OptiDis: A parallel Fast Multipole Dislocation Dynamics code
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[1]: HiePACS team project, Inria Bordeaux -Sud-Ouest, 200, rue Vieille Tour 33405 Talence Cedex France | [START_REF] Arsenlis | Enabling strain hardening simulations with dislocation dynamics[END_REF]: Service de Recherches Métallurgiques Appliquées, CEA-Saclay, 91191 Gif-sur-Yvette, France | [START_REF] Fong | The black-box fast multipole method[END_REF]: Mechanical Engineering, Stanford University, CA, USA ABSTRACT Among all the steps involved in DD simulations, the computation of the internal elastic forces and energy are by far the most resources consuming. However, since these are long-ranged and fast decreasing interactions, hierarchical algorithms like the Fast Multipole Method (FMM) are well suited for their fast evaluation. The relatively low accuracy required for the interaction forces between dislocations brought us to develop a more efficient approximation method for the farfield. On the other hand, the nearfield interactions are still evaluated analytically, which required a rather performant implementation (AVX, GPU...).

Regarding parallelism, our code benefits from a hybrid OpenMP/MPI paradigm and a cache-conscious datastructure. Finally, an accurate handling of topological elements intersecting the structure of the octree was considered. The latter feature implied careful modifications of the P2M/L2P operators in order to deal with shared memory model of parallelism.

MODEL

The motion of dislocations is ruled by a prescribed mobility law (e.g. viscous glide) depending on the internal (i.e. created by dislocations themselves) and external (i.e. applied by user) contributions on the nodal forces. The isotropic elastic stress field created by a dislocation loop (b , t ) at point x in space is given by Mura's formula [START_REF] Mura | Micro-mechanics of Defects in Solids[END_REF] 

σ ij (x) = µ 8π ((A ij )(x) + (A ji )(x) + 2 1 -ν (B ij -δ ij B pp )(x))
where (µ, ν) are the Lamé coefficients and

(A ij )(x) = (C ) R ,ppm (x, y)ε jmk b k t i dy (B ij )(x) = (C ) R ,ijm (x, y)ε nmk b k t n dy with R(x, y) = |x -y|.
The nodal force f e n acting at the extremities of a finite dislocation line (b, t) is obtained by integration of the Peach-Koehler force (f

P K = (σ(x) • b) × t(x)) over the target line, i.e. (f e n ) α = (C) ε αβγ σ βp b p t γ N n (x)dx
where N n=1,2 are linear shape functions. While the isotropic elastic interaction energy is given by

E(C , C) = - µ 8π (C) (C ) R ,kk (b i dx i b j dx j - 2µ 1 -ν (b i dx j b i dx j -b j dx i b i dx j ))+R ,ij 2µ 1 -ν b j dx k b i dx k
The cost of updating the nodal forces (and the energy) at each time step is quadratic and involves the evaluation of 2 line integrals, therefore it is usually the bottleneck of DD simulations.

A NEW FFT-ACCELERATED FMM

Fast Multipole DD

The idea of the FMM is to balance the computational cost of near and farfield interactions by approximating the farfield and rely on a tree structure (see figure 1) to perform all computations. In our case we consider the interaction potential R(x, y) = {R ,ij (x, y)} i,j=1..3 and apply the interpolation formula

R(x, y) ≈ |α|≤p S α (x) |β|≤p R(x α , ȳβ )S β (y)
where xα and ȳβ denote 2 sets of interpolation nodes in 2 well separated clusters containing x and y. S denotes a polynomial interpolator (either Lagrange or Chebyshev). The farfield approximation consists in 3 steps: P 2P Analytical evaluation of the nearfield.

P 2P ↑ M 2M/L2L ↓ M 2L ↑ P 2M/L2P ↓
P 2M/L2P Integration of polynomial interpolators on all leaf cells returns expansion:

M β = (C)
S β (y)dy M 2M/L2L Transfer expansions between levels. M 2L Transfer expansions between cells in interaction by applying

L α = R αβ S β
Both stress and energy expansions share the same M2L operators R αβ , but the extra derivation involved in the stress field is applied to the interpolator. This results in a slightly lower accuracy but less M2L operations to be performed (see figure 2). interpolation order: p relative error 
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Acceleration by Fast Fourier Transform (FFT)

Even though the Chebyshev-based FMM [START_REF] Fong | The black-box fast multipole method[END_REF] provides a very accurate algorithm it is very expensive in terms of memory and CPU time, namely O(p 6 ) for the M2L step. Thus a new interpolation scheme based on an equispaced grid (Lagrange) was considered. In this approach R αβ is Toeplitz since R = R(|x -y|).

As illustrated below, R αβ can be seen as a convolution and applied in Fourier space with a linear cost. The scheme remains stable and sufficiently accurate in the scope of DD simulations (min. accuracy on force computation ≈ 10 -3 ), while dramatically decreasing the computational cost of the M2L, namely to O((2p -1) 3 ). Let p = 5 then in double precision the memory required for the M2L equals:

316 × (2 × 5 -1) 3 × 7 × (2 × 8) ≈ 25 MBytes

IMPLEMENTATION AND PERFORMANCES

Our experimentations were performed on the core program OptiDis whose data structure relies heavily on the open source ScalFMM library [START_REF]Scalfmm: software library to simulate large scale n-body interactions using the fast multipole method[END_REF]. The latter also provides the generic Fast Multipole algorithms. Op-tiDis implements its own dislocation specific P2M/L2P routines involving exact integration over segments as well as analytic expressions for nearfield taken from Arsenlis et al [START_REF] Arsenlis | Enabling strain hardening simulations with dislocation dynamics[END_REF]. 
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 12 Figure 1: Accuracy of the nodal force evaluation for different interpolation schemes with respect to the interpolation order. The topological configurations are illustrated figure ??.

  RX=FFT -1 (FFT(C 0 ) : FFT(X)) with C 0 = a b c e d
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 13 Figure 3: Near-and Farfield computational time balancing for a uniform distribution of dislocation loops and increasing tree depth (left). An example of defects distribution and a propagating Frank-Read source (right).

Figure 4 :

 4 Figure 4: Evolution of 6 screw Frank-Read sources (top) inside a grain of Zr with a large density of defects (d = 1.10 22 m -3 ). Elementary events (bottom): (a) double jog (b) dissociation.