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Efficient computation of pairings on
Jacobi quartic elliptic curves

Sylvain Duquesne, Nadia El Mrabet and Emmanuel Fouotsa

Communicated by Neal Koblitz

Abstract. This paper proposes the computation of the Tate pairing, Ate pairing and its
variations on the special Jacobi quartic elliptic curve Y2 = dX* + Z*. We improve the
doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the
birational equivalence between Jacobi quartic curves and Weierstrass curves, together with
a specific point representation to obtain the best result to date among curves with quartic
twists. For the doubling and addition steps in Miller’s algorithm for the computation of the
Tate pairing, we obtain a theoretical gain up to 27% and 39%, depending on the embedding
degree and the extension field arithmetic, with respect to Weierstrass curves and previous
results on Jacobi quartic curves. Furthermore and for the first time, we compute and
implement Ate, twisted Ate and optimal pairings on the Jacobi quartic curves. Our results
are up to 27% more efficient compared to the case of Weierstrass curves with quartic
twists.

Keywords. Jacobi quartic curves, Tate pairing, Ate pairing, twists, Miller function.
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1 Introduction

Bilinear pairings were first used to solve the discrete logarithm problem on elliptic
curve groups [14,24]. But they are now useful to construct many public key pro-
tocols for which no other efficient implementation is known [5,21]. A survey of
some of these protocols can be found in [12]. The efficient computation of pair-
ings depends on the model chosen for the elliptic curve. Pairing computation on
the Edwards model of elliptic curves has been done successively in [9], [20] and
[1]. The recent results on pairing computation using elliptic curves of Weierstrass
form can be found in [7, 8]. Recently in [30], Wang et al. have computed the Tate
pairing on Jacobi quartic elliptic curves using the geometric interpretation of the

This work was supported in part by French ANR project no. 12-BS01-0010-01 “PEACE”, INS 2012
SIMPATIC project and LIRIMA 2013 MACISA project. This work is an improved and extended
version of [10].
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group law. An earlier work in the same direction as the previous one is done by
Kaondera in [22]. Kaondera’s work appears to be the first that tried to completely
describe the geometric interpretation of the group law on Jacobi curves. But that
work lacks some codes or an implementation for the verification of the correct-
ness of the formulas obtained. In the present paper, we focus on the special Jacobi
quartic elliptic curve Y2 = dX* + Z* over fields of large characteristic p > 5
not congruent to 3 modulo 4.

For pairing computation with embedding degree divisible by 4, we define and
use the quartic twist of the curve Y2 = dX* 4+ Z*. Our results improve those
obtained by Wang et al. in [30] and they are more efficient than those concerning
the Tate pairing computation in Weierstrass elliptic curves [8].

Furthermore, the Miller algorithm is the main tool in the Tate pairing computa-
tion, and its efficiency has been successfully improved in the last years leading to
other pairings:

» The Eta-pairing [3] on supersingular elliptic curves.

* Ate and twisted Ate pairings introduced in [18] that are closely related to the
Eta-pairing, but can be used efficiently with ordinary elliptic curves. These
pairings can be more efficient than the Tate pairing, essentially due to the
reduction of the number of iterations in the Miller algorithm.

e Vercauteren [29] and Hess [17] generalize the method with the notion of
optimal pairings and pairing lattices that can be computed using the smallest
number of basic Miller iterations.

The computation of these different pairings has been done by Costello et al. [8] in
the case of Weierstrass curves. As a second contribution of this work, we extend
the results on the special Jacobi quartic in [10] to the computation of the Ate
pairing and its variations. We show that among known curves with quartic twists,
the Jacobi model Y2 = dX* + Z* offers the best performances for all these
different pairings.

The rest of this paper is organized as follows. Section 2 provides a background
on the Jacobi elliptic curve and notions on pairings that are useful in the paper.
In Section 3, we present the computation of the Tate pairing on the Jacobi quartic
curve mentioned above using birational equivalence and we compare our results
to others in the literature. In Section 4, we determine the Miller function and
rewrite the addition formulas for the Ate pairing. We also provide a comparative
study of these pairings on the curves in Jacobi and Weierstrass forms. In Section 5
we provide an example of a pairing friendly curve of embedding degree 8. An
implementation of the Tate, Ate and optimal Ate pairings based on this example
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has been done using the Magma computer algebra system. This enables us to
verify all the formulas given in this paper. Finally, we conclude in Section 6.
The following notations are used in this work.
FF,: A finite field of characteristic p > 5, not congruent to 3 modulo 4.
Mg, s: Cost of multiplication and squaring in the field F« for any integer k.
mc: Cost of the multiplication by a constant in ;.

2 Background on pairings and on Jacobi elliptic curves

In this section, we briefly review pairings on elliptic curves and the Jacobi quartic
curves. We also define twists of Jacobi’s curves.

2.1 The Jacobi quartic curve
A Jacobi quartic elliptic curve over a finite field IF; is defined by
Eq,u: y2 =dx* +2ux? + 1

with discriminant A = 256d(u?> — d)? # 0. In [4], Billet and Joye proved that
if the Weierstrass curve E : y2 = x3 + ax + b has a rational point of order 2
denoted (6, 0), then it is birationally equivalent to the Jacobi quartic E4 ,, with
d = —(36% + 4a)/16 and . = —36/4. In the remainder of this paper, we will
focus our interest on the special Jacobi quartic curve

Ed,O:y2 =dx*+1

because this curve has interesting properties such as a quartic twist which will
contribute to an efficient computation of pairings.
The addition and doubling formulas on E; ( are deduced from [19].
The point addition (x3, y3) = (x1, y1) + (x2, y2) is given by
2_ .2 2
X3 = S " V3= ()61_—)(2)2()’1)12 +1+dxix3) — 1.
X1Y2 — y1X2 (x1y2 — y1X2)

The point doubling (x3, y3) = 2(x1, y1) on E4 ¢ is given by

X3—2Lx1 y3 = 2y1 (i—yl)—l
2—y7 2-y3\2-y7
The birational equivalence, deduced from [4], between the Weierstrass curve W :

y2 = x3 — 4dx and the Jacobi quartic curve Eg4,0 is given by

(p:Ed,0_>Wd’ (07 1)HPW7 (07_1)H(O90)7

y+1 y+1
(xy) = (27545 5).
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¢ Vi Wy— Ego. Poot> (0,1), (0,0) > (0,—1),
2x 2x3 —y?
(x,y) = (——2)
y y

From now on and for efficiency reasons, we adopt, for the first time in the compu-

tation of pairings, a specific representation of points, namely (x, y) = (%, %)

The curve Ey g is then equivalent to
Eg:Y?>=dXx*+ 7%

The addition and doubling formulas on E; are as follows. The point addition
[X3:Y3:Z3]=[X1:Y1:Z1]+[X2:Y2: Zs]on Ey is given by

X3 = X275 - Z7X3,

Z3z = X1Z1Y, — X2Z5Y1,

Y3 = (X1Z2 — X2Z1)*(1Y2 + (Z1Z2)* + d(X1X2)?) — Z3.

The point doubling [X3 : Y3 : Z3] = 2[X1 : Y1 : Z1] on Ey is given by
X3 =2X\1Zy, Z3=Z{—-dX{ Ys=2Y}-273

The birational equivalence between the projective model E; : Y2 = dX* 4+ Z*4
and the Weierstrass curve Wy : y2 = x3 — 4dx becomes

0:Eqg—>Wz, [0:1:1] Py, [0:—1:1]+ (0,0),

Y + 72 4Z(Y+ZZ)>
X2 X3 '
o VW - Eg. Peor—[0:1:1], (0,0)—[0:—1:1],

[X:Y:Z]|—><2

(x,y) > [2x 1 2x3 = y2 1 y].

The Sage software code to verify the correctness of our formulas is available at
[26].

2.2 Pairings on elliptic curves

In this section, we first recall the Tate pairing. Then, the notion of twists of elliptic
curves is defined to recall the definition of the Ate pairing and its variations. Let
E be an elliptic curve defined over a finite field IF,. The neutral element of the
additive group law defined on the set of rational points of E is denoted by Peo.
Let r be a large prime divisor of the group order §E(F;) and k be the embedding
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degree of E with respect to r, i.e., the smallest integer such that r divides qk — 1.
The set E(F,)[r] = {P € E(F;) : [F]P = Poo} is the set of r-torsion points
with coordinates in an algebraic closure E of Fg, where [ ] : P + [r]P is the
endomorphism defined on E (IF,;) which consists of adding P to itself r times. The
integer k is also the smallest integer such that E(F,)[r] C E (IF g« ); this is the main
property that we use in this work.

2.2.1 The Tate pairing

Consider a point P € E(F,)[r] and the divisor D = r(P) — r(Pso), then accord-
ing to [28, Corollary 3.5, p. 67], D is principal and so there is a function f; p with
divisor Div( f; p) = D. Let Q be a point of order r with coordinates in F « and
/Ly be the group of r-th roots of unity in F;k. The reduced Tate pairing e, is a
bilinear and non-degenerate map defined as
k
e EFQIr] x EF 0l > pr, (P.O) b frp(Q)* 7

The value f, p(Q) can be determined efficiently using Miller’s algorithm [25].
Indeed, for any integer 7, consider the divisor D; = i(P) — ([i{]P) — (i — 1)(Poo)-
We observe that D; is a principal divisor and so there is a function f; p such that
Div(fi,p) =i(P)— ([i]P) — (i —1)(Poo). Observe that for i = r one has

Dy =r(P) —r(Poso) = Div(fr,p).

Thus, to obtain the value of f p(Q), it suffices to apply an iterative algorithm
using an addition chain for r, that is, a sequence (1,1, i2,...,7) such that each iy
is the sum of two previous terms of the sequence. This is justified by the fact that
the functions f; p satisfy the following conditions:

Sup=1 and fiy;p = fi,pfi,Phip1P: 2.1)
where A g s denotes a rational function such that
Div(hg,s) = (R) + (S) — (S + R) — (Poo),

with R and S two arbitrary points on the elliptic curve. In the case of elliptic

curves in Weierstrass form, hg s = f [ffs , where {g g is the straight line defining

R + S and vg4 s is the corresponding vertical line passing through R + S.

Miller uses the double-and-add method for the addition chains for r and the
properties of f; p to compute f; p(Q) (for more details on addition chains see
[2, Chapter 9]). The Miller algorithm that computes efficiently the pairing of two
points is given in Algorithm 1.
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Algorithm 1 The Miller algorithm for the computation of the reduced Tate pairing.
Input: P € E(Fq)[r], 0 e E([Fqk)[r], r=(,rp—2,...,71,50)2-
Output: The reduced Tate pairing of P and Q : f; p (Q)(qk_l)/ r

1: Set f < land R < P
2: fori = n — 2 down to 0 do

3 f < f?-hrr(Q)

4: R <« 2R

5. ifr; = 1 then

6: f < f-hrp(Q)
7: R<~ R+ P

8: endif

9: end for

10: return f@ =D/r

More information on pairings can be found in [11, 15].

Let us now define twists of elliptic curves and specialize to the case of Jacobi
quartic curves. This notion of twists enables us to work on smaller base fields for
the computation of pairings.

2.2.2 Twists of elliptic curves

A twist of an elliptic curve E defined over a finite field I, is an elliptic curve
E' defined over Fy that is isomorphic to E over an algebraic closure of F,. The
smallest integer § such that £ and E’ are isomorphic over [F,s is called the degree
of the twist.

Let E : y2 = x3 4+ ax + b be an elliptic curve in Weierstrass form defined over
F,. The equation defining the twist E’ has the form y? = x3 + aw*x + bo®,
where o belongs to an extension F « of [F; and the isomorphism between £’ and
Eis

Vv:E - E, &'.y)H (/0% y o).

More details on twists can be found in [8].

2.2.3 Twist of Jacobi quartic curves

To obtain the twist of the Jacobi quartic curve Y2 = dX* + Z*, we use the
birational maps defined in Section 2.1 and the twist of Weierstrass curves defined
above. Let k be an integer divisible by 4.
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Definition 2.1 ([10]). A quartic twist of the Jacobi quartic curve Y2 = dX* + Z*4
defined over the extension F x/4 of Fg is a curve given by the equation

EQ:Y? =dw*X*+ Z*,

where @ € [« is such that w? e Foir2, w3 € Fyx \]Fqk/z and w* € Fy/a.
In other terms {1, w, w?, a)3} is a basis of Fqk as a vector space over Fqkm.

Proposition 2.2. Let E7 defined over Fyik/a be a twist of Eq. The Fx-isomor-
phism between E§ and E g is given by

ViE] > Eq, [X:Y:Z]—[wX:Y:Z].

In Sections 2.3 and 3.1, we explain why twists are useful for an efficient com-
putation of pairings.

2.2.4 Ate pairing and its variations

In this section, we briefly define Ate and twisted Ate pairings. The results in this
section are very well described in the original article of Hess et al. [18]. We recall
that f; g is the function with divisor

Div(fi,r) = i(R) = ([]R) — (i = )(Peo).

Let
g E(Fg) - E(Fy), (x,y)— (x7,y7)
be the Frobenius endomorphism on the curve, and ¢ be its trace. The characteristic
polynomial of 7y is X 2 _tX + g, see [31, Chapter 4]. Using the fact that g
satisfies its characteristic polynomial (Cayley—Hamilton theorem), we have the
following equality:
Mg —tmg +q =0.

The relation between the trace ¢ of the Frobenius endomorphism and the group
order is given by

HE(Fg) =q +1—1;
see [31, Theorem 4.3]. The Frobenius endomorphism 7, has exactly two eigen-
values. Indeed, using the Lagrange theorem in the multiplicative group (]F; , %),
it is clear that 1 is an eigenvalue. We then use the characteristic polynomial to
conclude that ¢ is the other one. This enables us to consider

P € Gy = E(F,)[r] NKer(ry — [1]) = E(Fy)[r],
0 € Gy = E(F)[r] N Ker(ry — [q]).

The Ate pairing is defined as follows:
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Definition 2.3 (Ate pairing). The reduced Ate pairing is the map

ak=1
eq: Gy x Gy — iy, (Q,P)HfT,Q(P)q’ )
where T =1t — 1.

The following theorem gives some properties of the Ate pairing, in particular its
relation with the Tate pairing. This relation shows that the Ate pairing is a power
of the Tate pairing and therefore is a pairing. A complete proof can be found in
[18].

Theorem 2.4 ([18]). Let N = ged(TK — 1,¢q¥ — 1) and T* — 1 = LN. We have

ea(Q, P)'C = (fro(P)@ ~D/r)LN,

where ¢ = Zf:é Tk=1=141 = kgk=' mod r. Moreover, for r } L, the Ate pair-
ing e4 is non-degenerate.

Remark 2.5. The Tate pairing is defined on G x E(F«), while the Ate pairing
is defined on G, x G with G, C E (Fqk). This means that during the execution
of the Miller algorithm in the computation of the Ate pairing, the point addition is
performed in an extension field of IF;, whereas it was performed in [ in the case
of the Tate pairing. As the arithmetic over F x is much more expensive than the
arithmetic over IF,, each step of the Ate pairing is more expensive than a step of
the Tate pairing. However the Miller loop length in the case of the Ate pairing is
log, T" which is less (generally the half) than log, r, the loop length for the Tate
pairing.

Observe that if the Ate pairing were defined on G x G, then it would be faster
than the Tate pairing since its Miller loop length would approximately be halved.
This remark leads to the following definition of the twisted Ate pairing [18].

Definition 2.6 (Twisted Ate pairing [18]). Assume that £ has a twist of degree §
and m = ged(k,d). Lete = k/m and T, = T° mod r. Then the reduced twisted
Ate pairing is defined by

ak—1

er, : Gy x Gy — pr, (P,O) = fr,p(Q) 7

As in the case of the Ate pairing, the following theorem ensures that er, is a
pairing.
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Theorem 2.7 ([18]). For the Tate pairing eT (P, Q) we have

er,(P. Q)¢ = er (P, Q)*V,

where ¢ = Zf";ol retm=1=Dgei = ygem=1) mod r. Moreover, for r } L, the
twisted Ate pairing e, is non-degenerate.

Remark 2.8. The reduced Tate and twisted Ate pairings are defined on G x
E(F,x) and Gy X G2, respectively. So they have the same complexity for each
iteration of the Miller algorithm, but the Miller loop parameter is 7¢ mod r for the
reduced twisted Ate pairing and r for the Tate pairing. Consequently, the twisted
Ate pairing will be more efficient than the reduced Tate pairing only for curves
with trace ¢ such that 7¢ mod r is significantly less than r.

2.2.5 Optimal pairings

The reduction of Miller’s loop length is an important way to improve the compu-
tation of pairings. The latest work is a generalized method to find the shortest loop
when possible, which leads to the concept of optimal pairing [29]. Indeed, observe
that if k is the embedding degree with respect to r, then r | ¢g¥ — 1 but r 4 ¢ — 1
for any 1 < i < k. This implies that r | i (¢), where @y, is the k-th cyclotomic
polynomial. Since T = g mod r, where T = ¢t — 1, we have r | ¢ (T). More
generally, if we consider the Ate-i pairing, which is a generalization of the Ate
pairing with Miller function fr; o, where T; = g’ mod r, then

r| @x/g(Ti), where g = ged(i, k),

so that the minimal value for 7; is rl/ek/g) (where ¢ is Euler’s totient function)
and the lowest bound is /9% obtained for g = 1. We then give the following
definition of an optimal pairing, which is a pairing that can be computed with the
smallest number of iterations in the Miller loop.

Definition 2.9 ([29]). Let ¢ : G; x G — G7 be a non-degenerate, bilinear
pairing with |G1| = |G2| = |G| = r, where the field of definition of G is
F,«. Then e is called an optimal pairing if it can be evaluated with about at most
(log, r)/@(k) + e(k) Miller iterations, where &(k) is less than log, k.

The lowest bound is attained for several families of elliptic curves. The follow-
ing theorem gives the construction of an optimal pairing.

Theorem 2.10 ([29, Theorem 4]). Let E be an elliptic curve defined over . The
embedding degree with respect to a large integer r dividing the order of the group
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BE(IFy) is denoted k. Let A = mr be a multiple of r such that r t m and write
A= Zf:o ciq'. Remember hg s is the function with divisor

Div(hg,s) = (R) + () = (S + R) — (Po)
and R, S being two arbitrary points on the elliptic curve E. If s; = Zi’:i quj,

the map e, : Gy x G1 — u, defined as

ak—1

1 ) -1
(Q.P) (1_[ o) T] h[si+1]Q»[Ciqi]Q(P))
i=0 i=0

defines a bilinear pairing. Furthermore, the pairing is non-degenerate if

k_ ! .
mkq® # a p ‘Ziciq’_l mod r.
i=0

In Section 5, we apply Theorem 2.10 to provide an example of optimal pairing
on Jacobi quartic curves of embedding degree 8. Observe that the computation of
optimal pairings follows the same approach as the computation of the Ate pairing.

2.3 Use of twists for efficient computation of pairings

For the applications of twists, observe that the point addition of the Tate pairing,
Ate pairing, twisted Ate or optimal pairing on a curve of embedding degree k takes
the form P € E(Fy) and Q € E(F «). In the case of the Tate pairing and the
twisted Ate pairing, the evaluation of the Miller function is done at the point Q in
the full extension [« whereas in the case of Ate and optimal Ate pairings, it is the
point addition that is performed there. In both cases, this can affect the efficiency
of computations. However many authors (see, e.g., [8, 13]) have shown that one
can use the isomorphism between the curve and its twist of degree § to take the
point Q in a particular form which allows to perform some computations more
efficiently in the subfield F «/s instead of F «. More precisely, if E is an elliptic
curve defined over I, E’ its twist of degree § defined over Fyxss andy @ E "> E
the isomorphism between E and E’, then the point Q is taken as the image by ¥ of
a point on the twisted curve E’ (Fgx/s). In this case, the present form of Q allows
many computations either for point addition or evaluation of the Miller functions
to be done more efficiently in the subfield F «/s. For example in the present case
of this work and from Proposition 2.2, instead of taking Q with full coordinates
in Fqk, it can be taken in the form [wX : Y : Z], where X,Y,Z € ]Fqk/4. In
this work, we use this technique for the computation of the Tate, Ate, twisted Ate
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and optimal pairings. As a consequence, the twists can be used to eliminate the
denominator of the function g g in the Miller algorithm. See Section 3.1 for
applications.

3 The Tate pairing and twisted Ate pairing computation on
Eg:Y*=dX*+ 74

In [30], Wang et al. considered pairings on Jacobi quartics and gave the geometric
interpretation of the group law. We use a different way to obtain the formulas,
namely the birational equivalence between Jacobi quartic curves and Weierstrass
curves. We specialize to the particular curves E; : Y2 = dX* 4+ Z* to obtain
better results for these up to 39% improvement compared to the results in [30].
The results in this section are from [10].

Given two points P; = (x1,y1) and P, = (x2, y2) on the Weierstrass curve
W, : y% = x3 — 4dx such that P3 = (x3, y3) = P; + P», consider

R=[X11Y1121], S=[X22Y2222],
[X3IY3ZZ3]=[X12Y1 ZZﬂ-{-[XzIYzZZz],

the corresponding points on the Jacobi quartic E;. To derive the Miller func-
tion hg s(X,Y, Z) for E4, we first write the Miller function zp, p,(x, y) on the
Weierstrass curve W;:
y—AX —«
hp . py(x.y) = ——,
X — X3

where
227 V1L if P1 # P,

X2—X1
3x2—4d
2y1
Using the birational equivalence, the Miller function for the Jacobi quartic £ :

Y2 =dX*+ Z*isgivenby hg s(X,Y,Z) = hp, p,(¢(X,Y, Z)). We have

A= and o = y; — Axg.

if Py = P,

4X3X?
2X3(Y + Z%) —2X2(Y3 + Z3)
(ZY—l-Z3 1(Y+Zz) 01)

hrs(X,Y,Z) =

x3  2°U x2 ) 4
where
—2X3Z,(Ya+Z)+2X3Z1(Y1+2Z7) .
3 = ) XX X7 (24 ZD+ X3 (N1 +Z])] it Py 7 P2, 3.1)
Y1 +2272 . ’
3(1211 if P, = Py,




12 S. Duquesne, N. El Mrabet and E. Fouotsa

-4\ +Z) Y2+ Z3)(Z2X1—Z1 X2)

XXz iz L P
o= ; (3.2)
_2Y1 (Yl +Zl) lf P _ P
X3Z, ="z

Remark 3.1. It is easy to verify that our formulas obtained by change of variables
are exactly the same obtained by Wang et al. in [30] using the geometric interpre-
tation of the group law. Indeed, by setting

X1 X2 Yl Y2
xl = — x2 = — yl = = y2 = =5
2 zZ2 zZ3

in their Miller function obtained for the curve Eg ;, : y2 =dx* +2ux + 1 (by
taking © = 0), we get exactly the same result that we found above. However,
we have an advantage based on our coordinates system to obtain more efficient
formulas in the computation of pairings. The correctness of the formulas in this
work can be checked using the code provided at [26].

3.1 Simplification of the Miller function

We apply the twist technique described in Section 2.3 to the present case of quartic
twist (see the isomorphism in Proposition 2.2). This enables the point Q in the
computation of Tate and twisted Ate pairings to be chosen as [wXg : Yo : Zg]
or [xpw : yo : 1] in affine coordinates, where X¢, Yo, Zg, x¢ and yg are in
Fqk/4. Thus

2X 32x2Qa)2
X2(yo+1) —szwz(Y3 +Z2)

1./yo+1\ » yo +1 o
(e 2
( 2 ( x2Qw4 o ( xéa)“ )a) 4

hr,s(xow,yp,1) =

Write —§ = % and —
2X3xpw?
D(X3(yo + 1) —x30*(Ys + Z3))
+1 +1
(B2 )0 + D(25— o + 4).

2 4 4
X5 X3 w
o 0

hr,s(xow,yp,1) =

We can easily see that the denominator D(XZ(yo + 1) — xZQwZ(Y3 + Z2)) and
the factor 2X32x2Qa)2 of hRr,s belong to Fi/2. As g*/2 — 1 divides gk — 1, they
are sent to 1 during the final exponentiation (last step in Algorithm 1). So they can
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be discarded in the computation of the pairing and we only have to evaluate

hrs(xow,y0,1) = B(yx%QZ:) + D(yXQQ:)_4 ) + A.

Since Q = (xgw, yg, 1) is fixed during the computation of the pairing, the quan-
tities (yo + 1)/(x3Qw4) and (yo + 1)/(xéa)4) can be precomputed in Fx/4, once
for all steps. Note that each of the multiplications

D(yQ +41) and B(yQ + 1)

3 2 .4
XQC() )CQQ)

costs %ml, since A, B, D € F,.

3.1.1 Efficient computation of the main multiplication in Miller’s algorithm

Depending on the form of the function h R.s and the field F«, the main multipli-
cation in Miller’s algorithm which enables us to update the function f can be done
efficiently. In this work, the expression of h R,s has a nice form: the term w3 is
absent and A € ;. So, the multiplication by h R,s will be more efficient than the
multiplication with an ordinary element of F x (which is denoted by mp).

¢ If the schoolbook multlphcatlon is used for the mu1t1phcat10n inF gk> the cost
of the multiplication by & R.S is not my but (& % 2)mk See Appendlx A for
details.

* If we use pairing friendly fields for elliptic curves with quartic twists, the
embedding degree will be of the form k = 2/ (see [13]). Then we follow
[23] and the cost of a multiplication or a squaring in the field F « is 3¢ multi-
plications or squaring in F; using Karatsuba’s multiplication method. Thus,
the cost of a multiplication by g s is

2. 3[—1 4 2i—1
(= )me

See Appendix A for details.
3[—1 +2i—l

In the remainder of Section 3, 8 stands for L % +1 50 ; so that the cost

of the multiplication of the function f in the Mlller algorithm by h R.S 18 fmy
instead of my for an ordinary multiplication in F«.

In what follows, we will compute A, B and D. For efficiency the point is
represented by (X : Y : Z : X2 : Z?) with Z # 0. This is the first time that this
representation is used when d # 1. Thus we will use the points

P1:(X12Y11211U11V1) and P2:(X22Y22222U22V2),
where Uy = X2, V; = Z2,i = 1,2.
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Remark 3.2. Note that if X2 and Z? are known, then expressions of the form
XZ can be computed using the formula ((X 4+ Z)? — X2 — Z?)/2. This allows
the replacement of a multiplication by a squaring presuming a squaring and three
additions are more efficient than a multiplication. In Tables 1 and 2, the operations
concerned with this remark are indicated by *.

3.2 Doubling step in the Miller algorithm
When P; = P, from equations (3.1) and (3.2), we have

A=Y\(Y1+ 7%, B=-X3(Y1+27Z%., D=2X3Z,.

The computation of A, B, D and the point doubling can be done using the al-
gorithm in Table 1 with 3m; + 7s1 + lmc (or 4m; + 651 + lmc according to
Remark 3.2). Thus, the doubling step in the Miller algorithm requires a total of
B+ Lsg + (5 +3)my +7s1 + Ime (or Bmy + Lsg + (& +4)my + 651 + Ime).

3.3 Addition step in the Miller algorithm

When P; # P,, from equations (3.1) and (3.2), we have
A=+ ZD) (Y2 + Z3)(Z1 X2 — Z2X1).
B =X{Zy(Y2 + Z3) — X3 Z1(1 + Z}),
D = X\ Xo[-X{ (Y2 + Z3) + X3 (V1 + Z])).

Using the algorithm in Table 2 the computation of A, B, D and the point addition
can be done in 12m + 11s; + 1mc (or 18my 4 551 + lmc according to Remark
3.2). Applying mixed addition (Z, = 1), which can always be done in our case,
this costis reduced to 12m1+7s1+ lmc (or 15m1+4s1+ 1mc). Thus, the addition
step in the Miller algorithm requires a total of Smy + (% + 12)my + 7s1 + lmc

(or Bmy, + (% + 15)my + 4s1 + lmc).

3.4 Comparison

The comparison of results is summarized in Tables 3 and 4. The costs presented
are for one iteration of the Miller algorithm and are both for the Tate and twisted
Ate pairings and curves with a quartic twist. In each case, we also present an
example of comparison in the cases k = 8 and k = 16, since these values are the
most appropriate for cryptographic applications when a quartic twist is used [13].
In Table 3, we assume that the schoolbook multiplication method is used for the
arithmetic in the extension fields F «.



Efficient computation of pairings on Jacobi quartic elliptic curves 15

Operations Values Cost
U:=U} U=X} Lsy
V=V V=2 Lsy
Zy:=V —dU Zy=Z}—dx} lme
E:=(X1+Z)*-U—V)/2 * E =X1Z, Lsy (or 1my)
D :=2U,E D =2X37, 1m;
A= QY +WV)?/4-U A=Y(Y1 + Z3?) Lsy
B = —U; (Y1 +2W) B =—-X¥Y1 +2Z%) 1my
X3 :=2EY; X3 =2X1Y1Z; 1my
Vs =72 V=22 Lsy
Y3:=2V —Z; Ys=dX}+Zt=Y? —
Y3:=2Y2-V; Y3 =2Y}-272 Lsy
Us := X3 Us = X3 Lsy

Total cost: 3my + 7s1 + 1mc (or 4my + 6s1 + 1mc)

Table 1. Combined formulas for the doubling step.

Remark 3.3. If we assume that m; = s; = mc and k = 16, then we obtain in
this work a theoretical gain of 26% and 27% with respect to Weierstrass curves
and previous work on Jacobi quartic curves for the doubling step. Similarly, for
the addition step we obtain a theoretical gain of 38% and 39% over Weierstrass
and Jacobi quartic curves, respectively. In the case k = 8, the theoretical gain is
22% and 26% with respect to Weierstrass curves and Jacobi quartic curves for the
addition step and 26% for the doubling step, see Table 3.

In Table 4, we assume that Karatsuba’s method is used for the arithmetic in IFqk
for curves with k = 2¢.

Remark 3.4. We assume again that m; = s; = mc. For k = 8 and for the dou-
bling step we obtain a theoretical gain of 8% over Weierstrass curves and Jacobi
quartic curves (a = 0); see [30]. For the addition step, the improvement is up to
6% over the result on Jacobi quartic curves in [30]. When k& = 16, the gain is
11% for the doubling step over Weierstrass curves. The improvement is 16% in
the addition step over Jacobi quartic curves, see Table 4.

Remark 3.5. The security and the efficiency of pairing-based systems require us-
ing pairing-friendly curves. The Jacobi models of elliptic curves studied in this
work are isomorphic to Weierstrass curves. Thus we can obtain pairing friendly
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curves of such models using the construction given by Galbraith et al. [16] or by
Freeman et al. [13]. Some examples of pairing friendly curves of Jacobi quartic
form can be found in [30].

4 Formulas for the Ate pairing and optimal pairing on the Jacobi
quartic elliptic curve Y2 = dX* 4+ Z4

In this section, we extend the results of the previous section to the computation of
the Ate pairing and optimal pairing. Our results show that among known curves
with quartic twists, the Jacobi model Y2 = d X *+ Z* offers the best performances
for these different pairings. The section is divided as follows: In Section 4.1, we
rewrite the Miller function and the addition formulas for Ate and optimal pairings.
In Section 4.2 we give the cost of the Ate pairing. Section 4.3 is devoted to a
comparative study of these pairings on the curves of Jacobi and Weierstrass forms.

4.1 Ate pairing computationon E4 : Y2 = dX* + 74

According to the definition of Ate and optimal pairing, the point addition and
point doubling are performed in F . But thanks to the twist we will consider the
points [wX; : Y; : Z;], where X;, ¥; and Z; belong to Fx/4, i = 1,2,3 (see
Proposition 2.2). We also know that for Ate and optimal pairings the point P is
fixed during computations and has its coordinates in the base field ;. Thus this
point can be taken as [xp : yp : 1].

4.1.1 Point addition and point doubling on E; for Ate and optimal pairings

We rewrite the formulas from Section 2.1 for point doubling and point addition on
the curve E,; with the difference that points have the form [wX; : Y; : Z;], where
Xi, Y; and Z; belong to IFqk/4,i =1,2,3.

4.1.2 Doubling

We have [wX3 : Y3 : Z3] = 2[wX; : Y1 : Z1] such that
X3 =2X11"17;,
Z3 =71 —dX{o*,
Y3 =2vY} - 72
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4.1.3 Addition

We have [wX3 : Y3 : Z3] = [wX1 : Y1 : Z1] + [wX2 : Y2 1 Z5] such that
X3 = X732 - 73X2,
Zz = X121 Y2 — X2 257,
Y3 = (X1Z2 — X2Z1)*(V1Y2 + (Z1Z2)* + dw*(X1X2)?) — Z3.

4.1.4 Miller function for the computation of Ate and optimal pairings
on E

The Miller function on the Jacobi quartic E; is given in Section 3:
4X3X?
2X3(Y + Z2) —2X2(Y3 + Z3)
(ZY+Z3 1 <Y+Z2> a>

X3 2 X2 4)

hr,s(X.,Y,Z) =

We follow the notations of Section 3.1 by setting —% = % and —%A = %. When
wereplace [X; : Y; : Zi]by [wX; : Yi : Zij]land [X : Y : Z] by [xp : yp : 1], 2
careful calculation yields

2X3x%
Dw2[X2(yp + 1) — x3(Y3 + Z2)]

. (B(yP + 1)0)3 + Aw + Dw4(yp i 1))

2 3
Xp Xp

hr,s(xp.yp.,1) =

The factors A, B and D are exactly the same as in the case of the Tate pairing but
with the main difference that they are in F x/4 instead of F,. The addition and
doubling formulas for (wX; : Y; : Z;), where X;, ¥; and Z; belong to Fyxsa,
i =1,2,3, clearly show that X3 and Y3 + Z3 are also in IF ;x/4 such that

2X2x3
€
Dw?[X2 1) —x%2(Y; + Z2
w?[ 3()’P+) xp(3+ 3)]

Fqk/z.

Then it can be discarded in the computation of the pairing thanks to the final ex-
ponentiation, as we explained in the case of the Tate pairing. Thus we only have
to evaluate

_ 1 1
hR’S(xP’J’P’l):B(yP;_ )a)3+Aa)+Da)4(yP:_ )
* x
F P
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Since P = (xp, yp, 1) is fixed during the computation of the pairing, the quanti-
ties (yp + 1)/ x?, and (yp + 1) /x% can be precomputed in IF,; once for all steps.
Note that each of the multiplications

D()’P-i-]) and B(J’P+l)

3 2
Xp Xp

costs %ml.

Remark 4.1. We can use the fact that in the expression of h the term w? is absent.
In this case, in Miller’s algorithm, the cost of the main multiplication in ]Fqk is
not 1my but (3/4)my if we use the schoolbook method and is (8/9)my if we
use Karatsuba’s multiplication with pairing friendly curves, i.e., k = 2/. See
Appendix B for details.

Remark 4.2. Since the coefficients of the Miller function for the Ate pairing are
the same as for the Tate pairing, these coefficients and point operations can be
computed in the same manner it was done in the previous section with the main
difference that computations are done in IFqk /4.

4.2 Cost of Ate and optimal pairing on E

In Tables 5 and 6, we summarize and compare the costs for one iteration for both
Ate and optimal Ate pairings on the Jacobi curve E; : Y2 = dX* + Z* and on
the Weierstrass curve Wy : y2 = x3 — 4dx. We also present these costs in the
cases of elliptic curves of embedding degrees 8 and 16.

In Table 5 we assume that computations are made in [« using the schoolbook
method. In Table 6 we assume that computations are made in F « using Karat-
suba’s method.

Remark 4.3. If we assume that m; = s; = mc and if the schoolbook multiplica-
tion method is used, then for the computation of the Ate pairing we obtain in this
work a theoretical gain of 11% with respect to Weierstrass curves for the doubling
step. The improvement is 4% when Karatsuba’s method is used. Our addition step
is not better. See Tables 5 and 6.

4.3 Comparison

Let us now compare different pairings on Jacobi quartic curves and Weierstrass
elliptic curves with quartic twists. Especially we determine the operation counts
for the Tate, twisted Ate, Ate and optimal Ate pairings in a full loop of Miller’s
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algorithm, based on the fastest operation counts summarized in Tables 3-6. We
suppose that we are in the context of optimized pairing such that we can restrict
ourselves to the cost of the doubling step. Indeed, in this case r is chosen to have
a lower Hamming weight such that the computation in Miller’s algorithm can be
done quickly by skipping many addition steps. For elliptic curves with embedding
degrees k = 8, we consider the parameters for 112 bits and 128 bits security
level. We also consider elliptic curves with embedding degrees k = 16 at 128 bits
and 192 bits security levels. These values have been selected such that we obtain
approximately the same security level both in the elliptic curve defined over the
base field Fy and in the multiplicative group of the finite field F«.

For these parameters we give the approximate number of operations in the base
field for all the Miller iterations. For the Miller loop in the computation of the
Ate pairing, we consider an average trace f ~ ,/q. For the values in Table 7, we
assume that m; = s1 = mc. The label “Karat” means that the values in these rows
are obtained using Karatsuba’s multiplication method, whereas “School” means
that the values are obtained using the schoolbook multiplication method. The
letters W and J stand for the Weierstrass [8] and the Jacobi elliptic (this work)
curve model, respectively, since this work is the first that presents the computation
of the Ate pairing and its variations on Jacobi elliptic curves.

From the values in Table 7 we draw the following observation: The differ-
ent pairings computed in this work are always faster in the Jacobi quartic elliptic
curves with respect to the Weierstrass elliptic curves. The gain obtained is up to
27% and depends on the method used for multiplications and the security level.

S Implementation and example

In this section we consider the family of elliptic curves of embedding degree 8
described in [27] to verify our formulas and to implement the Tate, Ate and optimal
Ate pairings. This family of curves has the following parameters:

r = 82x* 4+ 108x> 4 54x2 4 12x + 1,

g = 379906x° + 799008x> + 705346x* + 333614x> + 88945x2
+ 12636x + 745,

t = —82x> — 108x? — 54x — 8.

For x = 24000000000010394, the values of r, g, the trace ¢ and the curve coeffi-
cient d are as follows:
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r = 272056320000471307161600306182614014808404525177076771934828
45476817,
q = 726011672004446604951703464791789328991217313776602768811505
32069758156754787842298703647640196322590069,
d = 453757295002779128094814665494868330619510821110376730507190
82543598847971742401436689779775122701618793,
t = —1133568000001472850432000637893917136092090964291460.
We recall that G; = E(F,)[r] and G, = E(F,)[r] N Ker(zry — [¢]). To obtain an
optimal pairing in the Jacobi quartic curve E; with embedding degree 8, we follow

the approach described by Vercauteren [29]. Applying the ShortestVectors()
function in Magma [6] to the lattice

r 000
—q 1 00
L=|"1 ,
—q%> 010
—-q*> 0 0 1

we obtain the vector
V =Jco,c1,c2,c3] = [x,0,0,3x + 1].

An optimal pairing is then given by
81

3 g —1
o Ga x Gy — pr, (Q,P)|—>(f3qQ+1(P).H1) T

X,

where

i — — 3
Hy = (ho.ix1o(P) - hixo.x1o(P) - hiaxo. e (P))’

and 57 = (3x + 1)g>.

Indeed, this is a straightforward application of Theorem 2.10. From that theo-
rem we have co = x,¢c1 = ¢ =0,c3 =3x + 1land s; = 213:;' cj-qj. Observe
that for our example s; = s, = s3 = c3g> = (3x + 1)g>. We then apply
Theorem 2.10 to obtain

g8-1

3
eo(Q.P) = (fx,0(P)- f3qx+1,Q(P) 'h[sl]Q,[x]Q(P)'h[zsl]Q,Poo(P)) :
Observe also that

fio=1 and hfsl]Q,Poo(P)zl.
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Moreover, h[,10,[x]o (P) Will be sent to 1 during the final exponentiation because
from

/
A=mr = Zciqi =x 4+ s,
i=0
we get [s1]Q + [x]Q = Poo. We then apply property (2.1) to express f3x41,0 in
terms of fy o as follows:

3
f3x+1,0 = fi 0 - hixjo.x10 - Mixio.2x10 - M3x10.110-

Finally, by using the explanation in Section 4.1.4, the function hg_g is simplified
to ER,S. We can also observe that, if x is negative then by using the divisors we
cantake fx 0 = 1/(f-x,0 hx10,[-x]0)- and h[x]0 [-x]0 1S also sent to 1 during
the final exponentiation. We remark that for this example, we have log, (x) ~ 54
iterations of Miller’s algorithm which is equal to log,(r)/¢(8), and this agrees
with the definition of an optimal pairing.

The Magma code for the implementation of the Tate, Ate and optimal Ate pair-
ings is available at [26].

6 Conclusion

In this paper we have computed and implemented the Tate, Ate, twisted Ate and
optimal pairings on the Jacobi quartic curve E; : Y2 = dX* 4 Z*. The result
in the computation of the Tate pairing is a significant improvement of up to 39%
compared to the results of Wang et al. [30] on the same curve. Compared to
the Weierstrass curve, our result is 27% more efficient. Ate pairing, twisted and
optimal Ate pairings are computed on this curve for the first time. Our results are
27% faster than in the case of Weierstrass curves [8]. According to our results the
Jacobi quartic curve is then, to date, the best curve among the curves with quartic
twists which gives the most efficient result in the computation of pairings.

A Cost of the main multiplication in Miller’s algorithm for the Tate
and twisted Ate pairings

The main multiplication in Miller’s algorithm is of the form f - h, where f and }z
are in F . Since F« is a F x/4-vector space with basis {1, », w?, w3}, fand h
can be written as

f=fo+ fio+ fro® + fro’, h=ho+ho+hho?+ o’

with f; and A; in IFqkm, i =0,1,2,3. However in our case h3 = 0, hp € I, and
k=20
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A.1 Schoolbook method

A full multiplication f - h costs k2 multiplications in the base field F, using the
schoolbook method. But thanks to the particular form of /g and /A3, each of the
multlphcanons fi - ho costs kml and each of the multiplications f; - hy, fi - h»
costs k Te/M1- The final cost of the product f - h in the base field Fy is
k2 k k2
(355 +43)m = (T +E)m.

Finally the ratio of the cost in this case by the cost of the general multiplication is

A.2 Karatsuba method

The computation of f - ﬁ is done here using a particular Karatsuba multiplication.
Instead of writing f - & in the classical way (see for example Appendix B), we
write it as follows:

fh=(fo+ fio+ L0+ f30°)(ho + hiw + haw?)
= (fo+ fiw + (fo + fr0)0?)(ho + (h + haw)w).

In this form, the product is obtained using the following three products computed
using a classical Karatsuba multiplication: hg(fo + fiw) which costs 21"y,
(f2+ f30)(hy + haw) which costs 3(3'~2)my and (fo + f> + (f1 + f3)@)(h1 +
(ho + ha)w) which costs 3(3'~2)m. The final cost is then 2 - 33~1 4 2/~1, The
ratio is

2. 3i—1 + 2i—1

—

B Cost of the main multiplication in Miller’s algorithm for the Ate
pairing

The main multiplication in Miller’s algorithm is of the form f - h, where f and h:
are in ]Fqk. Since ]Fqk isa ]Fqk/4-vect0r space with basis {1, w, w?, a)3}, fandh
can be written as

f=fo+ fiw+ fro?+ fr0°, h=ho+ho+ho?+ ho’

with f; and h; in Fqk/4,i =0,1,2,3and h, = 0.
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B.1 Schoolbook method

A full multiplication f - / in Fgx costs k? multiplications in the base field F,
using the schoolbook method. But thanks to the fact that i, = 0, each of the 12
multiplications f; - h; costs If—zml, i =0,1,2,3. Then the total cost of the product
f-his
k? 3k?
12—m1 = —mq.
16 4
Finally the ratio of the cost in this case by the cost of the general multiplication is
3k2
a3
k2 '

B.2 Karatsuba method

We have k = 2¢. A full multiplication f -/ in F
multiplication as follows:

gk 18 computed using Karatsuba

fh=(fo+ fiw+ fro®+ f03)(ho + hio + haw? + hzw?)
= (fo+ fiw + (fo + fr0)0?)(ho + hiw + (ha + hzw)w?)

In this form, this product is obtained by computing the three products u; =
(fo + fiw)(ho + Mw), vi = (f2 + faw)(h2 + hzw) and wy = (fo + f2 +
(f1 + f3)w)(ho + ha + (h1 + h3)w). Applying again Karatsuba multiplication
to u1, v1 and wi, this costs 3(3i _2)m1 for each product such that the cost of the
main multiplication f - h using Karatsuba is 3/m.

Now in our case, iy = 0, so that the computation of vq costs only 2(3i _2) and
the total cost for computing f - & is 8 - 3'=2m . The ratio is then 8/9.
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