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The ray dynamics in a photonic crystal was investigated. Chaos occurs for perfectly periodic
crystals, the rays dynamics being very sensitive to the initial conditions. Depending on the filling
factor, the ray dynamics can exhibit stable paths near (fully) chaotic motion. The degree of chaotic-
ity is quantified through the computation of Lyapunov exponents. It results that the more diluted
is the geometry, the more chaotic is the dynamic. Therefore, despite the perfect periodicity of the
geometry, light transport is a diffusive process which can be tuned from normal diffusion (brownian
motion) to anomalous diffusion because of the existence of Lévy flights.
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Photonic crystals, i.e. artificial periodic structures ex-
hibiting a photonic band gaps [1], have been studied at
very different angles since the pioneering works of S. John
and E. Yablonovitch [2, 3]. From the sole effect of act-
ing like mirrors, the engineering of band structures and
the recognition that they behave as metamaterials [4],
they have shown a wide range of physical phenomena.
However, they have been hardly considered in the high
frequency domain: it is indeed at most the first three
bands which are considered for band structure engineer-
ing or effective properties.
In this work, we aim at initiating a new direction of re-
search by considering the propagation of light in peri-
odic dielectric structures when the wavelength is very
small with respect to the scatterers. In this limit, band
diagrams become highly complicated because of a huge
number of eigenmodes. This is the domain of wave chaos
where puzzling phenomena such as random lasing [5] or
localization [6, 7] may be expected. Wave chaos is not
restricted to optics and electromagnetism but has been
extensively studied in quantum mechanics [8] where it
is known as “quantum chaos”. Many quantum systems
exhibit chaotic footprints: hydrogen atoms in magnetic
field [9], quantum chaotic cavities (quantum dots bil-
liards) [10, 11] or chaotic quantum scattering [12]. In
electromagnetism or optics, most of the studies dealt with
chaotic cavities [5, 13–17] but only few of them with open
chaotic systems such as optical fibers [18] or photonic
crystals[19, 20]. In the case of a two dimensional pho-
tonic crystal, chaos is revealed by the help of the statis-
tical properties of the energy level spacing [19, 20]. They
are computed from the eigenfrequencies of the Helmholtz
equation solved with proper boundary conditions. These
approaches might indicate that light dynamics in a 2D
photonics-crystal is “quasi-integrable” [20] meaning that
the light dynamics exhibits regular and chaotic trajecto-
ries characterized through different level-spacing distri-
butions. However, the dynamical properties of light are

not a direct output of such an approach. Here we show
that the dynamics of light and the transition from reg-
ular to chaotic trajectories can be understood with the
help of light rays. We show that this transition is im-
printed in the dynamics of the transmitted rays, the dy-
namics of the reflecting rays being always chaotic. From
the knowledge of the dynamics, we are able to compute
the diffusive properties of light in the photonic crystal.
We show a transition from a brownian diffusion to an
“anomalous” regime.

Figure 1: A small portion of the photonic crystal and nota-
tions used in the text. ”Ap” referred to the pth incoming point
on the cylinder surface at the pth step, ”Bp” is the pth point
at the cylinder surface after refraction. α denotes the angle
between the ray and the horizontal axis. θAp

(resp. θBp
) the

angle of the point Ap (resp. Bp) and the horizontal axis. θA1
p

(resp. θB1
p
) the angle of the point Ap (resp. Bp) the angle

corresponding to the direction under which the ray intersect
the cylinder. The dashed red lines are the axis of symmetry
of the crystal.

The photonic crystal under study is depicted in Fig.
1: it is a biperiodic set of dielectric cylinders, in which
the trajectories of a ray are studied, by applying Snell-
Descartes relations at the boundary of the cylinders. If
the cylinders are perfectly reflecting instead of trans-
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parent then the system is nothing else than a periodic
Lorentz gas. It has an extensive bibliography both in the
physical and mathematical literatures (see e.g. [21] and
references hereby). It consists in an ensemble of noninter-
acting point particles moving freely with elastic collisions
on fixed scatterers (the cylinders). The photonic billiard
can be seen as the refractive extension of the periodic
Lorentz gas. Upon this analogy a light ray represents a
particle trajectory and, instead of having infinite walls,
the repulsive potential is finite with a value given by the
optical index of the cylinders. Whereas there exists a
huge literature about the periodic Lorentz gas with hard-
wall scatterers, we have not been able to find references
on the ”refractive periodic Lorentz gas” [22]. The Lorentz
gas is an unfolding of the Sinai Billiard[23] for which the
dynamics is always chaotic,whatever the photonic crystal
parameters, making impossible long-range precision con-
cerning a single trajectory. So, despite its deterministic
character, this system can only be studied from a statis-
tical point of view. Transport is diffusive and the square
geometry is known [24, 25] to exhibit superdiffusion pro-
cesses (also called anomalous diffusion) i.e. diffusion for
which the mean square displacement < r2 > grows faster
than linearly with time. In the past few years, superdif-
fusion gained an increasing interest in optics [28] with the
observation of weak localization [29] in disordered sam-
ples designed to exhibit anomalous diffusion [30]. Our
photonic billiard, or refractive Lorentz gas, shows a richer
dynamics as compared to the Lorentz gas and the main
result here is that the geometry studied in this paper also
exhibits diffusion processes that can be tuned from nearly
ballistic to brownian, including anomalous diffusion. The
letter is organized as followed. First the dynamics of
the refractive Lorentz gas is discussed through Poincaré
surfaces of section. The structure exhibits soft chaos,
i.e. regular paths (also called ballistic paths), as well as
chaotic motion as a consequence of its quasi-integrable
dynamics[33]. Above a threshold value of the normalized
period t⋆ = T/R where T is the crystal period and R the
cylinder radius (cf. fig. 1 for notations), the dynamics
becomes completely chaotic. Chaos strength is quantified
through the computation of Lyapunov exponents. Diffu-
sive properties are computed, showing that the refractive
Lorentz gas exhibits superdiffusion due to the existence
of Levy flights.

The dynamical properties of rays in the crystal are
now described. Numerical computations were performed
with an optical index of the cylinders equal to n = 1.5,
which leads to a coefficient of reflection of the order of
10 %. In Fig:1 of the Supplementary Material (SM I),
we show the propagation of a laser beam computed by
solving rigorously the Maxwell equations into the pho-
tonic crystal. Because of the low optical-index contrast
between the cylinder and the surrounding medium, light
propagation is dominated by the transmitted rays. So we
focus only on rays which are refracted and thus trans-

Figure 2: Poincaré surface of section for four values of the
crystal photonic period T normalized by the circle radius
R, t⋆ = T/R. They result from 100 initial conditions, each
evolved for 200 steps. For small normalized period (i.e. low
density) the Poincaré surface of section are dominated by bal-
listic paths (t⋆ = 2.2) whereas the dynamics is completely
chaotic for t⋆ higher than t⋆ = 6 here. The area of islands
of stability decreases when increasing t⋆ (examples are given
for t⋆ = 3 and t⋆ = 5). For t⋆ = 5 islands around θA = π/4
mod [π] no more exit because t⋆

√
2 > 2n

n−1
as explain in the

text.

mitted through the cylinders. . The ray dynamic has
a Hamiltonian formulation in terms of the eikonal equa-

tion: d
ds

(

ndγ
ds

)

= ∇n [31], therefore the phase space is

four dimensional. Because n is constant inside the cylin-
der, the solutions to this equation, i.e. the ray trajecto-
ries, are piecewise linear. In order to characterize them,
we compute the Poincaré surface of section. Poincaré
surface of section are a convenient way to represent as
a 2D-graph a higher dimensionality phase-space by rep-
resenting continuous evolution in a discrete way. They
preserve informations about the dynamics[32]. As an ex-
ample, periodic orbits in the phase space appears as pe-
riodic points in the Poincaré surface of section[33]. For
the refractive Lorentz gas, the Poincaré surface of section
is the set of points (θAp

, θA1
p
) defined by the intersection

of the ray with the boundary of a cylinder: θAp
is the an-

gle between the horizontal axis and the light ray when it
crosses the boundary of the cylinder and θA1

p
is the angle

between the incident ray and the normal to the cylinder
boundary (see Fig:1). The Poincaré map is constructed
in two steps (see Supplementary Materials II) :

1. An incident ray intersects a cylinder, defining a
point Ap given by the system of equations (2a and
2b),
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2. The ray is refracted twice at the boundary, giving
the point Bp. The set of equations (1a and 1b)
describes these refraction steps.

The ray propagates in air until it hits a new cylinder, this
gives Ap+1 and the process goes on. The equations are
solved numerically in order to compute the ray trajectory
in the whole crystal.

Examples of Poincaré surfaces of section are given in
Fig:2 for different values of the normalized period t⋆ (t⋆

varying from 2.2 to 6). It will be shown in the following
that this parameter governs the stability properties of the
ray dynamics.

The most prominent point is the existence of islands of
stability characterized by closed curves in the Poincaré
surface of section, surrounded by a chaotic sea. Islands
of stability characterize ballistic trajectories in the crys-
tal i.e. rays that oscillate around the axis of symmetry
of the crystal. Cylinders act as cylindrical lenses: they
focus rays in the vicinity of the axis of symmetry of the
crystal. As a result, these trajectories are periodic or
quasi-periodic in real space as explained in the SM (III).
The area covered by these islands of stability decreases
when t⋆ increases and they reduce to single points above
the threshold t⋆thres >

2n
n−1

as shown in the SM (IV).
In the example of Fig:2, the threshold is t⋆thres = 6 for
n = 1.5. At small angles, the islands of stability are el-
lipsis. This corresponds to Gauss conditions: sin(θ) ∼ θ
and cos(θ) ∼ 1. When the angles increase, the islands
of stability are deformed because of non-linear effects,
although rays still propagate along the crystal axis. At
the edges of the transition between the islands of sta-
bility and the chaotic sea, Cantori [26] can be observed
(see Fig:3) because of an increase of non-linear effects:
this is a direct consequence of KAM theory [33]. Again
rays propagate along the crystal axis. When non-linear
effects still increase rays leave crystal axis and motion is
completely chaotic with sometimes segments of ballistic
motion. In that case rays diffuse in the entire crystal.
We conclude that the ”quasi-integrable” character of the
light dynamics in a photonic crystal [20] is a consequence
of the dynamical properties of the transmitted rays.

Figure 3: Details of Fig:2 for t⋆ = 3 showing Cantori sur-
rounded by the chaotic sea.

The strength of chaos, i.e. the sensitivity to initial
conditions, can be quantified through the computation
of Lyapunov exponents. In Hamiltonian systems with
two degrees of freedom, the Lyapunov exponents come
in pairs with a null sum because of area preservation in
the phase-space [34] (this is Liouville theorem). The pos-
itive exponent denoted λ, and called in the following Lya-
punov exponent, quantifies the exponential sensitivity to
initial conditions. The Lyapunov exponents λ were com-
puted per step, that is, each time a ray hits a cylinder.
Because of islands of stability the dynamics is clearly not
ergodic and the Lyapunov exponent may depend on ini-
tial conditions. The Lyapunov exponent takes low value
for ballistic paths, as expected (blue color in the lower
inset of Fig: 4) and the value sharply increases outside
the islands of stability. As shown in Fig:2, the size of the
islands of stability decreases as t⋆ increases.

Above this threshold, the Lyapunov exponent is al-
most constant and large, whatever the initial conditions
are. In Fig:4, the Lyapunov exponents averaged over the
initial conditions are represented (plain line). The aver-
aged exponents increase monotonically when increasing
the normalized period t⋆. No apparent discontinuity in
the behavior of the Lyapunov exponent is seen near the
threshold. Its value is smaller than the Lyapunov expo-
nent for the reflective Lorentz gas (dashed line in Fig:4)
but their behavior with t⋆ is similar. As a matter of
fact for large normalized period, both of them grow as
λ ∼ ln(t⋆) [see [21] for reflective Lorentz Gas and the in
the SM (V) for the refractive Lorentz Gas]. This is due to
the fact that for large t⋆ refractions at cylinders become
uncorrelated and the distance between two refractions is
given by the mean free path which is identical for both
reflective and refractive periodic Lorentz gases. As an ex-
ample, the averaged Lyapunov exponents is λ = 16.7 for
t⋆ = 6 (see Fig:4). This value means that, starting with
an initial accuracy of ∆θ10 = 10−14 radian for the initial
angle, after hitting only two cylinders the uncertainty on
the angle becomes ∆θ12 = 10−14 × e2×16.7 = 3.2. Thus,
after hitting only two cylinders, the value of the angle
θ1 could be any value in [−π, π]. We have performed ex-
periments as shown in the SM (VI). They clearly demon-
strate this exponential sensitivity to the initial conditions
that can lead to the diffusion of the laser beam into the
photonic crystal.

In order to characterize the diffusive properties of light
in the photonics crystal, the propagation of a bundle of
rays is computed. The rays are initially launched at the
center of the photonic crystal with random initial condi-
tions (under a uniform distribution). After Nmax steps
(i.e. each ray hints Nmax times a cylinder), the density of
rays (i.e. the number of rays per unit area) is plotted. For
low values of t⋆ (see Fig: -a) for t⋆ = 3) the dynamics is
barely chaotic with stability islands covering a large part
of the Poincaré surface of section (Fig: 2) and character-
ized by a low-value of the Lyapunov exponent (Fig: 4).
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Figure 4: Lyapunov exponent versus the normalized period t⋆

of the crystal. The plain line is the Lyapunov exponent for the
refractive Lorentz gas whereas the dashed blue curve corre-
sponds to the reflective Lorentz gas. Lyapunov exponents are
given per step unit. The inset shows the Lyapunov exponent
for the refractive Lorentz gas as a function of t⋆ and of the ini-
tial angle between the ray and the horizontal axis (launching
angle). It takes low values (blue color) for launching angles
around the crystal axis of symmetry. For t⋆ > t⋆thres = 6 the
Lyapunov exponent is independent of the launching angle.

Figure 5: Rays density after 300 simulation steps for a) t⋆ = 3,
b) t⋆ = 5 and c) t⋆ = 6. The simulation was running with
3.104 rays starting from (0,0) with random initial conditions
under a uniform distribution.

In that case one can clearly notice a non-isotropic density
of rays. Most of the rays concentrate in 8 spots localized
on the principal axis of the photonics crystal. These rays
propagate in the photonic crystal through regular trajec-
tories. When t⋆ is above the threshold t⋆ ≥ t⋆thres, the
dynamics only admits chaotic motion (see Fig:-c) with
t⋆ = 6) and the density of rays becomes isotropic with
a maximum at the center of the photonic crystal. The
density of rays follows a Gaussian distribution law, which
indicates that rays undergo a brownian motion. For in-
termediate values of the normalized period t⋆, the den-

sity of rays is characterized by spots on the crystal axis
plus an isotropic distribution which is maximum at the
photonic crystal center. For this intermediate situation,
some rays follow regular paths which lead to the spots in
the rays density and some others follow chaotic motion
giving the isotropic distribution.

Hamiltonian systems are known to lead to superdiffu-
sion [24]. It has been shown that in a two-dimensional
periodic potential [24, 25] the mean square displacement
varies as < r

2
n >∼ tα as a results of ballistic flights, ran-

dom motion and the ”sticky” barriers formed by Cantori
[27]. The mean square displacement was computed for
an ensemble of 104 rays with initial conditions chosen
randomly (with an uniform distribution) and the expo-
nent α of the diffusion law was determined. It is plot-
ted on Fig:6 as a function of the normalized period t⋆.
Its values are larger than 1 when the dynamics contains
chaotic regions and islands of stability which confirms the
superdiffusive behavior. It reaches values close to 2 when
the gap between the cylinders is small (t⋆ ∼ 2) i.e. when
the dynamic is dominated by islands of stability and it
decreases to 1 as the area of stability islands decreases.
For t⋆ > 6, that is to say when the dynamic is completely
chaotic, diffusion is close to normal. Nevertheless, the ex-
ponent remains slightly larger than 1 because of ballistic
paths exactly along the crystal principal axis.

Figure 6: Exponent of the diffusion law defined by the law
< (r − r0)

2 >= Dαt
α versus the normalized period t⋆ of

the crystal. The inset is a zoom on the interesting region
where islands of stability exit t⋆ ∈ [2, 6].104 rays was used to
compute the exponent of the diffusion law.

In the high frequency limit, light propagation in a
photonic crystal exhibits complex propagation patterns
with regular paths and chaotic motion. For this limiting
case, light transport is best described as a diffusive pro-
cess that can be tuned from a superdiffusive regime to a
brownian motion. An interesting feature of the system is
its simplicity, allowing for experimental investigations of
wave chaos footprint in optics. It paves the way to stud-
ies about the quantum aspects of light such as quantum
correlations and entanglement in the case of a chaotic
propagation.
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riaga. J. Phys: Conf. Ser. 475, 012009 (2013)
[21] P. Gaspard, Chaos, scattering and statistical mechanics

(Cambridge University Press, Cambridge UK, 1998).
[22] We use the terminology “photonic billiard” or “refractive

Lorentz gas” as synonyms throughout the letter.
[23] Ya.G. Sinai, Russ. Math. Surv. 25, 137 (1970).
[24] T. Geisel, A. Zacherl, G. Radons Phys. Rev. Lett. 59,

2503-2506 (1987).
[25] J. Klafter,G. Zumofen Phys. Rev. E 49, 4873-4877

(1994).
[26] i.e. small islands of quasi-periodic trajectories showing

self-similar patterns.
[27] S. Denisov,J. Klafter,M. Urbakh Phy. Rev. E 66, 046217

(2002).
[28] P. Barthelemy ,J. Bertolotti,D.S. Wiersma Nature 453,

495-8 (2008).
[29] M. Burresi et al. Physical Review Letters 108, 2-5 (2012).
[30] J. Bertolotti et al. Advanced Functional Materials 20,

965-968 (2010).
[31] L. D. Landau and E. M. Lifshitz, Mechanics (Third Edi-

tion, Pergamon Press, 2000)
[32] Chapter “Discrete Time Dynamics”, in P. Cvitanović, R.
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