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ABSTRACT

Among all the steps involved in DD simulations, the computation of the internal elastic forces and en-
ergy are by far the most resources consuming. However, since these are long-ranged and fast decreasing
interactions, hierarchical algorithms like the Fast Multipole Method (FMM) are well suited for their fast
evaluation.
The relatively low accuracy required for the interaction forces between dislocations brought us to develop
a more efficient approximation method for the farfield. On the other hand, the nearfield interactions are
still evaluated analytically, which required a rather performant implementation (AVX, GPU...).

Regarding parallelism, our code benefits from a hybrid OpenMP/MPI paradigm and a cache-conscious
datastructure. Finally, an accurate handling of topological elements intersecting the structure of the
octree was considered. The latter feature implied careful modifications of the P2M/L2P operators in
order to deal with shared memory model of parallelism.

MODEL

The motion of dislocations is ruled by a prescribed mobility law (e.g. viscous glide) depending on the
internal (i.e. created by dislocations themselves) and external (i.e. applied by user) contributions on the
nodal forces.
The isotropic elastic stress field created by a dislocation loop (b′, t′) at point x in space is given by
Mura’s formula [4]
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µ

8π
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where (µ, ν) are the Lamé coefficients and
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with R(x,y) = |x−y|. The nodal force fen acting at the extremities of a finite dislocation line (b, t) is
obtained by integration of the Peach-Koehler force (fPK = (σ(x) · b)× t(x)) over the target line, i.e.
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where Nn=1,2 are linear shape functions. While the isotropic elastic interaction energy is given by
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The cost of updating the nodal forces (and the energy) at each time step is quadratic and involves the
evaluation of 2 line integrals, therefore it is usually the bottleneck of DD simulations.

A NEW FFT-ACCELERATED FMM

Fast Multipole DD

The idea of the FMM is to balance the computational cost of near and farfield interactions by approxi-
mating the farfield and rely on a tree structure (see figure 1) to perform all computations. In our case we
consider the interaction potential R(x,y) = {R,ij(x,y)}i,j=1..3 and apply the interpolation formula

R(x,y) ≈
∑
|α|≤p

Sα(x)
∑
|β|≤p

R(x̄α, ȳβ)Sβ(y)

where x̄α and ȳβ denote 2 sets of interpolation nodes in 2 well separated clusters containing x and y.
S denotes a polynomial interpolator (either Lagrange or Chebyshev).
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Figure 1: Plop.
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Figure 1: Tree structure with operators.

The farfield approximation consists in 3 steps:
P2P Analytical evaluation of the nearfield.

P2M/L2P Integration of polynomial interpola-
tors on all leaf cells returns expansion:

Mβ =

∮
(C)

Sβ(y)dy

M2M/L2L Transfer expansions between levels.
M2L Transfer expansions between cells in inter-
action by applying

Lα = RαβSβ

Both stress and energy expansions share the same M2L operators Rαβ, but the extra derivation involved
in the stress field is applied to the interpolator. This results in a slightly lower accuracy but less M2L
operations to be performed (see figure 2).
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Figure 1: Accuracy of the nodal force evaluation for different interpolation schemes with respect to
the interpolation order. The topological configurations are illustrated figure ??.

1

Approach OFt OWt OF+Wm

R,ijm 45 − 10 + 6

R,ij∇m 21 36 6

(R,ij|R,pp)∇m 12 36 7

Figure 2: Accuracy of various FMM schemes (left) and their relative costs (right).

Acceleration by Fast Fourier Transform (FFT)

Even though the Chebyshev-based FMM [3] provides a very accurate algorithm it is very expensive in terms
of memory and CPU time, namely O(p6) for the M2L step. Thus a new interpolation scheme based on
an equispaced grid (Lagrange) was considered. In this approach Rαβ is Toeplitz since R = R(|x−y|).
As illustrated below, Rαβ can be seen as a convolution and applied in Fourier space with a linear cost.

If R=

a b c
d a b
e d a

 , then RX=FFT−1(FFT(C0) : FFT(X)) with C0 =
[
a b c e d

]

The scheme remains stable and sufficiently accurate in the scope of DD simulations (min. accuracy on
force computation ≈ 10−3), while dramatically decreasing the computational cost of the M2L, namely
to O((2p− 1)3). Let p = 5 then in double precision the memory required for the M2L equals:

316× (2× 5− 1)3 × 7× (2× 8) ≈ 25 MBytes

IMPLEMENTATION AND PERFORMANCES

Our experimentations were performed on the core program OptiDis whose data structure relies heavily on
the open source ScalFMM library [1]. The latter also provides the generic Fast Multipole algorithms. Op-
tiDis implements its own dislocation specific P2M/L2P routines involving exact integration over segments
as well as analytic expressions for nearfield taken from Arsenlis et al [2].
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Figure 3: Near- and Farfield computational time balancing for a uniform distribution of disloca-
tion loops and increasing tree depth (left). An example of defects distribution and a propagating
Frank-Read source (right).

ZR: CLEAR BAND CHANNELS

One of the main goals of OptiDis project was to simulate the formation of clear band channels in Zir-
conium. Therefore we considered many defects (dislocation loops) located either in the basal or the
prismatic plane and activated the motion of many Frank-Read sources (b =< 1, 1,−2, 0 >) by applying
an external stress state to the grain (≈ 100MPa).
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Figure 4: Evolution of 6 screw Frank-Read sources (top) inside a grain of Zr with a large density
of defects (d = 1.1022m−3). Elementary events (bottom): (a) double jog (b) dissociation.
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