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ABSTRACT

Dislocation Dynamics (DD) simulations in the hypothesis of isotropic elasticity have proved great reli-
ability in order to predict the plastic behaviour of crystalline materials. However it is often the case at
high temperature (for instance in irradiated BCC iron) that the structural properties of a material will
be better described using full anisotropic treatment of the elastic interaction between dislocations. The
computation of the internal elastic forces is by far the most resources consuming step in DD simulations,
which is even more true for anisotropic elasticity in the absence of explicit Green’s function.

L. Dupuy, J. Soulacroix and M. Fivel showed that the approaches summarized in Yin [6] can be acceler-
ated using spherical harmonics expansions of the Stroh matrices. This feature was implemented in the
DD code OptiDis in order to power the anisotropic forces computation. Here we recall the formalism
and we discuss optimizations, performances as well as motivations for future developments.

ANISOTROPIC MODEL

The stress field created by a dislocation loop (b′, t′) at field point x is given by Mura’s formula [4]

σjs(x) = εngrCjsvgCpqwnb
′
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The nodal force fen acting at the extremities of a finite dislocation line (b, t) is obtained by integration
of the Peach-Koehler force (fPK = (σ(x) · b)× t(x)) over the target line, i.e.

(fen)α =
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where Nn=1,2 are linear shape functions. The cost of updating the nodal forces at each time step is
quadratic and involves the evaluation of 2 line integrals, therefore it is usually the bottleneck of DD
simulations. Moreover there does not exist an analytic closed form for the anisotropic elastic Green’s
function G. Recently Aubry et al. [2] used an integral representation of G and developped a fast method
based on spherical harmonic expansions in order to evaluate the double line integral semi-analytically.
On the other hand, past works [6] showed that the anisotropic stress field can be efficiently described
using the Stroh sextic formalism combined with (2) the Willis-Steeds-Lothe formula for the finite line.

Willis-Steeds-Lothe
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Figure 1: Notations for the stress created
by segment AB on a field point P .

where Stroh matrices Q and S [5] only depend
on Cijkl and τ . They are computed from the
eigenvectors of a 6 × 6 matrix N depending on
(nn) and (nm) where (ab)jk = aiCijklbl. The
notations are recalled fig 1 and the stress field
reads

σij (x, t,b) = Cijkluk,l (x, t,b)

In the collinear case (d = 0) the expression is
slightly more complicated but can be condensed
as follows
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The singularity in the limit r → 0 is currently handled using a simple cutoff parameter like the one
defined in [6].

Anisotropy ratio

The degree of anisotropy is quantified by the ratio A = 2C44/(C11 − C12). For the BCC α − Fe, this
ratio goes from A0K = 2.3 to A1200K = 7.1.

SPHERICAL HARMONIC ANALYSIS
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Figure 2: Stroh matrices components at (T = 25◦C) for θ ∈ [0, π] and φ ∈ [0, 2π].

Spherical harmonic analysis

Stroh matrices only depend on the orientation of
the source, i.e. X = X(θ, φ) (see fig 2) hence
they can be expanded into spherical harmonics.
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(3)
are the coefficients of the expansion.
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Figure 3: Accuracy of the expansion for
various temperatures.

Given that Stroh matrices are real valued the expansion reduces to

X ≈
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∑
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On the other hand depending on the symmetries of X in θ or φ some coefficients of the expansions
are known to be null (potentially a lot). Once implemented these simplifications lead to a significant
acceleration of the method (see fig 4).
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Figure 4: Theoretical number of flops involved in self force evaluation (left) and relative compu-
tational cost for ≈ 3000 segments based on CPU time (right).

The precomputation of the 2 integrals (3) is done exactly following the method described by Driscoll and
Healy [3], namely using an equispaced quadrature in φ and a gaussian quadrature in cos θ.

IMPLEMENTATION AND PERFORMANCES

Our experimentations were performed on the core program OptiDis whose data structure relies heavily
on the open source ScalFMM library [1]. The latter also provides the generic Fast Multipole algorithms.
OptiDis is a parallel version of NumoDis, it implements almost all functionalities of NumoDis while
providing a hybrid OpenMP/MPI paradigm and a cache-conscious data structure.
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Figure 5: Isotropic near- and farfield computational time balancing for a uniform distribution
of dislocation loops and increasing tree depth (left). An example of defects distribution and a
propagating Frank-Read source (right).

ONGOING & PERSPECTIVES

Ongoing

• Optimized expansion for hexagonal crystallographies

Perspectives

• Implementation of the farfield (either iso- or anisotropic)

• Efficient analytic integration of the expansion over the target segments

• Derivation of a consistent non-singular theory for the Stroh approach

REFERENCES

[1] Scalfmm: software library to simulate large scale n-body interactions using the fast multipole method,
developped @ hiepacs team, inria bordeaux.

[2] S Aubry and A Arsenlis. Use of spherical harmonics for dislocation dynamics in anisotropic elastic
media. Modelling and Simulation in Materials Science and Engineering, 21(6):065013, 2013.

[3] James R Driscoll and Dennis M Healy. Computing fourier transforms and convolutions on the 2-sphere.
Advances in applied mathematics, 15(2):202–250, 1994.

[4] Toshio Mura. Micro-mechanics of Defects in Solids, volume 3. Springer, 1987.

[5] AN Stroh. Steady state problems in anisotropic elasticity. J. math. Phys, 41(2):77–103, 1962.

[6] Jie Yin, David M Barnett, and Wei Cai. Efficient computation of forces on dislocation segments in
anisotropic elasticity. Modelling and Simulation in Materials Science and Engineering, 18(4):045013,
2010.

FUNDINGS

This work was supported by the French ANR grants ANR-10-COSI-0011 and the associate team FastLA.

In collaboration with CEA Saclay More videos & infos →


