
HAL Id: hal-01095176
https://hal.science/hal-01095176

Submitted on 22 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling Data Processing for Interactive Scores Using
Coloured Petri Nets

Jaime Arias, Myriam Desainte-Catherine, Camilo Rueda

To cite this version:
Jaime Arias, Myriam Desainte-Catherine, Camilo Rueda. Modelling Data Processing for Interactive
Scores Using Coloured Petri Nets. 14th International Conference on Application of Concurrency to
System Design, Jun 2014, Tunis, Tunisia. �10.1109/ACSD.2014.23�. �hal-01095176�

https://hal.science/hal-01095176
https://hal.archives-ouvertes.fr

Modelling Data Processing for Interactive Scores
Using Coloured Petri Nets

Jaime Arias, Myriam Desainte-Catherine
Univ. Bordeaux, LaBRI, Bordeaux, F-33000, France

CNRS, UMR 5800, Bordeaux, F-33000, France
IPB, LaBRI, Bordeaux, F-33000, France
Email: {jaime.arias, myriam}@labri.fr

Camilo Rueda
Departamento de Electrónica y

Ciencias de la Computación
Pontificia Universidad Javeriana

Cali, Colombia
Email: crueda@javerianacali.edu.co

Abstract—I-score is a system for the composition and ex-
ecution of interactive multimedia scores. It uses Hierarchical
Time Stream Petri Nets (HTSPN) to build an execution model
of the scores. Nowadays, composers have increasingly needed
to represent and manipulate complex data in their multimedia
scenarios. However, HTSPN formalism does not allow to handle
data. In this work, we propose a model to execute interactive
multimedia scores based on Coloured Petri Nets (CPN). Our work
extends the current execution model of i-score with the capability
to handle complex data. Our approach consists in developing
CPN modules for reading, appending and reversing audio files.
We use CPN Tools for prototyping, simulating and verifying our
model and discuss how to represent fundamental signal processing
functions, conditionals or loops.

Keywords—coloured petri nets; data processing; formal speci-
fication; interactive scores;

I. INTRODUCTION

Nowadays, the design of interactive multimedia systems
based on a written scenario is a challenge that requires to
handle dynamic and static events as well as dynamic and
static data. Interactive scores [1] propose a model to write and
execute interactive scenarios comprised of several multimedia
processes. This model provides a real-time control of the
dynamic and static events, and also it preserves the temporal
organization of the scenario during the writing and execution
stage.

I-SCORE [2] is a software that allows to design and execute
interactive and multimedia scenarios. The execution model is
based on Hierarchical Time Stream Petri Nets (HTSPNs) [3].
Places and transitions of Petri nets model temporal aspects of
the scenario (i.e., they define a partial order between static and
dynamic events) defined during its composition.

This paper presents an extension of I-SCORE that aims to
handle: (1) complex data, in particular, dynamic and static
data streams; and (2) dynamic and static events. The extension
adds the possibility of building stream processing structures by
functional composition of processes through input/output data
slots. Our main idea is to use Coloured Petri Nets (CPNs) [4] to
model complex data and the dynamic aspect of the functional
composition of processes. Multimedia streams are often cut
into temporal frames to be carried from one process to another.
Then, in our approach, we model frames as coloured tokens
that are handled by processes.

The extension we propose provides the notion of asyn-
chronous functional composition. This corresponds to the case
where the composed processes are not executed at the same
time. Then, it requires to buffer the output data stream of
processes in order to hold data until another process read
them. In the context of interactive scores, the date in which
the buffers will be read may not be known at composition nor
execution time. Nevertheless, the duration of the buffers are
all bounded by the duration of the scenario which is finite.
Therefore, we are very interested in verifying properties of
scenarios by using the verification methods of CPNs.

The rest of the paper is organized as follows. In Section II
we briefly present the I-SCORE system and the Coloured
Petri Nets formalism. In Section III we develop a model
for executing interactive scores using Coloured Petri Nets. In
Section IV, we extend our model for handling complex data.
Finally, in Section V we present conclusions, and future work.

II. PRELIMINARIES

In this section we first briefly present the I-SCORE system.
Then, we present the basic notions of Coloured Petri Nets
(CPNs), and we also show a tool for editing, simulating and
verifying CPNs models.

A. I-score

I-SCORE is a software for the composition and execution
of interactive multimedia scores [1], [2]. It consists of two
sides: authoring side and performance side. The authoring side
allows the composer to design a scenario. On the other hand,
the performance side executes the scenario in real-time with
interactive capabilities.

1) Authoring side: In this side the composer designs a
scenario as a collection of multimedia objects that are rep-
resented as boxes on a sheet in which the horizontal axis
represents the time-line and the vertical axis has no meaning.
The boxes are temporal structures with a start date, a duration
and a multimedia process. In I-SCORE, the execution of the
multimedia processes is carried out by external applications
such as MAX/MSP1 or PURE DATA2, and it uses multimedia
protocols such as OSC3 to send values/parameters to them.

1http://cycling74.com/products/max/
2http://puredata.info
3http://opensoundcontrol.org

The composer can use hierarchical boxes for grouping several
boxes with their own temporal organization. Hierarchical boxes
eases the design of large scenarios. In fact, the whole scenario
is represented as a hierarchical box.

The composer partially defines the temporal organization
of the scenario using Allen temporal relations [5] between the
boxes. These represent temporal precedences between boxes,
that are complemented with quantitative measures in the form
of durations. It is possible thus to express that the start of
some box must be separated from the end of some other by a
given duration. I-SCORE allows composers to build interactive
scores adding discrete interactive events which are triggered in
execution time and modify either the start date or the duration
of the boxes. It is important to note that temporal relations
are preserved during the authoring and performance sides. For
this reason, a scenario can be interpreted in a limited set of
possibilities.

In Figure 1, we show an interactive scenario where: the box
A has no interaction points, then it has a fixed start date and
duration; the box C has an interaction point at the start, then
the start date can be modified in execution time; the box D has
an interaction point at the end, then the duration of the box can
be modified in execution time; and the box B combines the two
above behaviours. Note that the temporal relations preceding
the boxes B and C are represented as dashed arrows, it means
that the duration of the temporal relation is partially defined
by a range of possible values. Otherwise, the duration of the
interval is fixed and it is represented as solid arrows.

max

C

D

A

B
maxmin

time

maxmin

min

min

r1

r2

r3

r4

r5

r6

Fig. 1. Example of an interactive scenario.

2) Performance side: I-SCORE translates the scenario into
a Hierarchical Time Stream Petri Net (HTSPN) [3] structure
for its execution. The equivalent HTSPN structure allows to
trigger interactive events, and also preserves the temporal
organization during the execution of the score. The method
for transforming a score into a HTSPN structure is described
as follows [2].

• Turn into transitions each control point (i.e., the start
and the end of the boxes).

• Merge the transitions that represent control points that
are executed at the same time.

• Add a sequence arc/place/arc between two transitions
that have a temporal relation. Add the duration of the
relation on the arc.

• The crossing condition of the transitions that represent
control points with an interaction point is conditioned
by receiving an external message. Moreover, the tran-
sition is fired automatically if the external event is not
triggered between the interval of time specified by the
composer.

Following the above steps, we translated the scenario
shown in Figure 1 into its equivalent HTSPN structure (Fig-
ure 2). Here, the transitions with double stroke represent
interaction points and the labels on the arcs define the duration
of the relation. As mentioned above, the scenario is represented
as a hierarchical box, then the relations r1 and r2 begin from
the start of the scenario (i.e., transition S(S)). Additionally,
the end of the scenario (i.e., transition E(S)) is defined by its
duration (i.e., relation r9), and the end of the boxes C and D.

S(S)

S(A)

E(S)

E(A)

S(B) E(B)

S(C) E(C)

S(D) E(D)
event()

event()

event() event()

r1

r2

r3

r4

r5

r6

r7

r8

rA

rB

rC

rD

r9

Fig. 2. HTSPN structure of the scenario shown in Figure 1.

B. Coloured Petri Nets

Coloured Petri Nets (CPNs) [4] is a graphical language for
modelling and verifying concurrent and distributed systems. It
combines the well-defined Petri Net model with the power of
the high-level programming language, Standard ML.

CPN models can be simulated, then it allows to explore the
possible behaviours of the system. In addition, CPN supports
hierarchical composition which allows to structure a model
into a set of modules. This feature is very important to model
large systems. Another advantage of CPNs is the capability to
express the notion of time. Next, we present the definition of
Coloured Petri Net [4].

Definition 1: A timed non-hierarchical Coloured Petri Net
is a nine-tuple CPNT = (P, T,A,Σ, V, C,G,E, I) where:

1) P is a finite set of places.
2) T is a finite set of transitions such that P ∩ T = ∅.
3) A ⊆ P × T ∪ T × P is a set of directed arcs.
4) Σ is a finite set of non-empty colour sets. Each colour

set is either untimed or timed.
5) V is a finite set of typed variables such that

Type[v] ∈ Σ for all variables v ∈ V .
6) C : P → Σ is a colour set function that assigns a

colour set to each place. A place p is timed if C(p)
is timed, otherwise p is untimed.

7) G : T → EXPRV is a guard function that assigns
a guard to each transition t such that Type[G(t)] =
Bool.

8) E : A→ EXPRV is an arc expression function that
assigns an arc expression to each arc a such that
• Type[E(a)] = C(p)MS if p is untimed;

• Type[E(a)] = C(p)TMS if p if timed.
Here, p is the place connected to the arc a.

9) I : P → EXPR∅ is an initialisation function that
assigns an initialisation expression to each place p
such that
• Type[I(p)] = C(p)MS if p is untimed;
• Type[I(p)] = C(p)TMS if p is timed.

The verification of CPN models is automatic and supported
by the state space method. Roughly, this method computes
all reachable states and state changes of the CPN model and
represents them as a directed graph. In this graph, nodes
represent states and arcs represent occurring events. From the
state space, it is possible to verify some properties of the
system such as absence of deadlock.

CPN TOOLS4 is a tool for editing, simulating and analysing
CPNs models. This tool supports untimed and timed hierarchi-
cal CPN models. Therefore, we can build large and modular
models. The user works directly with the graphical represen-
tation of the CPN model and the simulation can be carried out
step by step or selecting the number of steps that will be exe-
cuted. Also, we can define stop criteria and breakpoints. CPN
TOOLS can generate full state space to verify models, and it
uses advanced methods to mitigate the state explosion problem.
This tool also supports model checking. An interesting feature
is the generation of sophisticated reports from the states of the
net during the simulation. Additionally, CPN TOOLS includes
a collection of libraries for various purposes. One example is
COMMS/CPN [6] that allows TCP/IP communication between
CPN models and external applications.

III. A MODEL FOR INTERACTIVE SCORES

In this section we present a model for executing interactive
scores [7] using Coloured Petri Nets (CPNs) [4]. This model
allows to execute any scenario built in I-SCORE5.

As we explained before, in I-SCORE composers design a
scenario defining a partial temporal organization of multimedia
elements, represented as boxes, by using temporal relations.
Additionally, composers can add interaction points to modify
either the start date or the duration of the boxes during the
execution. The temporal relations must maintain during the
editing and execution time. Moreover, I-SCORE allows to
group boxes in a hierarchical box. This is very important for
designing large scenarios.

In our approach we develop a CPN model for each structure
that defines an interactive score (i.e, temporal relations, boxes
and interaction points). This allows to build a modular and
parametrizable model which can be reusable and extensible.
In the following we present the implemented CPNs modules.

A. Intervals

We model all elements of a score as intervals. These
are classified into two classes: fixed intervals, and interactive
intervals (Figure 3). Fixed intervals are temporal relations with
a fixed duration, whereas interactive intervals have a range
of values that define a minimum and a maximum duration.

4http://cpntools.org
5http://i-score.org/

Additionally, interactive intervals have attached an interaction
point that stops the interval if it is triggered between the
duration of the interval. We shall model boxes and interaction
points from these two intervals.

time

fixed interval

interactive interval

duration

minimum duration
maximum duration

interaction point
enabled

Fig. 3. Fixed and interactive intervals.

1) Fixed interval: A fixed interval consists in applying a
delay between two points. This delay can be implemented
in CPN using the delay expression @+duration in the
inscription of an output arc from a transition. As can be seen in
Figure 4, if there is a token in the place start and a coloured
token d in the place duration, they will be consumed by
the transition and a token will be produced in the place end
after d time units.

Declarations
colset TIME = time;
colset UNIT = unit;
colset UT = UNIT timed;
var dur : TIME;

start

duration

TIME

()@+dur

dur
wait

UT

end
()

Fig. 4. CPN model of a fixed interval.

2) Interactive interval: An interactive interval applies a
delay between two points whose duration is flexible (i.e., it
has a minimum and a maximum duration). The interval finishes
when either it reaches the maximum duration or the attached
interaction point is triggered after the minimum duration.
Therefore, we decompose an interactive interval into a module
for modelling the flexible duration and other for handling the
interaction point.

We use two fixed intervals for modelling flexible intervals.
The first interval waits for the minimum duration of the
flexible interval, and the second waits for the remaining time
of the maximum duration (Figure 5). Then, once the minimum
interval finishes, the second fixed interval starts and waits for
the remaining time. We handle an interaction point using a net
that accepts an event if it is both triggered after the start of the
module and before that a stop signal, otherwise it is ignored
(Figure 6). The module finishes if there is an accepted event
or a stop signal. We use the guards of transitions in order
to ignore the events (i.e., consume the tokens) that were not
triggered in the current time. An inhibitor arc removes the
conflict generated when there is a stop signal and an event at
the same time.

Declarations

colset TIME = time;
colset UNIT = unit;
var dmin : TIME;
var dmax : TIME;

start
interval end

interval
1

duration
1

TIME

start
interval

2
end
max.

interval

duration
2

TIME

dmin

dmax-dmin
dmin

dmax

end
min.

interval

min.
duration

TIME

max.
duration

TIME

fixed
interval

fixed
interval

Fig. 5. CPN model of a flexible interval.

Declarations

colset TIME = time;
colset UNIT = unit;
colset UT = UNIT timed;
var ip_t : TIME;

start

stop

end

interact.
point

enabled

ip_t

ip_tTIME

UT

t3

()@+1

time()
t1

[ip_t < time()]

t2

[ip_t = time()]

Fig. 6. CPN model for handling an interaction point.

Now, we use the above two modules to model interac-
tive intervals (Figure 7). Therefore, we start the module for
handling interaction points when the minimum duration is
elapsed and we stop it when the flexible interval reaches the
maximum duration. We limit the number of times that the
module can be stopped (place “enable”) if there are several
intervals sharing the same interaction point. We shall discuss
this in Subsection III-D.

B. Boxes

In I-SCORE, multimedia elements are temporal structures
represented as boxes. A box has a duration and a start date
which can be modified in the execution time by adding
interaction points. The temporal properties of the scenario must
be maintained during the edition and execution time. In our
approach, we model boxes as fixed or interactive intervals with
an attached process. Our models of the different cases of boxes
are described below.

1) Fixed box: A fixed box is modelled as a fixed interval
with a specific duration. In addition, the attached process starts

Declarations

colset TIME = time;
colset UNIT = unit;
colset BOOL = bool;
var e : BOOL;

interact.
point

start
get

stop
get

end
interval

get
IP

ss

se

flexible
interval

start
interval

TIME

max.
duration

TIME

min.
duration

end
max.

interval

end
min.

interval

enable

e

false

BOOL

true

if (e=true)
then 1`()
else empty

Fig. 7. CPN model of an interactive interval.

and finishes with the interval (Figure 8). We represent these
events as transitions.

start
box

start
process

end
box

stop
process

dur dur

duration

TIME

start
process

start
interval

end
interval

fixed
interval

duration

TIME

end
processDeclarations

colset TIME = time;
colset UNIT = unit;
var dur : TIME;

Fig. 8. CPN model of a fixed box.

2) Interaction point at the start of the box: An interaction
point at the start of the box allows to anticipate or delay the
start of the box during the execution. In I-SCORE, composers
define an interval of time in which a specific event can be trig-
gered. Then, the box will start if the event is triggered during
the interval or the interval reaches its maximum duration. In
our approach, we model this box adding an interactive interval
at the start of a fixed box that controls the beginning of the
box because it has attached an interaction point (Figure 9).

TIME

duration

start
box

start
process

end
process

end
box

fixed
box

TIME

max.
duration

start
interval

TIME

min.
duration

interact.
point

end
interval

interactive
interval

Declarations

colset TIME = time;
colset UNIT = unit;

Fig. 9. CPN model of a box with an interaction point at the start.

3) Interaction point at the end of the box: The duration of
a box can be modified during execution if it has an interaction
point at the end. Composers define an interval of time in
which a particular event can be triggered. Then, the box will
finish if the event is triggered during the interval or the box
reaches its maximum duration. We model this box replacing
the fixed interval of the fixed box (see Figure 8) with an
interactive interval (Figure 10). The interactive interval handles
the interaction point of the box and constraints the duration of
the box.

Declarations

colset TIME = time;
colset UNIT = unit;
var dmin : TIME;
var dmax : TIME;

start
box

start
process end

box

dmin

min.
duration

TIME

start
process

end
process

stop
process

TIME

max.
duration

start
interval

TIME

min.
duration

interact.
point

end
interval

interactive
interval

max.
duration

TIME

dmax

dmin

dmax

Fig. 10. CPN model of a box with an interaction point at the end.

4) Interaction point at the start and at the end of the box:
In I-SCORE, composers can combine the two above behaviours.
We take advantage of the modularity of our approach for
modelling this box. Then, we only need to add an interactive
interval before the start of a box with an interaction point at
the end (Figure 11).

Declarations

colset TIME = time;
colset UNIT = unit;

start
process

TIME

max.
duration

2

TIME

min.
duration

2

start
box

end
process

end
box

interact.
point

2

box
ip end

TIME

max.
duration

1

start
interval

TIME

min.
duration

1

interact.
point

1

end
interval

interactive
interval

Fig. 11. CPN model of a box with an interaction point at the start and at
the end.

C. Hierarchy

Hierarchy is very important for building complex scenarios.
I-SCORE supports this feature allowing to group boxes in
a hierarchical box. Indeed, the scenario is represented as a
hierarchical box which contains all boxes, hierarchical boxes,
temporal relations and interaction points. In our approach, a
hierarchical box consists of two transitions for synchronizing
the start and the end of its children. Furthermore, its duration
depends on the temporal organization of the sub-scenario. We
illustrate our idea in Figure 12.

Note that relations AB and AD start from the transition
that represents the start of the hierarchical box. Then, these

B

A

AB BA

D
AD DA

(a) Graphical representation

TIME

duration
D

start
box
D

start
process

D

end
process

D

end
box
D

fixed
box

TIME

duration
B

start
box
B

start
process

B

end
process

B

end
box
B

fixed
boxstart

interval
AB

end
interval

AB

duration
AB

TIME

fixed
interval

start
interval

BA end
interval

BA

duration
BA

TIME

fixed
interval

start
box
A

start
interval

AD end
interval

AD

duration
AD

TIME

fixed
interval

start
interval

DA end
interval

DA

duration
DA

TIME

fixed
interval

end
box
A

(b) CPN model

Fig. 12. Example of a hierarchical box with two children.

relations will start at the same time that box A. Moreover,
observe that there is an arc between the end of the relations
BA and DA, and the transition that represents the end of the
hierarchical box. Therefore, the hierarchical box A will end
when all the above relations finish.

In this paper, we only consider interaction points at the
start of hierarchical boxes in order to simplify the presentation
of the model. Interaction points at the end involve executing
complex mechanisms to stop recursively the children of boxes.

D. Synchronization

Temporal relations define the beginning of boxes. There-
fore, a box starts when all its preceding relations are satisfied.
In I-SCORE, all relations preceding a box are flexible if the
box has an interaction point at the start. Otherwise, they are
fixed. In the following we introduce a merging operation to
reduce several relations of the same type into an equivalent
interval. The above allows to create a generic mechanism for
maintaining the temporal relations in our model.

1) Merging fixed intervals: The fixed relations preceding a
box must be fulfilled. Then, the box will start when all fixed
intervals finish. We illustrate the above behaviour in Figure
13 that is the time-line of an execution of the scenario shown
in Figure 1. In this scenario, the box D has two preceding
relations with fixed durations. Therefore, as can be seen in
Figure 13, this box starts when the last interval finishes (i.e.,
interval r6 at 16 seconds).

In our model, we merge several fixed intervals synchro-
nizing their ends with the start of a box by using a transition
(Figure 14). Then, the box will start when all its preceding
relations have finished.

2) Merging interactive intervals: Temporal relations pre-
ceding a box with an interaction point are flexible (i.e.,
they have a minimum and a maximum duration). In that

C

A

time (s)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r1

18

min max

r2
B

min max

min max

r3

r5

r6

19 20 21 22 23

D
min max

r4

min max

Fig. 13. Time-line of an execution of the scenario shown in Figure 1.

end
interval

r5

fixed
interval

end
interval

r6

fixed
interval

TIME

duration
box
D

start
box
D

fixed
box

Fig. 14. CPN model for synchronizing fixed intervals.

case, the box will start when one of its preceding relations
reaches its maximum duration or the event attached to the
box is triggered after all relations have reached their minimum
duration (Figure 15).

interactive interval 1

interactive interval 2

merge interactive (1,2)

min max

min max

min max

interaction point
enabled

time

Fig. 15. Merging two interactive intervals.

We illustrate the above behaviour in Figure 16 that shows
an execution of the scenario in Figure 1. In this scenario, box C
has two preceding relations with flexible durations. Therefore,
the box may start during the flexible interval generated by
merging the relations r3 and r4. As can be seen in Figure 16,
the box C started at 9 seconds because an event was triggered
during the interval merge(r3,r4). This interval represents
the merging of the preceding intervals of the box, and it is
defined by the minimum duration of the interval r4 and the
maximum duration of the interval r3.

In our approach, we use interactive intervals to model
temporal relations preceding a box with an interaction point.
In order to merge several interactive intervals (Figure 17), we
first split them into their two modules: flexible interval and
interaction point (see Section III-A2). Then, we use a transition
to synchronize the end of the minimum durations of all flexible
intervals with the start of a module for handling the interaction
point. Additionally, we connect the end of their maximum
durations with the stop of the interaction point. As can be

C

A

time (s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r1

18

min max

r2 min max

min max

r3

r5

r6

19 20 21

min max

r4

min max

B D

maxmin

merge (r3,r4)

Fig. 16. Time-line of an execution of the scenario shown in Figure 2 with
triggered interaction points. The symbol represents a triggered event.

seen in Figure 17, we limit the number of times the interval
can be stopped by using the place enable and the transition
se.

TIME

duration
box
C

start
box
C

fixed
box

end
max.

interval
r3

end
min.

interval
r3

flexible
interval

end
max.

interval
r4

end
min.

interval
r4

flexible
interval

get
IP

interact.
point

C

start
get

stop
get

end
get

ss

se

enable

e

false

BOOL

true

if (e=true)
then 1`()
else empty

Fig. 17. CPN model for synchronizing interactive intervals.

Hence, the box will start when an interval reaches its
maximum duration or the event attached to the box is triggered
after all its preceding relations have reached their minimum
durations.

IV. AN EXTENSION FOR HANDLING COMPLEX DATA

In this section, we present an extension of the model
described in Section III for handling complex data. We take
advantage of the coloured tokens of CPNs to represent audio
streams. In our approach, an audio stream consists of a set of
tokens whose colour is a tuple (i, d) where i is the index of
the audio frame and d is its corresponding value. Additionally,
the duration between each audio frame is preserved.

In the following we describe CPN modules for basic
processing of audio files. First, we present a CPN model
for reading audio files. Then, we show we can append and
reverse files reusing the previous modules. Finally, we show the
implementation and simulation of a scenario in CPN TOOLS.

A. Reading Audio Files

In our approach, reading audio files consists in acquiring
audio frames from a file with a determined frequency (i.e.,
duration between frames). We show the model of the above
behaviour in Figure 18. Here, the transition READ gets an
audio frame (i.e., a coloured token) from the file each time
the interval of time finishes. The transition will continue to
read the frames until it reaches the end of the file (i.e., the
maximum number of frames in the file) or there is a stop
signal.

Observe that the inhibitor arc allows to solve the conflict
generated when a stop signal is present at the same instant that
a frame can be read. In addition, the place limit restricts
the module to read a new frame only if the previous one was
completely processed (i.e., the token is in the place output),
and the place stop_enabled disables the stop transition
when the module has finished.

The module has as output the read frames (place output)
and the number of read frames (place frames_read). More-
over, it also indicates if the module reached the end of the file
(place EOF), and the instant when the interval of time between
frames is elapsed (place next_frame). The last feature is
useful if we want to synchronize the output of two files.

Declarations

colset TIME = time;
colset UNIT = unit;
colset INT = int;
colset BOOL = bool;
colset DATA = INT;
colset DURATION = TIME timed;
colset FILE = product INT*DATA;
var f_dur : TIME;
var e : BOOL;
var n_max : INT;
var n : INT;
var f : DATA;

TIME

frame
duration

start

INT

max
number
frames

f_dur

n_max

f_dur get
frame

DURATION

f_dur

f_dur@+f_dur

max
num

INT

n_max

n_maxn_maxfile

FILE (n,f)

continue

stop

next
frame

INT

n+1

n

receive
frame

FILE

[n <= n_max]

(n,f)
(n,f)

n_max

n_max

1

if (n = n_max)
then 1`()
else empty

(n,f)

end

EOF

wait
sync

next
frame

f_dur

R
E
A
D

limit

if (n = n_max)
then 1`()
else empty

if (e = true)
then 1`()
else empty 2`()

n

frames
read

n-1

INT

stop
enabled

BOOL

output

FILE

e

1`falsee

1`false
true

Fig. 18. CPN model for reading a file.

B. Appending Files

We append two files concatenating their outputs. We took
advantage of the modularity of our model to build this module
using the above. As can be seen in Figure 19, the module reads
the first file, and once it finishes, it synchronizes the start of
the reading of the second file. That means that the first frame
of the second file will be read when the duration between the
frames of the first file is elapsed (i.e., there is a token in the
place next_frame).

Observe that the concatenated file is stored in the place
output. We add an offset to the indices of the second
file to correctly build the concatenated file (place index).
Therefore, the outputs of the module are the appended file
(place output) and the number of concatenated frames (place
total_frames_read). The module will finish if both files
are successfully read or there is a stop signal.

Declarations

colset TIME = time;
colset UNIT = unit;
colset INT = int;
colset DATA = INT;
colset FILE = product INT*DATA;
var n : INT;
var n1 : INT;
var n2 : INT;
var i : INT;
var f : DATA;

TIME

frame
duration

file 1

start
file 1

INT

max
number
frames
file 1

stop
file 1

file 1

output
file 1

FILE

end
file 1

EOF
file 1

next
frame
file 1

TIME

frame
duration

file 2

start
file 2

INT

max
number
frames
file 2

stop
file 2file

2

output
file 2

FILE

end
file 2

EOF
file 2

next
frame
file 2

FILE FILE

output

FILE

index

(n,f)

1

INT

i

i+1

i

i+1

(i,f)

(n,f)

(i,f)

next

1

INT

n

n+1
next 2

1

INT

n

n+1

frames
read 1

INT

frames
read 2

INT

read
file

read
file

total
frames
read

INT

n2n1

n1+n2

stop
append

Fig. 19. CPN model for appending files

C. Reversing Files

In our approach, the module reverses the order of a file
in one instant of time, and then reads the output. As can be
seen in Figure 20, we make use of the module for reading
files to read the file in one time (i.e., the duration between
frames is zero) while the transition REV reverses the order of
its indices. Once the order of the whole file is inverse (i.e.,
the index of the reversed file is zero), another module starts
to read the inverse file with a specific frequency. Observe that
this module has the same outputs than the module for reading
files.

Declarations

colset TIME = time;
colset UNIT = unit;
colset INT = int;
colset DATA = INT;
colset FILE = product INT*DATA;
var n : INT;
var n_max : INT;
var i : INT;
var f : DATA;

TIME

frame
duration

start
reverse

INT

max
frames

stop

file

temp
output

FILE

end

EOF

next
frame

TIME

frame
duration

start

INT

max
number

stop
reverse

file
reverse

output
reverse

FILE

end
reverse

EOF
reverse

next
frame

reverse

FILE

FILE

(n,f)

index

INT

i

i-1

next

1

INT

n

n+1

0

INT

max
number
frames

[i=0]

(i,f)[i>0]

i

n_max

R
E
V

n_max

n_max

n_max

frames
read

INT

frames
reversed

INT

read
file

read
file

Fig. 20. CPN model for reversing a file.

D. Simulation

In the following we illustrate the use of the modules
presented in this section by means of the scenario shown in
Figure 21. Roughly speaking, the scenario first reads two files.
Then, a box for reversing files receives, as input, the read
frames of the second file to reverse them. Finally, a box for
appending files receives, as input, the reversed file and the first
file to concatenate them.

Append
Files

Read
File 1

Read
File 2

time (ms)

maxmin

min max

Reverse
File

r1
(values)

(values)

(values)(param)

(param)

r2

r3

r4

r5

Fig. 21. Scenario with data processing.

As can be seen, the data processing modules are organized
by using the elements described in Section III. For the sake
of simplicity, we mixed boxes with processing modules in a
single box. Additionally, we added to boxes inputs and outputs
which are represented as points on each edge of the box.
Intervals allow to communicate values between boxes and they
are used as parameters of processes (e.g., number of frames,
duration between frames). For example, the box for reversing
files receives, as input, the output of the box for reading files
through the interval r3.

Moreover, the duration of boxes can be constrained with
the duration of their processes by adding an interaction point
at the end of the box whose associated event is triggered when
the process finishes. Observe that we use a different symbol
in the box for appending files to represent the new interaction
point.

Let us illustrate in Figure 22 a possible execution of the
above scenario assuming the following configuration.

• The first file is composed of 4 frames, and each frame
must be played every 3 milliseconds.

• The second file is composed of 5 frames, and each
frame must be played every 3 milliseconds.

• Both files start to be read once the scenario begins.

• The reading of the first file must stop in 9 millisec-
onds. However, it can be stopped by the performer
after 6 milliseconds.

• The reading of the second file must stop in 13 mil-
liseconds.

• Once the reading of the second file finishes, the
scenario must wait a millisecond, and then the read
file is reversed. This box must stop in 13 milliseconds.

• 3 milliseconds after of having read the first file and 5
milliseconds after of having reversed the second file,
both files are concatenated. This box must finish in 25
milliseconds or when its attached process finishes.

Note that, if the box for reading the first file is stopped
at 7 milliseconds by triggering its interaction point, only 3
frames of the file are read. On the other hand, the second file is
completely read and reversed. Additionally, when the process
for appending files finished (at 53 milliseconds), it triggered
the event for stopping the corresponding box. Therefore, at
the end of execution, the concatenated file is composed of 8
frames; 3 frames from the first file and 5 frames from the
second file.

We conclude this section with a report showing the sim-
ulation in CPN TOOLS of the above scenario. Here, we
assume that each time unit of the simulator tool represents
a millisecond. As can be seen in Figure 22, we use boxes and
intervals to define the temporal organization of the scenario.
Furthermore, each process is initialized with its inputs (e.g.,
the number of frames, the duration between frames), but during
execution some parameters will be passed by other boxes
through intervals (e.g., the file that will be reversed).

Now, we emphasize the main events generated in the
report. At 7 milliseconds the box for reading the first file was
stopped by the performer, then only 3 frames of the file were
read. Observe that each frame was processed preserving the
corresponding delay (i.e., 3 milliseconds). At 12 milliseconds
the second files was completely read, but the box finished
at 13 milliseconds. Note that the output of a process is
buffered in order to be read later by another process. At 14
milliseconds, the second file started to reverse and finished at
26 milliseconds. At 32 milliseconds all preceding intervals of
the box for appending files were satisfied and the box started to
concatenated the first file and the reversed second file. Finally,
the process finished at 53 milliseconds, then the box also was
stopped at the same time. Notice that the output of the above
process corresponds correctly to the transformations applied to
files read at the beginning of the scenario.

time (ms)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

28 29 30 31 32

min max

f1 f2 f3

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

f4 f5 f6 f7 f8

54 55 56 57 58

f1 f2 f3

min max

Read File 1 (process)

Read File 1 (box)

Read File 2 (process)

Read File 2 (box)

r3

Reverse File (process)

Reverse File (box)

r5

Append Files (process)

Append Files (box)

r4

Fig. 22. Time-line of an execution of the scenario shown in Figure 21. The symbol represents a triggered event.

Hence, comparing the simulation report in Figure 22 with
the execution time-line in Figure 22, we observe that our model
executed correctly the scenario and preserved the temporal or-
ganization of the score during execution. Moreover, it follows
the execution model of I-SCORE and also allows to handle
complex data such as audio streams.

V. CONCLUDING REMARKS

In this paper we presented a model to execute interactive
scores [1] with the ability to handle complex data, in particular,
data audio streams. We used Coloured Petri Nets [4] to model
audio frames as coloured tokens that are handled by processes.
These processes have inputs and outputs, and they can pass
values between them through intervals. The above allows the
functional composition of processes. We took advantage of this
functional composition and the hierarchy support of CPNs to
build a modular model. Thus, we extended the model of the I-
SCORE software with modules for processing audio files such
as reading, appending and reversing files.

We illustrated the notion of asynchronous functional com-
position of our model by simulating the scenario shown in
Figure 21. Here, the outputs of the modules for reversing and
appending files are buffered before the module for appending
files starts. Also, we implemented a method for merging inter-
vals which allows to translate any temporal property defined
by the user into our model. We implemented our model in
CPN TOOLS, and then we simulated a scenario that allows to
observe that our approach models interactive scores and audio
streams correctly.

Future Work. Interactive scores have a wide range of
applications in all types of industries, for example, video
games, live performance installations, and virtual museum
visits [8]. The use of loops and conditionals are necessary for
the proper design of scenarios for these kind of applications.
However, the model of I-SCORE does not support them. We
plan to take advantage of the capability of our model for
handling complex data and the power of the CPN formalism
to model these features. In a first approach, we could represent
conditionals like the switch statement of the C programming
language where: each case could be the guard of a set of
transitions that have associated a sub-scenario; and a coloured
token that carries the value that will be compared. Therefore,
the transition whose guard is fulfilled with the value of the
token will execute the corresponding sub-scenario. We could
represent loops like a hierarchical box that executes its children
until a specific condition is false. Note that, the implementation
of loops requires conditionals.

Additionally, audio processing is very important in the
applications listed above. Then, we plan to extend our model
with new audio processing processes. For example, we could
change the play speed of an audio by modifying the interval of
time in which the module for reading files reads each frame.
Also, we could amplify the audio volume by scaling the values
of each read frame.

Finally, we plan to verify properties about scenarios like
the maximum number of processes that can be executed at the
same time in a specific machine, the maximum duration of the
buffers, the maximum duration of the scenario, among others.

Example Scenario with Audio Processing
======================================

Parameters ...
Box <read file 1> duration:
(min: 6 time units), (max: 9 time units).

Box <read file 2> duration: 13 time units.
Box <append file> duration:
(min: 0 time units), (max: 25 time units).

Box <reverse file> duration: 13 time units.
Interval r4 duration: 3 time units.
Interval r3 duration: 1 time units.
Interval r5 duration: 5 time units.
Process <read file 1>: (max. n. frames: 4 frames),
(frame duration: 3 time units),
(data: [(1,5), (2,10), (3,15), (4,20)]).

Process <read file 2>: (max. n. frames: 5 frames),
(frame duration: 3 time units),
(data: [(1,40), (2,35), (3,30), (4,25), (5,20)]).

Process <reverse file>: (frame duration: 3 time units).
Process <append file>:
(frame duration file 1: 3 time units),
(frame duration file 2: 3 time units).

Simulation started
In time : 0 -> (scenario started),
(box <read file 1> started), (box <read file 2> started),
(process <read file 1> started),
(process <read file 2> started),
(file 1 frame read: (1,5)), (file 2 frame read: (1,40)).

In time : 3 -> (file 1 frame read: (2,10)),
(file 2 frame read: (2,35)).

In time : 6 -> (file 2 frame read: (3,30)),
(file 1 frame read: (3,15)).

In time : 7 -> (event "stop reading 1" triggered),
(box <read file 1> finished),
(process <read file 1> stopped), (interval r4 started).

buffer 1 : (1,5), (2,10), (3,15).
number of frames read (file 1) : 3.

In time : 9 -> (file 2 frame read: (4,25)).
In time : 12 -> (file 2 frame read: (5,20)), (file 2 EOF).

buffer 2 : (1,40), (2,35), (3,30), (4,25), (5,20).
number of frames read (file 2) : 5.

In time : 13 -> (box <read file 2> finished),
(process <read file 2> stopped), (interval r3 started).

In time : 14 -> (interval r3 finished),
(box <reverse file> started),
(process <reverse file> started),
(file 2 frame reversed: (1,20)).

In time : 17 -> (file 2 frame reversed: (2,25)).
In time : 20 -> (file 2 frame reversed: (3,30)).
In time : 23 -> (file 2 frame reversed: (4,35)).
In time : 26 -> (file 2 frame reversed: (5,40)),
(reversed file EOF).

buffer 3 : (1,20), (2,25), (3,30), (4,35), (5,40).
number of frames reversed : 5.

In time : 27 -> (box <reverse file> finished),
(process <reverse file> stopped), (interval r5 started).

In time : 32 -> (intervals r4 and r5 synchronised),
(box <append file> started),
(process <append file> started), (frame append: (1,5)).

In time : 35 -> (frame append: (2,10)).
In time : 38 -> (frame append: (3,15)).
In time : 41 -> (frame append: (4,20)).
In time : 44 -> (frame append: (5,25)).
In time : 47 -> (frame append: (6,30)).
In time : 50 -> (frame append: (7,35)).
In time : 53 -> (frame append: (8,40)),
(process <append file> finished), (append file EOF),
(box <append file> finished), (scenario finished).
buffer 4 : (1,5), (2,10), (3,15), (4,20), (5,25), (6,30),

(7,35), (8,40).
number of frames concatenated : 8.

Simulation stopped

Fig. 22. Simulation report of an execution of the score shown in Figure 21.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their detailed com-
ments that helped us to improve this paper. This work has been

supported by the OSSIA (ANR-12-CORD-0024) project and
SCRIME6.

REFERENCES

[1] A. Allombert, “Aspects temporels d’un système de partitions musicales
interactives pour la composition et l’exécution.”

[2] R. Marczak, M. Desainte-Catherine, and A. Allombert, “Real-time
temporal control of musical processes,” in The Third International
Conferences on Advances in Multimedia, ser. MMEDIA 2011, pp. 12–17.

[3] P. Sénac, P. de Saqui-Sannes, and R. Willrich, Hierarchical Time Stream
Petri Net: A Model for Hypermedia Systems, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, vol. 935, pp. 451–470.

[4] K. Jensen and L. M. Kristensen, Coloured Petri Nets. Modelling and
Validation of Concurrent Systems. Dordrecht; New York: Springer, 2009.

[5] J. F. Allen, “Maintaining knowledge about temporal intervals,” vol. 26,
p. 832–843.

[6] G. Gallasch and L. M. Kristensen, “Comms/CPN: a communication
infrastructure for external communication with Design/CPN,” in Third
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools. DAIMI PB-554, pp. 75–91.

[7] M. Desainte-Catherine, A. Allombert, and G. Assayag, “Towards a hybrid
temporal paradigm for musical composition and performance: The case
of musical interpretation,” Computer Music Journal, vol. 37, no. 2, pp.
61–72, 2013.

[8] A. Allombert, M. Desainte-Catherine, and G. Assayag, “Iscore: a system
for writing interaction,” ser. DIMEA ’08. Athens, Greece: ACM, Sep.
2008, p. 360–367.

6http://scrime.labri.fr

