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I. GAUSSIAN BEAM PROPAGATION

We have compute the propagation of a laser beam
through a sample of 7×7 cylinders of the photonics crys-
tal. The Maxwell equations are exactly solved and the
result is presented on Fig:1. The parameters used in the
simulation are:

• optical index n = 1.5

• wavelength λ = 500 nm

• cylinders radius R = 20λ

• photonic crystal period T = 5R

This simulation indicates that the laser beam can be
modeled by rays, a ray being the path of the light en-
ergy. The initial gaussian beam is split into many light
rays during propagation. It also indicates that the field
distribution is dominated by the transmitted rays as a
result of the low optical index of the cylinders.

II. RAY DYNAMICS

The ray dynamics is splitted in two part. At the n-step,
an incoming ray impact on a cylinder. It is first refracted
at the dioptrie air/glass then propagate into the cylinder
and finally is refracted at the dioptrie glass/air. This
path leads as seen on Fig:1 to the point Bp. (θBp

, θ1Bp
)

can be linked to (θAp
, θ1Ap

) by the set of equations:

θ1Bp
= −θ1Ap

(1a)

θ1Bp
= θAp

+ 2 arcsin





sin
(

θ1Ap

)
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where n is the optical index of the cylinders.
From the point Bp the ray propagate in air until it in-

tersects a new cylinder defining then the point Ap+1. The
couple (θAp+1 , θ

1
Ap+1

) is found with the help of equations:

fB(x) = tan(α)
[

x−R cos(θBp
)
]

+R sin(θBp
) (2a)

(xA(p+1)
− xc

p+1)
2 + (fB(xA(p+1)

)− ycp+1)
2 = R2 (2b)

with α the angle between the horizontal axis and the
ray. It verifies: α = θBp

+ θ1Bp
= θA(p+1)

+ θ1A(p+1)
.

(xc
p+1, y

c
p+1) are the cylinder coordinates at the (p+1)th

collision.
The Jacobian Jp of the total transformation

(θAp
, θ1Ap

) → (θAp+1 , θ
1
Ap+1

) is given by Jp = JAB
p .JBA′

p

where JBA′

is the Jacobian of the transformation
(θBp

, θ1Bp
) → (θAp+1 , θ

1
Ap+1

)

JBA′

p =

(

mn − 1 mn

2−mp 1−mp
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(3)

with

mp = −
1

cos[θBp
+ θ1Bp

− θAp+1 ]

ljump

R
(4)

where R is the cylinder radius and ljump the distance
between the points Bp and Ap+1.
JAB is the Jacobian of transformation (θAp

, θ1Ap
) →

(θBp
, θ1Bp

)

JAB
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In the Gauss conditions all Jacobians become indepen-
dent of n and the Jacobian of the total transformation J
reduced to:

JGauss =

(

2
n
t⋆ + 1− t⋆ 2(n−1

n
)− t⋆(n−2

n
)

−t⋆ 1− t⋆

)

(6)

where t⋆ = T/R is the normalized period of the crystal
(T is the crystal period, R is the cylinders radius).
The eigenvalues of the Jacobian in the Gauss condi-

tions are given by:

Λ± = 1 +
t⋆

n
− t⋆ ±

1

n

√

t⋆(n− 1)[(n− 1)t⋆ − 2n] (7)
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Figure 1: Propagation of a laser beam into a portion of the photonic crystal.

III. PERIOD OF THE BALLISTIC

TRAJECTORIES IN THE GAUSS CONDITIONS

AND QUASI-PERIODIC TRAJECTORIES;

From Eq:7 it is possible to find the period P (t⋆) of
the ballistic trajectories in the Gauss conditions. It can
be defined as the number of cylinders after which the
couple (θAp+P (t⋆)

, θA1
p+P(t⋆)

) is equal to (θAp
, θA1

p
). When

they are complexes the eigenvalues read:

Λ± = 1 +
t⋆

n
− t⋆ ± i

1

n

√

t⋆(n− 1)[2n− (n− 1)t⋆]

Their modulus is 1 (the map is area preserving). In
the eigenbase the map is given by:

(

θAp+P(t⋆)

θA1
p+P(t⋆)

)

EB

=

(

ei arg[Λ+] 0
0 ei arg[Λ−]

)P (t⋆) (
θAp

θA1
p

)

EB

where EB refers to the eigenbase
Finally we find that the period of the ballistic trajec-

tories in the Gauss conditions is:

P (t) =
2π

arctan[

√
t⋆(n−1)[2n−(n−1)t⋆]]

n−t⋆(n−1)

(8)

It is plotted in Fig:2 where we compare numerical re-
sults in the Gauss conditions and the analytical formula.
We can notice an excellent agreement between the nu-
merical results (green dots in Fig:2) and the analytical
result (plain line in Fig:2).

Figure 2: Period of the ballistic trajectories versus the nor-
malized crystal period t⋆ = T/R. Dots are numerical results
whereas the plain line is the analytical result eq.(8).

The period of the oscillations P (t⋆) is a real number
whereas the number of cylinders is of course an integer
number. This leads to quasi-periodicity. As a matter
of fact, in the eigenbase, for example θAn

writes θAn
=

θA0e
2iπ n

P (t⋆) where θA0 is the initial value. If we now
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write P (t⋆) = I(t⋆) − F (t⋆) where I(t⋆) is the nearest
integer from P (t⋆) and F (t⋆) the fractional part. An
easy way to understand the origin of quasi-periodicity
is to assume that F (t⋆) ≪ I(t⋆). Then we can write

θAn
= θA0e

2iπ n
I(t⋆) (1+2iπ nF (t⋆)

I(t⋆)2 ). The first term e2iπ
n

I(t⋆)

is a periodic function. The second term (1 + 2iπ nF (t⋆)
I(t⋆)2 )

leads to a slipping in the phase space and the trajectory
appears as quasi-periodic. It is illustrated by the Fig:3
for t⋆ = 3.2 and t⋆ = 4.2. The period is P (3.2) = 3.84
then I(3.2) = 4 and F (3.2) = 0.16 and P (4.2) = 3.17
with I(4.2) = 3 and F (4.2) = −0.17. After respectively
4 or 3 steps the point An+P (t⋆) is close to the point An

but shift from a quantity due to F (t⋆) which leads to
quasi-pepiodicity.

Figure 3: Phase space for t⋆ = 3.2 and t⋆ = 4.2 in Gauss
conditions. Periods are respectively P (3.2) = 3.84 and
P (3.2) = 3.17. This leads to ellipsis in the phase space and
quasi-periodicity of the ray trajectory in the crystal.

IV. EXISTENCE OF THE ISLANDS OF

STABILITY FOR t⋆ < 2n

n−1

Ballistic trajectories in the crystal are characterized
by closed curves in the phase space (stability islands).
Stability islands on their own are characterized by com-
plex eigenvalues of the Jacobian. Thus ballistic trajecto-
ries can propagate around the crystal axes (θA = 0, π/2
mod [π]) if t⋆ < 2n

n−1 and around the bisectrixes (θA =

π/4 mod [π]) if t⋆
√
2 < 2n

n−1 . This give the threshold
above which islands of stability no more exist and above
which the motion of light in the crystal is only chaotic.

V. LYAPUNOV EXPONENT BEHAVIOR AT

LARGE t⋆

Here we show that the Lyapunov exponent grows
asymptotically as λ ∼ ln(t⋆).

For large normalized period of the crystal t⋆ ≫ 1 colli-
sions are uncorrelated. So the Jacobian become indepen-
dent of the step number. Moreover the incident angle θ1A
is close to 0 mod π . Then JAB reduces to:

JAB =

(

1 0
0 −1

)

(9)

andmn reduces tom = − ljump

R
. The distance between

two collisions is given by the mean free path ljump = l̄ =
1

ndσ
= (t⋆)2R

2 where nd is the density of disks nd ∼ 1/T 2

(T is the crystal period) and σ the cross section σ = 2R.
The Jacobian J of the total transformation J =

JAB.JBA′

is:

J =

(

m− 1 m
m− 2 m− 1

)

(10)

The eigenvalues are given by: Λ± =
Tr(J)±

√
Tr(J)2−4

2 .
Within the assumption t⋆ ≫ 1 the Lyapunov exponent
is λ = ln(Λ+) ∼ ln(t⋆). So asymptotically it grows as
ln(t⋆). Of course the same dependence is found if ex-
panding the positive eigenvalue of the Jacobian Eq:7.

Figure 4: Lyapunov exponent divided by ln(t⋆) versus the
normalized crystal period t⋆ for the refractive Lorentz gas
(plain line) and the reflective Lorentz gas (dashed line).

VI. EXPERIMENTAL RESULTS

We have performed experiments to illustrate that light
propagation in the photonic crystal is highly sensitive to
the initials conditions. We shine a photonic crystal made
of 20×20 glass cylinders with a laser beam (cylinder ra-
dius ≈ 2 mm, photonic crystal period T=1.1 cm leading
to t⋆ = 2.2, glass refractive index n=1.78, laser wave-
length λ=473 nm) . The beam diameter is on the order
of 2 mm. It corresponds to a collection of light rays. The
dynamics of each of them is described by our model. We
start with initial conditions θ = 24◦ and θ1 = 24◦. In
that case, initial conditions are such that all the laser
beam follow a regular path (see Fig: 5)-a). It oscillates
with a period close to 4 in agreement with the value given
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by formula 8 P (t⋆ = 2.2, n = 1.78) = 4.09. We only in-
crease the incident angle by 3◦ (θ1 = 37◦). The laser
beam starts to follow a regular path (see Fig: 5)-b) but
leave the crystal axis and finally diffuse in the entire crys-

tal. By increasing again the initial conditions θ1 = 34◦,
the laser beam splits after the first cylinder in several
beams that diffuse in the photonic crystal.
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a) b) c)

Figure 5: Experimental results showing propagation of a laser beam in the refractive Lorentz gas. The cylinder radius is
R = 0, 5 cm, the crystal period is T = 1.1 cm leading to t = 2.2. a) The initial conditions are θ = 24◦ and θ1 = 24◦. The
laser beam follows a regular path oscillating back and forth around the crystal axis. b) The initial conditions are θ = 24◦ and
θ1 = 27◦.The laser beam starts to follow a regular path but after hitting 4 cylinders it leaves the crystal axis and diffuses in
the entire crystal. c) The initial conditions are θ0 = 24◦ and θ10 = 34◦.The laser beam splits in several beams that diffuse in
the photonic crystal.


