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Beyond Procedural Facade Parsing:
Bidirectional Alignment via Linear Programming

Mateusz Kozinski, Guillaume Obozinski and Renaud Marlet

Université Paris-Est, LIGM (UMR CNRS 8049), ENPC
F-77455 Marne-la-Vallée

Abstract. We propose a novel formulation for parsing facade images
with user-defined shape prior. Contrary to other state-of-the-art meth-
ods, we do not explore the procedural space of shapes derived from a
grammar. Instead we formulate parsing as a linear binary program which
we solve using dual decomposition. The algorithm produces plausible ap-
proximations of globally optimal segmentations without grammar sam-
pling. It yields state-of-the-art performance on standard datasets.

1 Introduction

The goal of facade parsing is to segment rectified building images into regions
corresponding to architectural elements, like windows, balconies and doors. The
resulting segments have to satisfy structural constraints, e.g., alignment of win-
dows on the same floor, or requirement that a balcony is associated to a window
and right below it. Applications include creating 3D models of urban scenes.

A common approach to this problem is to let the user specify a shape prior
encoding the structural constraints. It often takes the form of a shape grammar
and proposed algorithms try to find a sequence of instantiated grammar rules
yielding an optimal segmentation [1-3]. But the dimension of the search space
is very large. Consequently, these algorithms suffer from the ‘curse of structural
exploration’. They search the solution space randomly [1,2], which does not
guarantee optimality or repeatability, or severely subsample the image [3].

In this paper we lift the curse of structural exploration by proposing an alte-
native formulation of priors, which can be mapped into a linear binary program
and solved efficiently, yielding state-of-the-art performance on standard datasets.

1.1 Related Work

Most proposed priors that are complex enough to model constraints of building
facades rely on shape grammars [4]. The concept has been introduced by Stiny
et al. [5] in the 70’s, and the idea of representing image contents in a hierarchical
and semantized manner traces back to the work of Ohta et al. [6,7]. Practical
applications to image segmentation and interpretation are more recent [8-11].

A grammar is typically given by a set of nonterminal symbols N, a set of
terminal symbols T, a start symbol in N, and a set of production rules of the
form Ag — Ay ... A, where Age N and A; e NUT for 1 <i<n.
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In the grammar of Han and Zhu [8], terminal symbols are rectangles and
production rules combine them into rows, columns or grids, allowing rectangle
nesting. The authors resort to a greedy algorithm for constructing the parse tree,
which illustrates the difficulty of optimizing over a grammar derivation.

Drawing ideas from architectural modeling [12], where facade generation is
analogous to string derivation in formal languages, the top-down parser of Teboul
et al. [1, 2] is one of the first attempts to parse facades using ‘split grammars’. The
input image is recursively split into rectangular subregions which are assigned
a class label. Spliting directions as well as the number and class of subrectan-
gles are non-deterministically chosen according to a predefined set of production
rules. The process continues until all rectangles have a terminal class. The parser
actually samples a number of possible derivations, only exploring a small part of
the structural space. Even with a ‘smart’ sampling strategy [2], it does not pro-
duce repeatable results: as reported in [13], inference consists in independently
running the exploration five times and keeping the best solution.

To counter the drawbacks of sampling, Riemenschneider et al. [3] propose an
adaptation of the Cocke-Younger-Kasami (CYK) algorithm for parsing string
grammars to two-dimensional split grammars. Its complexity is O(w?h%N), where
w and h are image dimensions and NV is the number of possible combinations of
production rule attributes (including splitting positions). This limits practical
applications of the algorithm to grids of about 60 by 60 cells. To circumvent this
limitation the authors test different methods of image subsampling.

An attempt to fight the curse of procedural exploration was proposed by
Koziriski and Marlet [14], using graph grammars and MRF optimization. In
contrast to parsers like [2] whose combinatorial search explores both the nature
of splits and their position at the same time, sampling here concerns structure
only; optimal positions for a given sampled structure are found with a principled
and efficient method. The space to explore, which now does not depend on
image size, is considerably smaller, but the curse of the procedural space is not
eliminated completely as graph-grammar sampling remains.

Some facade segmentation methods [15, 16] do not use any user-defined shape
prior. The bottom-up method proposed by Martinovic et al. [15] applies ‘soft’
architectural principles as a postprocessing step after image segmentation, but
cannot accommodate ‘hard’ structural constraints. It can produce artifacts, like
windows extending further than their balconies. A more recent work by Cohen
et al. [16] uses a sequence of dynamic programs to recover a segmentation that
respects a set of hard-coded constraints and attains state-of-the-art performance
on the standard datasets. In our experiments, our method outperforms this al-
gorithm while offering full flexibility with respect to shape prior specification.

In this paper we formulate the problem of finding an optimal segmentation
as a binary linear program. We solve this program using the dual decomposition
(DD) approach [17, 18]. Similar techniques include Alternating Direction of Mul-
tipliers Method (ADMM) [19]. We chose DD because ADMM, although known
to feature better convergence properties, requires solving quadratic subproblems.
The experiments confirm that DD behaves well in our application.
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Table 1. Comparison of with state-of-the-art facade parsing methods.

Property 2] [15]  [16] [3] Ours
User-defined shape prior v - - v
Approximation of global optimum - - —* v

ANENENEN

No need of image subsampling (for tractability) v v v -
Simultaneous alignment in two dimensions v v - v

* Cohen et al. [16] can issue a certificate of optimality if the found solution is optimal.

1.2 Contributions

Our approach for image parsing does not suffer from the curse of procedural
exploration. It is based on a shape prior formalism that allows efficient parsing.

Instead of expressing a shape prior using grammar rules, we propose to rep-
resent the structural decomposition of a scene as a hierarchy of classes, comple-
mented by a specification of forbidden configurations of neighboring elements.

The parsing problem can then be turned into a linear binary program, which
we solve efficiently using dual decomposition, eliminating the need for a pro-
cedural exploration of the solution space. As shown in the experiment section,
our algorithm features the accuracy of methods using hard-coded structural con-
straints [15,16] while retaining the flexibility of grammar-based methods [2, 3].
The comparison to state of the art is summarized in table 1.

2 Proposed Model

Although it departs from hte grammar-based approach, our structural segmen-
tation framework is inspired by the process of hierarchical image subdivision
into rectangular regions, which we will refer to as rectangles in the rest of the
paper. The shape prior is encoded as a tree with nodes corresponding to classes
of rectangles. Child nodes represent classes of rectangles resulting from splitting
a rectangle of a parent class. We require that a rectangle of a class resulting
from a vertical split can only be split horizontally and vice versa. This tree is
complemented with a table of pairwise potentials associated to each nonterminal
node. They can be used to penalize invalid or unlikely adjacency configurations
of child rectangles. Our algorithm can handle infinite values of the potentials
and in our experiments we only use binary potentials that take the value of zero
or infinity, preventing some configurations of neighbors and allowing the others.
In contrast to split grammars, which are context-free and cannot be used to
express simultaneous alignment in two dimensions (other than with implementa-
tion tricks that introduce some context dependency [2]), we require rectangles of
the same class to be aligned both vertically and horizontally. This requirement
can be enforced by constraining all rectangles of the same class that are aligned
along the splitting direction to be split in the same positions into subrectan-
gles of the same classes. A tree example and corresponding segmentations are
presented in figure 1. Note the bidirectional alignment of windows (class g).
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Fig. 1. A shape prior consists of a hierarchy of classes (image 1) and a table of pair-

wise potentials for each nonterminal node (not shown here). Each image (2-4) shows
substitution of all rectangles of a particular class with rectangles of child classes.

2.1 Optimal Segmentation as a Binary Linear Program

We denote the set of indices of image pixels by Z = {(i,j)|i € [,j € J}, [ =
{1,...,h} and J = {1,...,w}, where h is image height and w is image width.
We denote the set of rectangle classes by C = K U L, where K denotes the
set of classes that result from a horizontal split, also called row-classes, and L
is the set of classes that result from a vertical split, called column-classes, and
KNL = (. The root of the tree r is a ‘starting class’, corresponding to the whole
image. Without loss of generality we assume that r is split horizontally and by
convention we consider » € L. We recall that nodes in K can only have children
in L and vice versa. Consequently, all nodes at each level of the tree are either
col-classes or row-classes. We denote the set of children of class n € C by Ch(n)
and the set of descendants of n, including n, by Desc(n). Similarly, we denote the
set of ancestors of n, including n, by Anc(n), and its parent by Pa(n). The set
of siblings of n is denoted Sib(n). We define a set of classes ¢t € C corresponding
to the leaves of the tree by T and call its members terminal classes.

A sequence of vertical and horizontal splits assigns a sequence of rectangle
class labels to every pixel of the image. For any row ¢, it is thus possible to list
all the classes that are assigned to at least one pixel on the row. Below we show
that a segmentation consistent with a prior of the proposed form can be encoded
in terms of the sets of classes assigned to each image row and column. This row-
and column-based formulation enables global alignment of distant rectangles of
the same class. We define variables Yk, yir, Tk, ;1 € {0,1} such that y;, = 1 if
k is present in row ¢ and x; = 1 if [ appears in column j. We make a distinction
between the variables encoding assignment of row-classes k¥ € K and column-
classes | € L, because they behave differently for horizontal and vertical splits.

In table 2 we present how the process of shape derivation changes the sets
of row- and column-classes present in image rows and columns, and formulate
constraints on s, ¥, €, and x;; that reflect this behaviour. As shown in the
second row of the table, a vertical split of a rectangle of parent class results in
a number of rectangles of child classes. Because the split is along the vertical
axis, only one child rectangle is going to appear in each image column previously
occupied by the parent. However, all children are going to occur in each image
row where the parent was present. We emphasize that all vertically aligned
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Table 2. Illustration of the splitting process and interpretation of the variables x;; and
yik. The splitting process is just a concept that helps us to introduce our formulation
and not a mode of operation of the proposed algorithm.

Example Specific constraints General constraints
sequence for the example
of splits
—_—
Z9 A wia=1 Vk € Ch(r), zs, =1
; = B zjp =1 2keon Yik =1
=T yia+yip =1
e A
Lo~
2 ol D rjc+zjp =zja Vke K, Zlec‘h(k) Tl = Tjk
w oo ) o — oy
Tg&a E |F mngia:].F:x.JB Vk € K,Vl € Ch(k), yji = yjr
= T T YiA Yic YiD
Eqim D YiB = YiE = YiF
s [GIP
Emo H Q Tjc = TjG = TjH vie L,Vk € Ch(l), Tk = Tji
U E|F zip =xip =xiQ  VLE L, Y yconq Yik = Vil
N i B yic = Yic + yin
:5 T S H YiD = YiP + YiQ
> Gl Q

rectangles of the same class are split simultaneously along the same lines, so
that the child rectangles are aligned and their classes are consistent along the
splitting axis. The same reasoning applies to horizontal splits.

The corresponding constraints on xj;, i, ¥ and y;, are presented in the
third column of table 2. We note that for vertical splits the state of each y;; for
l € Ch(k) is determined by y;;, and that the same holds for horizontal splits,
and x;;, as shown in the fourth column of table 2. We eliminate z;; and y;; by
combining the two first equations and the two second equations from rows two
and three of the table. We get

VieLVIEL, )y =yiraw, Vi€JLVKEK, Y wu=1uipa) (1a)
k'€ Ch(l) '€ Ch(k)

where L = L\ (T'U {r}) and K = K \ T. We visualize the domain of the
constraints in fig. 2.

In the interest of maintaining the convention of assigning row-classes k € K
to rows and column-classes [ € L to columns, we modify the constraint from the
first row of the table. We require that the root class is assigned to each column
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Fig. 2. Visualization of the state of variables y;; and x;; for some pixel 7, j. The white
nodes correspond to classes k and [ for which y;x = 1 and z; = 1. The gray nodes
correspond to classes with y;x = 0 or z;; = 0. The domains of constraints (1) on yix
are circled in blue and the domains of constraints on xj; are circled in red. Left: the
domains of (1b). Middle and right: the domains of (la). Note that only one leaf is
connected to the root by a path of white nodes. This illustrates the uniqueness of pixel
class given the state of variables corresponding to its row and column.

and that the first horizontal split assigns a unique class to each row:

Vieda,=1, Yiel, Y yx=1. (1b)
keCh(r)

A key, albeit nontrivial consequence of constraints (1) is that there is a unique
class assigned to each pixel at a certain level of the tree, which is unambiguously
identified by the sets of classes present in the corresponding row and column.

Lemma 1. Consider a hierarchy of classes given as a tree, as defined earlier.
Denote the depth of the tree by M, the set of column-classes at the m-th level
of the tree by L™ and the set of row-classes at the m-th level of the tree by
K™. Note that L™ is nonempty only for even m and K™ for odd m. Denote
the vectors of yi and xj; by y and x. Denote the set of y and x satisfying the
constraint (1), enforcing the hierarchical structure of row-class and column-class
assignment, by Cy. Then

(y,x) eCr, = V(i,j) €Z Vme{0,...,M},
G e L™ Vne Anc(li}), (vjn=1)V (yin =1) if m is even (2)

k€ K™ Vn € Anc(kj}), (2jn=1)V (Yin =1) if mis odd. (3)

In words, for any pixel (4, j) € Z, for any values of variables y;; and z;;, that
satisfy constraints (1), at any depth of the tree there exists exactly one row-
class, or one column-class such that the variables x;; and y;, corresponding to
the class and all its ancestors are equal to one.

Proof. We prove the lemma by induction on the depth of the tree.
The root r is the only node at depth m = 0 of the tree and, by constraint
(1b), it holds that z;, =1 for all j € J. Therefore the lemma holds for m = 0.
For depth m = 1 the tree is formed of the root and its children. By constraints
(1b), we have that for each i there exists a single k; € Ch(r) such that y;;, =1
and y;; = 0 for k # k;. This proves the lemma for the case of a tree of depth 1.
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Assume lemma 1 holds at depth m. If the level is of class [ € L, then by
assumption for each ¢ we have a single [7* such that the variables associated to
all its ancestors are equal one. By constraint (1a), exactly one child of [ will
have its associated variable y;;m equal to one. Similar reasoning applies if the
level is of row-class type. a

We model the assignment of terminal classes to pixels by variables z;;; €
{0,1}, where z;;; = 1 if pixel (4, ) is of class ¢t € T and z;;; = 0 otherwise. A
single terminal class has to be assigned to each pixel

teT

By lemma 1, all ancestors of the class assigned to pixel (i, j) have the variables
yir and x;; equal to one, which leads to the inequalities

V(i,j) €TV € K, Y zije <wyin, V(i) ELVIEL, Y ziji <aji. (5)
teDesc(k) teDesc(l)

Each nonterminal class has a table of pairwise potentials defined on its chil-
dren. The potentials determine the likelihood of observing neighboring rectangles
of the child classes. We implement the potentials with variables y;xr and ;1

Vie{l,...,h—1}Vk€K > yuw =y, (62)
k'€ Sib(k)

Vie{l,...,h—1},\VK' € K Z Yikk' = Yit1k s (6b)
keSib(k')

Vie{l,...,w—1}VIeL > au =z, (6¢)
'€ Sib(l)

V] € {1,...,’11}—1},sz eL Z T = Tj41l - (Gd)
1eSib(l’)

We denote the cost of assigning type ¢ to pixel (4, j) by ¢;;¢, and the pairwise
cost for column- and row-classes by cgr and ¢;. We define the sets of pairs
of row- and column-classes that are siblings in the tree by SK and SL. The
segmentation task can be formulated as minimizing the following objective

h—-1 w—1
E= Z Z ZijtCijt + Z Z Yikk' Ckk’ + Z Z T Cu (7)
(i,j)€TteT i=1 (k,k")eSK i=1 (1,I')eSL

subject to constraints (4) to (6).

3 Inference

The formulated problem is linear and has a large number of binary variables. We
relax the binary domain constraint and let the variables take values within the
range [0, 1]. We apply dual decomposition to the resulting continuous problem.
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Algorithm 1 Dual Decomposition

VA, <0, n<+1

while not converged do
Vi & < argmin Ep, (2m) + (/\’,ifl)Txm
Vm A:Ln — )\:ln71 + Oén(jzynlq - % m i'TanL)
n+<n—+1

end while

2 + GETFINALX (&, Am)

3.1 The Dual Decomposition Algorithm

The dual decomposition algorithm is based on the idea of decomposing a difficult
problem into a number of ‘slave’ subproblems that are easy to solve. Given an
original problem # = argmin)_  FE.(x), x € C, where C' denotes the feasible
set, we construct a number of copies of the variable x, denoted z.,, and couple
them by means of a new constraint z,, = z. We formulate the dual problem
maxy,, Ming 5 >, (En(zm) + AT (2 — z,,)), subject to z,,, € C, where A, is a
vector of Lagrange multipliers. The problem is solved using a projected subgra-
dient algorithm. Calculating subgradient of the dual objective requires solving
&y = argmin Fy, (z,,) + AT 2, subject to z,, € C, separately for each m. The
latter minimizations are called slave problems. We refer the reader to [17, 18] for
the derivation. We denote the values of variables in iteration n by a superscript
and « denotes the step size. The algorithm is run with decaying step size. The
values of Z,, eventually converge and heuristics, represented in algorithm 1 by
procedure GETFINALX, can be used to decide on the components of  on which
Ty, disagree [17].

The main design decision to be made when applying dual decomposition is
how to decompose the original objective function into slave objectives. The main
criterion is the ability to efficiently solve the slave problems. Below we present
a decomposition of the objective (7) into subproblems that can be solved by
means of dynamic programming in time linear in the number of pixels.

3.2 Application of Dual Decomposition to the Problem

To make the slave problem tractable we need to decouple the variables y;, cor-
responding to image rows from the variables x, corresponding to columns. This
results in slaves assigning sets of classes to rows or columns and terminal classes
to pixels.

This decoupling is however not sufficient since feasible configurations of the
sets, encoded by vectors (y;;) and (xj;), are determined by constraints (1), that
have a complex structure. We propose a further decomposition, that results in a
larger number of slaves with simpler constraints. The slaves assign a single class
to each pixel and each image row or column.

Each instantiation of constraints (1) can be transformed by recursively plug-
ging its left-hand side to a left-hand side of another equation of type (1) until
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Fig. 3. The structure of set H;, for [ = j, visualized on a tree of classes. Elements of
the set are outlined in red. Exactly one of the elements has to be assigned to a single
image row.

the resulting sum equals one. Consequently, we get

VIEL\T Y yn=1, Ve K\T Y z;=1. (8)
keH, S

The sets Vi, and H; reflect the substitution process described above. The set Vj,
can be described as the smallest set containing all children of k and such that if
some [ belongs to Vi, then all the siblings of its grandparent do as well. Formally,
Vi = Ch(k)U[LN(Ch(Ax)\ Ax)], where Ay, = Anc(k) and by Ch(Ay) we denote
the set of all children of all elements of Aj. The structure of the set is illustrated
in figure 3. The set V} is defined in a similar way. Note that it is possible to
transform (8) back to (1). It is enough to subtract from constraint (8) for some
1€ L\T a constraint of the same type for I’ = Pa(Pa(l)) to get a constraint of
type (1). The reader can verify that on the example presented in figure 3. Thus,
constraints (8) are equivalent to their original form (1).

The advantage of constraint (8) is that it is an intersection of simplex con-
straints, which entails that the problem can be naturally decomposed into a
number of subproblems, one for each [ € L\ T and each k € K\ T.

3.3 Structure of Slave Subproblem

We thus create one slave for each [ € L\ T and one for each k € K \ T. Below
we present the structure of a slave subproblem for some [. The slaves for k
are created symmetrically. We denote by SH; the set of pairs of sibling row
classes k, k'’ such that k, k&’ € H;. The copies of the variables are denoted with

superscripts [. New cost coefficients ¢;;; = Cigt and ¢y = ZW are

(IL\T |+ E\T]) oY
introduced, where ngy/ is the number of times the pair k, ¥’ appears in different
slaves. The objective is

. - TN 11 S
, min E (Cijt + Nije)zije + E NikYik + E CreYiek: o (9)
ZijtrYik Ypps (i,5)€T i€l i€{l,...,h—1}
teT keH; k,k'€SH,
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where /\éjt is a Lagrange multiplier corresponding to a constraint coupling the

variables z!., for different slaves and /\ék is a Lagrange multiplier coupling the

15t
variables yﬁk for different slaves. The derivation of the slave objective from the
original objective (7) is straightforward and is omitted here but detailed in the
supplementary material. The feasible set of each slave problem is a projection
of the original feasible set, defined by constraints (4) to (6), to the space of the

slave variables:

V(i,j) €L, VteT, 2, >0, Vi, j) €T, Y =1, (10a)
teT
Viel, Vke Hy, yly >0, Viel, Zygkzl, (10D)
keH,;
Y(i,j) eI, Vke H, > <k (10c)
teDesc(k)
Vie J\{h}, VEe€H, Y b=k, (10d)
k' €Sib' (k)
VZ S J\ {h}, Vk}/ S Hl, Z yikk' = yé—‘rlk' y (106)
keSib! (k')

where Sib' (k) denotes the set of sibling of class k that belong to the set H;. The
nonnegativity constraints (10a) and (10b) are introduced due to the relaxation of
the variables from binary to continuous domain. Constraints (10c) to (10e) have
the same form as their corresponding ones in the original problem (4) to (6).
The constraint (10b) on the sum of y!, represents constraints (1) and (1b) of the
original problem, transformed according to (8). Summarizing, an intersection
of the feasible sets of the slaves is equivalent to the feasible set of the original
problem, in the sense that if for all 4, j,k,l,¢ we have z;;; = zfjt = zﬁjt and
Yikk = yzl-k, xj = :U?l, then (z,y,2) € C <= VI€L\T, (9" € C' A
Vke K\T, (% 2F) € CF, where C, C* and C! denote the feasible sets of the
original problem and of the slaves, respectively.

3.4 Solving the Slave Subproblem

It can be proven that the linear problem of each slave has integral vertices. In
consequence, each slave can be seen as a labelling problem where we assign a
label k € H; to each row i and a label ¢ to each pixel (i,7) € Z. We find the
optimal labelling by means of a dynamic program.

Given row class k assigned to row i by slave [, it is easy to determine the
optimal classes t%“ for all pixels in the row. Constraint (10c) restricts the set of
pixel classes that can be used in the row to ones that are descendants of k or to
ones that are not descendants of any k € H;, denoted T; = T\ Uken, Desc(k).
The optimal index is

ti’; = argmin (G + /\lijt) . (11)
teDesc(k)UT;
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Algorithm 2 Dynamic program solving the slave subproblem.
for all k € H;,i € I do > dyn. prog. on t;;
for all j € J do
th < argmin, ¢ p. ko, (Cijt + Aije)
end for
Cin Zj(éijt%? + X

zjt,li’;

) + Ak
end for
for all k € H; do > dyn. prog. on k;
d)l(l: k) — Cllk
end for
fori=2,...,hdo
for k € H; do
@' (i, k) + mingep, ¢'(i — 1, k') + cby + Grp
E'(i—1,k) argming, ¢z, &'(i—1,k) 4+ cy + & > store opt. prev. class
end for
end for
ki, tij <+ BACKTRACK(¢', k') > extract optimal k; and ¢;; from recorded info

From objective (9) we derive the optimal cost of assigning row class k to image
row 4, which is the sum of costs for each pixel and the per-row cost

Che = Z(ézjtg’; + )\éjtl.’?') + A (12)

The optimal cost of assigning classes for the 4 first rows, denoted ¢(i, k), where
k is the row class assigned to row 4, can be recursively defined as

86, k) = {Cl”f =1 (13)

ming g, @' (i — 1,k") + ¢t + i otherwise.

We use this recursive structure of the subproblem to formulate the Viterbi
algorithm 2 for finding its optimal solution. In the first step the optimal pixel
indices ti’; are determined for each pixel and each k € H; according to (11). They
are then used for determining row class costs ¢!, according to (12). Finally the
Viterbi recursion of equation (13) is used and the optimal row and pixel classes

are retrieved by backtracking.

4 Experiments

We tested the performance of our algorithm on facade parsing with two datasets.
For each of them, we have created a shape prior consisting of a tree hierarchy
of classes and, for each nonterminal node, a table of pairwise potentials. We
use very simple, binary potentials, which penalize invalid ordering of rectangle
classes, like sky under wall, with infinite cost. For each image, we run the DD
algorithm for 200 iterations, with a fixed step-size sequence «,, = a/+/n, where n
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Table 3. Performance on the ECP dataset. The rows corresponding to classes present
class accuracy (the diagonal entries of confusion matrices, or recall). The bottom rows
contain average class accuracy and total pixel accuracy. Starting from left, we present
the performance of three layers of Martinovic’s solution [15], and the results of Cohen
et al. [16], using ‘raw’ per-pixel energies, and with SVM scores on top of the energies.

[15]-L1{[15]-L2|[15]-L3| [16] |[16]-SVM |Ours||Our confusion matrix

roof 70 73 74 93 90 91 {{91 0 0 2 2 0 5 |roof
shop 79 86 93 96 94 95110 950 0 0 0 4 [shop
balcony 74 71 70 92 91 90 |1 0900 4 0 5 |balc.
sky 91 91 97 96 97 9 (|4 0 096 0 0 O [sky

window 62 69 75 87 85 8 (|3 1 4 08 0 5 |wind.
door 43 60 67 82 79 74110 220 0 0 74 4 |door
wall 92 93 88 88 90 91 |1 3 2 0 3 0 91 |wall
class aver. | 73.0 | 77.6 | 80.6 [90.6| 89.4 |88.8

pixel accur.| 82.6 | 85.1 | 84.2 |90.3 90.8 [92.3

is the number of iterations and a is a constant. In our experiments the algorithm
run for less than 4 minutes per a single image.

The ECP dataset [2] consists of about 100 rectified images of Haussmannian
building facades with annotations segmenting the images into 7 classes: sky,
roof, wall, window, balcony, shop and door. An issue is that this ground-truth
annotation was created to be consistent with possible derivations of the grammar
in [2], even when it cannot accomodate observations. For instance, attic windows
are systematically aligned with facade windows, even when actually offset, and
balconies can only extend throughout the entire facade or be constrained to a
single window cavities, which is incorrect on a number of images. For this reason,
we use the ground truth provided by [15]. It evades any structural interpretation:
balconies and windows can be slightly misaligned, small pieces of doors may float
above the ground, etc. But it is more accurate in terms of pixel classification.

The Graz50 dataset [3] is composed of 50 rectified images of building facades
of different architectural styles. The facades feature more structural variation
than the ones of the ECP dataset. The set of labels includes four classes: sky,
wall, window and door.

Performance on the ECP Dataset has been tested using per-pixel energies that
follow the description from [16]. We use a multi-feature extension of Texton-
Boost, as implemented by the authors of [20]. We use SIFT and Color SIFT
descriptors, Local Binary Patterns and location features. The features of each
type are clustered using K-means into 512 clusters. We establish a neighbour-
hood of 200 random rectangles and the final feature vector is a concatenation
of histograms of cluster members’ appearance in these rectangles. The per-pixel
costs ¢;j; result from multi-class boosting [21]. We follow the protocol of [15] and
[16] in performing the experiments on five folds with 80 training images and 20
testing images. The results are presented in table 3. Our method outperforms
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Table 4. Results of experiment on the Graz50 dataset. The second and third columns
of the table show diagonal entries of the confusion matrices for results reported by
Riemenschneider et al. [3] and our results. The right-hand side of the table contains
the confusion matrix for our results. An example result is shown on the right hand
side.

[3] [Ours|| conf. mat.
sky 91 93 (193 0 0 6 |sky
window 60 | 82 || 0 82 0 17 |window
door 41 | 50 || 0 14 50 36 |door
wall 84196 || 0 3 0 96 |wall

class average 69.0| 80.3
total pixel accur.|78.0/91.8

the one presented in [16] by a small margin. The main advantage of our algo-
rithm is that it can accept any user-defined shape prior on input, which makes
it more general. This shape prior can express constraints on the alignment of
architectural elements in two dimensions, which is beyond the expressive power
of the dynamic program proposed in [16].

Performance on the Graz50 dataset has been tested using the same type of pixel
costs as for the ECP dataset. Five folds were used, splitting each time the dataset
into 40 training images and 10 test images. The results are presented in table
4. One reason why our results are superior to those in [3] is that their method
requires severe subsampling of the image to be tractable. Our method is more
computationally efficient and can be run on full-resolution images.

5 Conclusion and Future Work

We have presented a novel approach to grammar-based facade analysis in which
the task of parsing is formulated as an integer program. Our formulation does
not suffer from the curse of procedural exploration, that is typical for existing
split grammar parsers. It enables approximating globally optimal segmentations
by means of state-of-the-art optimization algorithms. We have established new
state-of-the-art level of performance on the ECP and Graz50 facade datasets.

As a direct extension of this work, we are considering learning the pairwise po-
tentials using the approach presented in [22], which uses Dual Decomposition and
that can accomodate the slaves defined in this paper (with modified costs). As
increasingly good results have recently been observed on the problem of parsing
rectified facade images, we see the relevance of addressing difficulties commonly
appearing in real life images. These include modeling three-dimensional geom-
etry of buildings and their projection on the image plane, as well as handling
occlusions (e.g., by cars, vegetation, pedestrians or other buildings).
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Fig. 4. Example parsing results on the ECP dataset (top) and on the Graz50 dataset
(bottom). Green lines separate sky from roof and roof from facade. Balconies are out-
lined in magenta, shops in yellow, and doors in cyan. Note the variety of alignment
patterns supported by the algorithm (top right). Typical errors are missed doors and
missed roof windows.
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