quartic elliptic curve Y 2 D dX4 C Z 4

In this section, we extend the results of the previous section to the computation of
the Ate pairing and optimal pairing. Our results show that among known curves
with quartic twists, the Jacobi model Y 2 D dX4CZ4 offers the best performances
for these different pairings. The section is divided as follows: In Section 4.1, we
rewrite the Miller function and the addition formulas for Ate and optimal pairings.
In Section 4.2 we give the cost of the Ate pairing. Section 4.3 is devoted to a
comparative study of these pairings on the curves of Jacobi and Weierstrass forms.

4.1 Ate pairing computation on Ed W Y 2 D dX4 C Z4

According to the definition of Ate and optimal pairing, the point addition and
point doubling are performed in Fqk . But thanks to the twist we will consider the
points Œ!Xi W Yi W Zi �, where Xi , Yi and Zi belong to Fqk=4 , i D 1; 2; 3 (see
Proposition 2.2). We also know that for Ate and optimal pairings the point P is
fixed during computations and has its coordinates in the base field Fq . Thus this
point can be taken as ŒxP W yP W 1�.

4.1.1 Point addition and point doubling on Ed for Ate and optimal pairings

We rewrite the formulas from Section 2.1 for point doubling and point addition on
the curve Ed with the difference that points have the form Œ!Xi W Yi W Zi �, where
Xi , Yi and Zi belong to Fqk=4 , i D 1; 2; 3.

4.1.2 Doubling

We have Œ!X3 W Y3 W Z3� D 2Œ!X1 W Y1 W Z1� such that

X3 D 2X1Y1Z1;

Z3 D Z
4
1 � dX

4
1!

4;

Y3 D 2Y
4
1 �Z

2
3 :
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4.1.3 Addition

We have Œ!X3 W Y3 W Z3� D Œ!X1 W Y1 W Z1�C Œ!X2 W Y2 W Z2� such that

X3 D X
2
1Z

2
2 �Z

2
1X

2
2 ;

Z3 D X1Z1Y2 �X2Z2Y1;

Y3 D .X1Z2 �X2Z1/
2
�
Y1Y2 C .Z1Z2/

2
C d!4.X1X2/

2
�
�Z23 :

4.1.4 Miller function for the computation of Ate and optimal pairings
on Ed

The Miller function on the Jacobi quartic Ed is given in Section 3:

hR;S .X; Y;Z/ D
4X23X

2

2X23 .Y CZ
2/ � 2X2.Y3 CZ

2
3/

�

�ZY CZ3
X3

�
1

2
�
�Y CZ2

X2

�
�
˛

4

�
:

We follow the notations of Section 3.1 by setting �˛
4
D

A
D

and �1
2
� D B

D
. When

we replace ŒXi W Yi W Zi � by Œ!Xi W Yi W Zi � and ŒX W Y W Z� by ŒxP W yP W 1�, a
careful calculation yields

hR;S .xP ; yP ; 1/ D
2X23x

2
P

D!2ŒX23 .yP C 1/ � x
2
P .Y3 CZ

2
3/�

�

�
B
�yP C 1

x2P

�
!3 C A! CD!4

�yP C 1
x3P

��
:

The factors A, B and D are exactly the same as in the case of the Tate pairing but
with the main difference that they are in Fqk=4 instead of Fq . The addition and
doubling formulas for .!Xi W Yi W Zi /, where Xi , Yi and Zi belong to Fqk=4 ,
i D 1; 2; 3, clearly show that X23 and Y3 CZ23 are also in Fqk=4 such that

2X23x
2
P

D!2ŒX23 .yP C 1/ � x
2
P .Y3 CZ

2
3/�
2 Fqk=2 :

Then it can be discarded in the computation of the pairing thanks to the final ex-
ponentiation, as we explained in the case of the Tate pairing. Thus we only have
to evaluate

NhR;S .xP ; yP ; 1/ D B
�yP C 1

x2P

�
!3 C A! CD!4

�yP C 1
x3P

�
:
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Efficient computation of pairings on Jacobi quartic elliptic curves 21

Since P D .xP ; yP ; 1/ is fixed during the computation of the pairing, the quanti-
ties .yP C 1/=x3P and .yP C 1/=x2P can be precomputed in Fq once for all steps.
Note that each of the multiplications

D
�yP C 1

x3P

�
and B

�yP C 1
x2P

�
costs k

4
m1.

Remark 4.1. We can use the fact that in the expression of Nh the term !2 is absent.
In this case, in Miller’s algorithm, the cost of the main multiplication in Fqk is
not 1mk but .3=4/mk if we use the schoolbook method and is .8=9/mk if we
use Karatsuba’s multiplication with pairing friendly curves, i.e., k D 2i . See
Appendix B for details.

Remark 4.2. Since the coefficients of the Miller function for the Ate pairing are
the same as for the Tate pairing, these coefficients and point operations can be
computed in the same manner it was done in the previous section with the main
difference that computations are done in Fqk=4 .

4.2 Cost of Ate and optimal pairing on Ed

In Tables 5 and 6, we summarize and compare the costs for one iteration for both
Ate and optimal Ate pairings on the Jacobi curve Ed W Y 2 D dX4 C Z4 and on
the Weierstrass curve Wd W y2 D x3 � 4dx. We also present these costs in the
cases of elliptic curves of embedding degrees 8 and 16.

In Table 5 we assume that computations are made in Fqk using the schoolbook
method. In Table 6 we assume that computations are made in Fqk using Karat-
suba’s method.

Remark 4.3. If we assume that m1 D s1 D mc and if the schoolbook multiplica-
tion method is used, then for the computation of the Ate pairing we obtain in this
work a theoretical gain of 11% with respect to Weierstrass curves for the doubling
step. The improvement is 4% when Karatsuba’s method is used. Our addition step
is not better. See Tables 5 and 6.

4.3 Comparison

Let us now compare different pairings on Jacobi quartic curves and Weierstrass
elliptic curves with quartic twists. Especially we determine the operation counts
for the Tate, twisted Ate, Ate and optimal Ate pairings in a full loop of Miller’s
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algorithm, based on the fastest operation counts summarized in Tables 3–6. We
suppose that we are in the context of optimized pairing such that we can restrict
ourselves to the cost of the doubling step. Indeed, in this case r is chosen to have
a lower Hamming weight such that the computation in Miller’s algorithm can be
done quickly by skipping many addition steps. For elliptic curves with embedding
degrees k D 8, we consider the parameters for 112 bits and 128 bits security
level. We also consider elliptic curves with embedding degrees k D 16 at 128 bits
and 192 bits security levels. These values have been selected such that we obtain
approximately the same security level both in the elliptic curve defined over the
base field Fq and in the multiplicative group of the finite field Fqk .

For these parameters we give the approximate number of operations in the base
field for all the Miller iterations. For the Miller loop in the computation of the
Ate pairing, we consider an average trace t �

p
q. For the values in Table 7, we

assume thatm1 D s1 D mc. The label “Karat” means that the values in these rows
are obtained using Karatsuba’s multiplication method, whereas “School” means
that the values are obtained using the schoolbook multiplication method. The
letters W and J stand for the Weierstrass [8] and the Jacobi elliptic (this work)
curve model, respectively, since this work is the first that presents the computation
of the Ate pairing and its variations on Jacobi elliptic curves.

From the values in Table 7 we draw the following observation: The differ-
ent pairings computed in this work are always faster in the Jacobi quartic elliptic
curves with respect to the Weierstrass elliptic curves. The gain obtained is up to
27% and depends on the method used for multiplications and the security level.

5 Implementation and example

In this section we consider the family of elliptic curves of embedding degree 8
described in [27] to verify our formulas and to implement the Tate, Ate and optimal
Ate pairings. This family of curves has the following parameters:

r D 82x4 C 108x3 C 54x2 C 12x C 1;

q D 379906x6 C 799008x5 C 705346x4 C 333614x3 C 88945x2

C 12636x C 745;

t D �82x3 � 108x2 � 54x � 8:

For x D 24000000000010394, the values of r , q, the trace t and the curve coeffi-
cient d are as follows:
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r D 272056320000471307161600306182614014808404525177076771934828

45476817;

q D 726011672004446604951703464791789328991217313776602768811505

32069758156754787842298703647640196322590069;

d D 453757295002779128094814665494868330619510821110376730507190

82543598847971742401436689779775122701618793;

t D �1133568000001472850432000637893917136092090964291460:

We recall that G1 D E.Fq/Œr� and G2 D E.Fq/Œr�\Ker.�q � Œq�/. To obtain an
optimal pairing in the Jacobi quartic curveEd with embedding degree 8, we follow
the approach described by Vercauteren [29]. Applying the ShortestVectors()
function in Magma [6] to the lattice

L D

0BBBB@
r 0 0 0

�q 1 0 0

�q2 0 1 0

�q3 0 0 1

1CCCCA ;
we obtain the vector

V D Œc0; c1; c2; c3� D Œx; 0; 0; 3x C 1�:

An optimal pairing is then given by

eo W G2 �G1 ! �r ; .Q;P / 7!
�
f
3q3C1
x;Q .P / �H1

�q8�1
r ;

where

H1 D
�
hŒx�Q;Œx�Q.P / � hŒx�Q;Œ2x�Q.P / � hŒ3x�Q;Œ1�Q.P /

�q3
and s1 D .3x C 1/q3.

Indeed, this is a straightforward application of Theorem 2.10. From that theo-
rem we have c0 D x, c1 D c2 D 0, c3 D 3x C 1 and si D

P3
jDi cj q

j . Observe
that for our example s1 D s2 D s3 D c3q

3 D .3x C 1/q3. We then apply
Theorem 2.10 to obtain

eo.Q;P / D
�
fx;Q.P / � f

q3

3xC1;Q.P / � hŒs1�Q;Œx�Q.P / � h
2
Œs1�Q;P1

.P /
�q8�1

r :

Observe also that

f1;Q D 1 and h2Œs1�Q;P1.P / D 1:
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Moreover, hŒs1�Q;Œx�Q.P / will be sent to 1 during the final exponentiation because
from

� D mr D

lX
iD0

ciq
i
D x C s1;

we get Œs1�QC Œx�Q D P1. We then apply property (2.1) to express f3xC1;Q in
terms of fx;Q as follows:

f3xC1;Q D f
3
x;Q � hŒx�Q;Œx�Q � hŒx�Q;Œ2x�Q � hŒ3x�Q;Œ1�Q:

Finally, by using the explanation in Section 4.1.4, the function hR;S is simplified
to hR;S . We can also observe that, if x is negative then by using the divisors we
can take fx;Q D 1=.f�x;Q �hŒx�Q;Œ�x�Q/, and hŒx�Q;Œ�x�Q is also sent to 1 during
the final exponentiation. We remark that for this example, we have log2.x/ � 54

iterations of Miller’s algorithm which is equal to log2.r/='.8/, and this agrees
with the definition of an optimal pairing.

The Magma code for the implementation of the Tate, Ate and optimal Ate pair-
ings is available at [26].

6 Conclusion

In this paper we have computed and implemented the Tate, Ate, twisted Ate and
optimal pairings on the Jacobi quartic curve Ed W Y 2 D dX4 C Z4. The result
in the computation of the Tate pairing is a significant improvement of up to 39%
compared to the results of Wang et al. [30] on the same curve. Compared to
the Weierstrass curve, our result is 27% more efficient. Ate pairing, twisted and
optimal Ate pairings are computed on this curve for the first time. Our results are
27% faster than in the case of Weierstrass curves [8]. According to our results the
Jacobi quartic curve is then, to date, the best curve among the curves with quartic
twists which gives the most efficient result in the computation of pairings.

A Cost of the main multiplication in Miller’s algorithm for the Tate
and twisted Ate pairings

The main multiplication in Miller’s algorithm is of the form f � Qh, where f and Qh
are in Fqk . Since Fqk is a Fqk=4-vector space with basis ¹1; !; !2; !3º, f and Qh
can be written as

f D f0 C f1! C f2!
2
C f3!

3; Qh D h0 C h1! C h2!
2
C h3!

3

with fi and hi in Fqk=4 , i D 0; 1; 2; 3. However in our case h3 D 0, h0 2 Fq and
k D 2i .
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A.1 Schoolbook method

A full multiplication f � Qh costs k2 multiplications in the base field Fq using the
schoolbook method. But thanks to the particular form of h0 and h3, each of the
multiplications fi � h0 costs k

4
m1 and each of the multiplications fi � h1, fi � h2

costs k
2

16
m1. The final cost of the product f � Qh in the base field Fq is�

8
k2

16
C 4

k

4

�
m1 D

�k2
2
C k

�
m1:

Finally the ratio of the cost in this case by the cost of the general multiplication is

k2

2
C k

k2
D
1

2
C
1

k
:

A.2 Karatsuba method

The computation of f � Qh is done here using a particular Karatsuba multiplication.
Instead of writing f � Qh in the classical way (see for example Appendix B), we
write it as follows:

f � Qh D .f0 C f1! C f2!
2
C f3!

3/.h0 C h1! C h2!
2/

D .f0 C f1! C .f2 C f3!/!
2/.h0 C .h1 C h2!/!/:

In this form, the product is obtained using the following three products computed
using a classical Karatsuba multiplication: h0.f0 C f1!/ which costs 2i�1m1,
.f2Cf3!/.h1Ch2!/ which costs 3.3i�2/m1 and .f0Cf2C .f1Cf3/!/.h1C
.h0 C h2/!/ which costs 3.3i�2/m1. The final cost is then 2 � 3i�1 C 2i�1. The
ratio is

2 � 3i�1 C 2i�1

3i
:

B Cost of the main multiplication in Miller’s algorithm for the Ate
pairing

The main multiplication in Miller’s algorithm is of the form f � Nh, where f and Nh
are in Fqk . Since Fqk is a Fqk=4-vector space with basis ¹1; !; !2; !3º, f and Nh
can be written as

f D f0 C f1! C f2!
2
C f3!

3; Nh D h0 C h1! C h2!
2
C h3!

3

with fi and hi in Fqk=4 , i D 0; 1; 2; 3 and h2 D 0.

Authenticated | sylvain.duquesne@univ-rennes1.fr author's copy
Download Date | 7/13/14 12:15 PM



Efficient computation of pairings on Jacobi quartic elliptic curves 29

B.1 Schoolbook method

A full multiplication f � Nh in Fqk costs k2 multiplications in the base field Fq
using the schoolbook method. But thanks to the fact that h2 D 0, each of the 12
multiplications fi �hi costs k

2

16
m1, i D 0; 1; 2; 3. Then the total cost of the product

f � Nh is

12
k2

16
m1 D

3k2

4
m1:

Finally the ratio of the cost in this case by the cost of the general multiplication is

3k2

4

k2
D
3

4
:

B.2 Karatsuba method

We have k D 2i . A full multiplication f � Nh in Fqk is computed using Karatsuba
multiplication as follows:

f � Nh D .f0 C f1! C f2!
2
C f3!

3/.h0 C h1! C h2!
2
C h3!

3/

D .f0 C f1! C .f2 C f3!/!
2/.h0 C h1! C .h2 C h3!/!

2/

In this form, this product is obtained by computing the three products u1 D
.f0 C f1!/.h0 C h1!/, v1 D .f2 C f3!/.h2 C h3!/ and w1 D .f0 C f2 C

.f1 C f3/!/.h0 C h2 C .h1 C h3/!/. Applying again Karatsuba multiplication
to u1; v1 and w1, this costs 3.3i�2/m1 for each product such that the cost of the
main multiplication f � Nh using Karatsuba is 3im1.

Now in our case, h2 D 0, so that the computation of v1 costs only 2.3i�2/ and
the total cost for computing f � Nh is 8 � 3i�2m1. The ratio is then 8=9.
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