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Abstract We study the boundary behaviour of the solutions of (E) —A,u + [Vu|? = 0 in a domain  C RY,
when N > p > g > p — 1. We show the existence of a critical exponent ¢, < p such thatif p — 1 < ¢ < ¢, there
exist positive solutions of (E) with an isolated singularity on J€2 and that these solutions belong to two different
classes of singular solutions. If ¢. < g < p no such solution exists and actually any boundary isolated singularity
of a positive solution of (E) is removable. We prove that all the singular positive solutions are classified according
the two types of singular solutions that we have constructed.
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1 Introduction

Let N >p>1,¢>p—1and Q C RY (N > 1) be a C? bounded domain such that 0 € 9€2. In this
article we study the boundary behavior at 0 of nonnegative functions u € C*(Q) N C(Q \ {0}) which
satisfy

—Apu+|Vul?=0  inQ, (1.1)
where Aju := div (|Vu|p_2Vu). The two main questions we consider are as follows:
Q-1- Existence of positive solutions of (1.1).

Q-2- Description of positive solutions with an isolated boundary singularity at 0.

When p = 2 a fairly complete description of positive solutions of
—Au+|Vul?!=0 (1.2)

in 2 is provided by Nguyen-Phuoc and Véron [11]. In particular they prove the following series of results
in the range of values 1 < g < 2.

1- Any signed solution of (1.3) verifies the estimates

IVu(z)| < eng (d(z) 7T Voe, (1.3)
where d(x) = dist (,0€). As a consequence, if v € C(€\ {0}) is a solution which vanishes on
o0\ {0}, it satisfies

1
lu(z)] < ¢qod(z)|z| T Vo € Q. (1.4)
2-1f &H < g < 2 any positive solution of (1.3) in €2 which vanishes on 92 \ {0} is identically 0. An
isolated boundary point is a removable singularity for (1.2).

Ifl < qg< % and k > 0 there exists a unique positive solution u := wuy of (1.2) in 2 which
vanishes on 99 \ {0} and satisfies u(z) ~ cxkP(x,0) as 2 — 0, where P is the Poisson kernel in
Q x 0f.

4-1f 1 < g < ML there exists a unique positive solution u of (1.2) in the half-space RY := {z =

(@' xN) 12’ € RN !,y > 0} under the form u(z) = ||~ q—lw(]x\ 12) which vanishes on ORY \ {0}.
The function w is the unique positive solution of

—Aw + (( 1202 + |V'w|? > ~Avgw=0 inSY

(1.5)
w=0 inasy

where SV~ is the unit sphere of RY, 9.5 iv 1= ORY N SN=1 A’ the Laplace-Beltrami operator and
AN,q > 0 an explicit constant.

5-1f 1 < ¢ < &3 and u is a positive solution of (1.3) in €, which is continuous in €2\ {0} and vanishes
on 90 \ {0} the followmg dichotomy occurs:
2
(i) either u(z) ~ |z| o iw(|z|'z) as @ — 0,
(ii) or u(z) ~ ke P (x,0) as  — 0 for some k > 0.
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The aim of this article is to extend to the quasilinear case 1 < p < N the above mentioned results.
The following pointwise gradient estimate valid for any signed solution u of (1.1) has been proved in
[3]: if 0 < p — 1 < q there exists a constant ¢y, 4 > 0 such that

IVu(z)| < expgld@) 75 Ve Q. (1.6)

As a consequence, any solution u € C*(Q \ {0} satisfies

lu(z)] < ¢pg.0d(z) ]x]_ﬁ%—ﬁ Vo € Q. (1.7)

Concerning boundary singularities, the situation is much more complicated than in the case p = 2
and the threshold of critical exponent less explicit. We first consider the problem in ]Rf . Assuming
p—1 < q < p, separable solutions of (1.1) in RY vanishing on IR% \ {0} can be looked for in spherical
coordinates (1, o) € R%. x S¥~1 (we denote R = (0, 00)) under the form

u(@) = ulr,0) = r Puw(o), >0, oSN i= (SN ARN. (1.8)

Then w is solution of the following problem

2 -2
—div’ <(ﬁq2w2 - \V’wlz)% V’w) — ByAs, (Biw® + !V’w[z)pT w
+ (Bw® + ]V’w\Q)% =0 inSY! (1.9)
w=0 on asf—l,

where
_ _b—g
and V' is the covariant derivative on S™ ! identified to the tangential gradient thanks to the canonical

isometrical imbedding of SN~! into RY, and div’ the divergence operator acting on vector fields on
SN,

and Ag, = B4(p—1)+p—N, (1.10)

The existence of a positive solution to this problem cannot be separated from the problem of existence
of separable p-harmonic functions which are p-harmonic in RY which vanish on ORY \ {0} and have
the form U (z) = U(r, o) = r~P4(0) for some real number 3. Necessarily such a 1) must satisfy

—div’ ((ﬁ2¢2 + |v/w|2)p772 v/w) _ 5Aﬁ (52¢2 + |v/w|2)p772 ¢ =0 in S_]i_\/fl

=0 onﬁSiV*l,

(1.11)

where Ag = B(p—1) +p— N. We will refer to (1.11) as the spherical p-harmonic eigenvalue problem.
The study of this problem has been initiated in the 2-dim case by Krol [8] (8 < 0) and Kichenassamy
and Véron [9] (8 > 0). In this case w satisfies a completely integrable second order differential equation.
In the case where .S iv ~1 is replaced by a smooth domain S ¢ S™~! with N > 3, Tolksdorf [14] proved
the existence of a unique couple (BS, 1;8) where BS < 0 and 1/35 has constant sign and is defined up to an
homothety. Recently Porretta and Véron [12] gave a simpler and more general proof of the existence of
two couples (BS, 1;8) and (S s, ¥« s) where B, > 0 and 1 and 1, , are positive solutions of (1.11 ) with
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B = f3; and B = 3, s respectively and are unique up to a multiplication by a real number. When p = 2
this problem is an eigenvalue problem for the Laplace-Beltrami operator on a subdomain of S™V~1. If
S = Siv ~1, B, and B, 4 are respectively denoted by 3 and 3, and accordingly s and v, ; by 1 and t),.
Since & — 2y is p-harmonic, 3 = —1. Except in the cases N = 2 where it is the positive root of some
algebraic equation of degree 2, p = 2 where it is N — 1 and p = N where it is 1, the value of 3, is
unknown besides the straightforward estimate 3, > max{1, %}. Using the fact that v, depends only
on the azimuthal variable and satisfies a differential equation, we prove in Appendix II the following new
estimate:

Theorem A Let 1 < p < N.

(i) If2 < p < N, then 8, < % with equality only if p = 2 or N.

. N—1
(ii)) If 1 < p <2, then B, > 1

The p-harmonic function ¥, (z) = U, (r, o) = r~P*1),(c) endows the role of a Poisson kernel. To
this exponent 3, is associated the critical value g, of ¢ defined by 3, = 3, or equivalently
. Bi(p—1)+p —p— B
o B +1 Be+1
The following result characterizes strong singularities.
Theorem B Let 0 < p —1 < N, then
(i) If p — 1 < q < q. problem (1.9) admits a unique positive solution w.

(1.12)

(ii) If g« < q < p problem (1.9) admits no positive solution.
This critical exponent corresponds to the threshold of criticality for boundary isolated singularities.

Theorem C Assume q. < q < p < N. Ifu € C*(Q\ {0}) is a nonnegative solution of (1.1) in Q which
vanishes on 9\ {0}, it is identical zero.

As in the case p = 2, there exist positive solutions (1.1) in € with weak boundary singularities
which are characterized by their blow-up near the singularity. By opposition to the case p = 2 where
existence is obtained by use of a weak formulation of the boundary value problem, combined with
uniform integrability of the absorption term thanks to Poisson kernel estimates (see [11]), this approach
cannot be performed in the case p # 2; the obtention of solutions with weak singularities necessitates a
very long and delicate construction of subsolutions and supersolutions. Furthermore, when p # N, the
construction is done only if €2 is locally an hyperplane near 0.

In the sequel we denote by Bg(a) the open ball of center a and radius R > 0 and Br = Br(0). We
also set B}, (a) := RY N Bg(a), B := RY N Bg, By (a) := RY N Bg(a) and By, := RY N Bp, where
RN .= {z = (2/,2y) : 2’ € RN~ 2x < 0}. If Qis an open domain and R > 0, we put Qx = QN By

Theorem D Let 2 C Rﬁ\_f be a bounded domain such that 0 € 0S). Assume there exists § > 0 such
that Q5 = B;_and 0<p—1<q<q. <p < N. Then for any k > 0 there exists a unique
u =y, € CL(Q\ {0}), solution of (1.1) in §, vanishing on 9 \ {0} and such that

Beug(x) = kipu(0). (1.13)

lim |z
x —0

x N-1
[x] _)UES+
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Furthermore limy,_, oo uj, = Uso and

lim 2% () = (o). (1.14)
z— 0
ﬁ — o € 3171

When p = N, then ¢. = N — %; in such a range of values we use the conformal invariance of
A and prove that the previous result holds if 2 is any C? domain. Finally, the isolated singularities of
positive solutions of (1.1) are completely described by the two types of singular solutions obtained in

the previous theorem and we prove:

Theorem E Let €) be a bounded domain such that 0 € 0X). Assume there exists 6 > 0 such that Q5 = B;r
and 0 < p—1< q < g <p < N. Ifuec CHQ\ {0}) is a positive solution of (1.1) in £ which
vanishes on 02 \ {0}, then

(i) either there exists k > 0 such that

Fu(z) = kpu(0); (1.15)

lim |z
z— 0

x N-—-1
m—»o’GS+

(i) or
lim  |z]Pru(z) = . (o). (1.16)

z — 0

x N-—-1
m—»o’GS+

Acknowledgements This article has been prepared with the support of the MathAmsud collaboration
program 13MATH-03 QUESP. The first two authors were supported by Fondecyt grant N°1110268. The
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2 A priori estimates

2.1 The gradient estimates and its applications
We recall the following estimate and its consequences which are proved in [3].

Proposition 2.1. Assume q > p — 1 and v is a C* solution of (1.1) in a domain ). Then

|Vu(z)| < cNJ,’q(d(x))*ﬁLP Vz € Q. (2.1)
The first application is a pointwise upper bound for solutions with isolated singularities.

Corollary 2.2. Assume g >p—1> 0, R* > 0 and Q is a domain containing 0 such that d(0) > 2R*.
Then for any x € Bg« \ {0}, and 0 < R < R*, any u € C1(Q\ {0}) solution of (1.1) in Q \ {0})
satisfies

u(@)] < N pg ||2|TTF — R#T5 | + max{ju(z)| : |2| = R}, 2.2)

ifp#q, and
lu(z)| < enp (In R —1In|z]) + max{|u(2)| : |2| = R}, (2.3)

ifp=q.
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The second application corresponds to solutions with boundary blow-up. For § > 0 small enough
weset Q5 :={z € Q:d(z) < d}.

Corollary 2.3. Assume q > p — 1 > 0, Q is a bounded domain with a C? boundary. Then there exists
81 > 0 which depends only on §) such that any u € C1(Q) solution of (1.1) in § satisfies

q9=p

lu(x)] < enpyg (d(x))% — 6P max{|u(z)| : d(2) = 61} Va € Qs (2.4)

ifp # q, and

lu(x)| < enpg(Indy —Ind(x)) + max{|u(z)| : d(z) =61} Vo € Qs (2.5)
ifp=q
Remark. As a consequence of (2.4) there holds forp > ¢ >p—1

uw(z) < (enpq+ Kmax{|u(z)| : d(z) > 61 }) (d(:ﬂ))% Vx € Q (2.6)

where K = (diam(£2)) 7175, with the standard modification if p=q.

As a variant of Corollary 2.3 the following upper estimate of solutions in an exterior domain will be
used in the sequel.

Corollary 2.4. Assume q >p—1>0, R> 0andu € Cl(B]C%O) is any solution of (1.1) in Bf, . Then
for any R > Ry there holds

Ju(x)] < enpg |(|2] = Ro)a"10 — (R — Ro)at1» | + max{|u(2)| : |s| = R} YzreBj (7)
ifp# qand
[u(z)| < enp,g (In(|z] = Ro) —In(R — Ro)) + max{|u(z)| : || = R} Vze By  (28)
ifp=q

Proof. The proof is a consequence of the identity

1 1
u(z) = u(z) + /0 %u(tw + (1 —t)z)dt = /0 (Vu(tr + (1 —t)z),z — 2)dt

where z = ERIQJ. Since by (2.1)

Vu(tz + (1 - 1)2)] < Cpg(t]a] + (1~ )R — Ro) "7,

. an . ollow integration.
(2.7) and (2.8 ) follow by integrati O
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2.2 Boundary a priori estimates

The next result is the extension to isolated boundary singularities of a previous regularity estimate dealing
with singularity in a domain proved in [3, Lemma 3.10].

Lemma 2.5. Assume p—1 < q < p, Q is a bounded C? domain such that 0 € 9€). Let u € C1(Q\ {0})
be a solution of (1.1) in Q which vanishes on 92 \ {0} and satisfies

lu(z)] < o(lz) Vo e, (2.9)
where ¢ : R, — R is continuous, nonincreasing and satisfies

$(rs) < 16(r)d(s) and rTTTG(r) < c, (2.10)

for some v, c > 0 and any r, s > 0. There exist o € (0,1) and ¢; = ¢1(p, q,2) > 0 such that

(i) |Vu(@)| < cro(|z]) |2 Vr € Q, o
(i) |Vu(z) = Vu(y)| < erp(lz)) [2] e —y|*  Va,yeQ, || < |yl .
Furthermore p
u(z) < 01¢(|x|)% Va € Q. (2.12)

Proof. For{ > 0, we set Qf := %Q If ¢ € (0, 1] the curvature of 992° remains uniformly bounded. As in

[5, p 622], there exists 0 < dp < 1 and an involutive diffeomorphism ¢ from Bs, Q% into Bs, N (Q%)°
which is the identity on Bgs, N 0% and such that Dv)(€) is the symmetry with respect to the tangent

plane T:0%) for any £ € 90 N Bg,. We extend any function v defined in Bs, N 0" and vanishing on
Bs, N 9Q% into a function ¥ defined in Bj, by

_oy ) ou(x) if 2 € Bs, N r
o(z) —{ —vou(s) ifze By N Q0 (2.13)

Ifv e CY(Bs, N 0) is a solution of (1.1) in Bs, N Q% which vanishes on 9Q% N By, , ¥ satisfies

—Za%ﬁj(x,W)JrB(x,W):o in B, (2.14)
~ O
J

Asin [5, (2.37)] the A; and B satisfy the following estimates

(4) Aj(z,0) =0

o -
() Y gt = Gl el

i,

(i) >

]

(2.15)

0 - _
a—m,Aj(ﬁ'?an)‘ < Cy P2,
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and
|B(x,n)| < Cs(1+ |n|)?, (2.16)

where the C; are positive constants. These estimates are the ones needed to apply Tolksdorf’s result [15,
Th 1,2]. There exists a constant C, such that for any ball Bsr C Bj,, there holds

IVl oo () < C (2.17)

where C' depends on the constants Cl, (k = 1,2,3), N, pand [[0[[ oo (g, ,)- We define

Dylul(y) == up = ﬁu(@y) vy € QF (2.18)
e an
y ¢
lue(y)] < OB vo(lyl)  VyeQ (2.19)
and
—Apug+ (P1p(0)TTP [ Vugl =0 in QF, (2.20)

Using formula (2.13) we extend wuy into a function %, which satisfies

— Z —A (y, Vi) + (0P1p(£)4 1P B(y, Viy) =0 in By,. (2.21)

For 0 < |z| < ¢y there exists £ € (0,2) such that % < |z| < dpf. Then y +— dy(y) with y = 7
satisfies (2.21) in By, and |us(y)| < v.é(|y|) since 1 is a diffeomorphism and D (§) € O(N) for any
¢ € 9QN Bs,. The function i, remains bounded on any ball B3r(z) C ' := {y € RV : %0 <ly| < do},
therefore |V (y)| < ¢ for any y € Bg(z), for some constant ¢ > 0. This implies

|Vu(z)| < c*y*éotb(%)(b(\x])]x\_l Vz € QN Bs,, (2.22)

which is (2.11)-(i). Moreover, by standard regularity estimates [10], there exists « € (0, 1) such that
|V (y) — Vae(y')| < cly — y'|* for all y and ¢’ belonging to Br(z). This implies (2.11)-(ii).

Next we prove (2.12). Let 0 < 01 < d such that at any boundary point z there exist two closed
balls of radius d; tangent to dQ at z and which are included in Q U {2z} and in Q° U {z} respectively (d;
corresponds to the maximal radius of the interior and exterior sphere condition). Let = € {2 such that
d(x) < 07 (this is not a loss of generality) and z, be the projection of = on 9€). We first assume that
does not belong to the cone Ew with vertex 0, axis —ng, where ng is the normal outward unit vector at
0, and angle 7. Consider the path ¢ from z, to = defined by ((t) = tx + (1 —t)z, with 0 < ¢ < 1. Then

1 1
u(z) = /0 %u o ((t)dt = /0 (Vuo(t),x — z,)dt (2.23)

Thus, by the Cauchy-Schwarz inequality, using (2.11),

1
lu(z)| < erd(z) /0 %dt. (2.24)
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Since x ¢ Y=, ((t) ¢ Xz and there exists ¢ > 0 depending on €2 such that ey ] < [¢(t)] < e || for
all 0 < ¢ < 1. Therefore ¢(|C(t)]) < ¢(c2 |x]) < vo(c2)P(|x|) by (2.10). This implies

d(x)¢(|=)

|u(:r3)| < 76102¢(C2) |,I| (225)
by (2.12) whenever ¢ Xz. When 2 € Xz then d(z) < |z| < c3d(z) where c3 > 0 depends on the

curvature of 9. Then (2.9) combined with (2.10) implies the claim. O

Lemma 2.6. Assume p — 1 < q < p, ) is a bounded C* domain such that 0 € S and Ry = max{|z| :
2z € Q). Ifu € C(Q\{0})NCY(Q) is a positive solution of (1.1) which vanishes on I\ {0}, it satisfies

a—p —4=P_
c2 <]m\q+1—p - Rg“”) ifg<p
u(z) < (2.26)
(p—1)In (f2) ifg=p
forall x € Q, where co = co(p,q) > 0.
Proof. For e > 0 we denote by P, : R — R the function defined by
0 ifo<r<e
P(r)=q —d5 43 0% 45 3 ife<r<2e 2.27)
r— % if r > 2e,

and by u,. the extension of P.(u) by zero outside (2. There exists Ry such that Q C Bpg, . Since
0 < P.(r) < |r| and P. is convex, u, € C(RN \ {0}) nWLP(RN \ {0}) and

—Apue + [Vu <0 inRY.
LetR>Ry. Ifp—1<qg<p

Uer(l2l) = e (2] = a1 = (R— )ah1)  in Bp\ B., (2.28)

withey = (p—¢q) " (g+p—1) #+1-5 . Then —AUe g +|VU. gr|* > 0. Since u, vanishes on 9B and is
finite on 0B, it follows u. < U, gr. Letting successively ¢ — 0 and R — R yields to (2.26). If ¢ = p
we take

R—e¢ )
Uelle) ==t (Z=5)  in B\ B 2.2
which turns out to be a supersolution of (1.1); the end of the proof is similar. U

As a consequence of Lemma 2.5 and Lemma 2.6, we obtain.

Corollary 2.7. Let p,q Q and u be as in Lemma 2.6. Then there exists a constant cs = c3(p,q,€) > 0
such that )
|Vu(z)| < cg|x| aFi=r Ve e Q (2.30)

and

u(z) < esd(x) \x!fﬁ vz € Q\ {0}. (2.31)
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Remark. If Q) is locally flat near 0, then estimates (2.30) and (2.31) are valid without any sign assumption
on u. More precisely, if 02N Bs, = To0€2 N Bs, we can perform the reflection of « through the tangent
plane 7012 to 02 at 0 and the new function @ is a solution of (1.1) in Bs, \ {0}. By Proposition 2.1, it
satisfies )

IVa(z)| < enpglz| aFi=r Vr € B%O \ {0}. (2.32)

Integrating this relation as in [3], we derive that for any = € Bs, N (2, there holds
2

enpa (7% = (3)7%) + max{Ju(=)| : |2| = %} ifp£q
[ 0 :
cNpIn <T°x‘> + max{|u(z)| : [2| = 2} ifp=gq.

lu(x)| < (2.33)

In the next result we allow the boundary singular set to be a compact set.

Proposition 2.8. Let p — 1 < q < p and 01 as above. There exist r* € (0,01] and ¢y = c4(N,p,q) > 0
such that for any nonempty compact set K C 99, K # 0 and any positive solution v € C(Q\ K) N
CH(Q) of (1.1) which vanishes on 9Q \ K, there holds

u(z) < c;;d(x)(d;((x))*ﬁ Vo € 00 s.t. d(z) < r*, (2.34)
where dg (z) = dist (x, K).

Proof. Step 1: Tangential estimates. Let € € such that d(z) < ¢;. We denote by o(z) the projection
of = onto 0%, unique since d(z) < &;. Letr,r’,7 > Osuch that 3r < v/ < Irand0 < 7 < %
and put wy; = o(z) + Tng. Since O is C?, there exists 0 < r* < §; depending on €2 such

that d (wrg) > %r whenever d(z) < r*. Leta > 0 and b > 0 to be specified later on; we define

o(s) = a(r’ — s)qﬁfp —band v(y) = 0(ly — wr|) in [0,7) and B,/ (w, ;) respectively. Then

=2 [ 1~ qr2— o N -1 p—aqa \", S
e e e ) R ey M LR
s qg+1—p

where

_ q+1-—p -1 N — 1 (r —
X(s) = (a2 =9 P ( )" —s)
qg+1-p qg+1-p s
For any 7 € (0, ") there exists a > 0 such that

_ q+1-p _ _ I _
(a P—4q ) > Pl (IN-DOT=s)
qg+1—-p qg+1—-p 5
This implies
—Apu+ Vot >0 in By (wrz) \ Br(wrg). (2.35)

Next we take b = a(r’ — 1) 777, thus v = 0 on OB, (wy.,). Clearly B (w,.) C Q since 7 < 4.
Therefore v > 0 = w on 0 N B,/ (wrz) and u < v = oo on Q N IB,(w;,). By the comparison
principle, v > win QN B,/ (w; ;). In particular

u(w) <o) < a(r' — 7 — d(@)TFTF —a(r’ = 7)TT.
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We take now 7 = %/ and d(z) < 7 and we derive by the mean value theorem

u(e) < ' FTd() = ¢hd(2)(dxe (@), (236)
with ¢j = ¢ (p,q) > 0 Letting ' — Zr, we get (2.12).

Step 2: Global estimates. If d(z) > Ydk (z), there holds

q9—p

d(z)(dg ()" 7177 > 2”75 (d(z)) 1.

Combining this inequality with (2.6) and obtain (2.34). O
Remark. Under the assumption of Proposition 2.8, it follows from the maximum principle that v is upper
bounded in the set Q.. := {z € Q: d(z) > r*} = Q\ Q,« by the solution w of

—Apw+ [Vw|? =0 in .«

w = eyd(@) (A (2)) FFin 0, (2.37)

and w itself is bounded by d* = max{cd(z)(dx (z))" T sd(z) =}

Next we prove a boundary Harnack inequality. We recall that d; has been introduced at Corollary 2.3,
and that the interior and exterior sphere conditions hold in the set {z € RY : d(x) < 6;}.

Theorem 2.9. Let ¢ > p — 1 and 0 € ON). Then there exists cs = c5(N,p,q, Q) > 0 such that for any

positive solution v € C(QU ((02\ {0}) N Bas,) NCH(Q) of (1.1) in Q, vanishing on 92\ {0}) N Bas,,
there holds

uly) _ ufa)

csd(y) — d(z)

forall x,y € B% N Q such that 3 |z| < |y| < 2|z|.

IN
&

(2.38)

For proving Theorem 2.9 we need some intermediate lemmas. First we recall the following result
from [1].

Lemma 2.10. Assume that a € 9, 0 < r < 6, and h > 1 is an integer. There exists an integer Ny,

depending only on 61, such that for any points x and y in QN Bs- (a) verifying min{d(z), d(y)} > r/2",
2

there exists a connected chain of balls By, ..., Bj with j < Noh such that

x € By,y € By, BiNBii1#DWfor1<i<j—1 (2.39)
and 2B; C Ba,(Q)NQ for1 < i <j. '
The next result is a standard Harnack inequality.

Lemma 2.11. Assume a € (002 \ {0}) N Bas; and 0 < r < |a| /4. Let uw € C(Q U ((0Q\ {0}) N
3

Bss,)) N CL(Q) be a positive solution of (1.1) vanishing on (92 \ {0}) N Bays,. Then there exists a
positive constant cg > 1 depending on N, p, q and 01 such that

u(x) < cgu(y), (2.40)

for every x,y € B%r (a) N Q such that min{d(x),d(y)} > r/2" for some h € N.
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Proof. For { > 0, we define Ty[u] by

Ty[u)(z) = 7P u(lz), (2.41)
and we notice that if u satisfies (1.1) in €, then T}[u] satisfies the same equation in Q¢ := ¢~1Q. If
we take in particular £ = |a|, we can assume |a| = 1, thus the curvature of the domain /% remains
bounded. By Proposition 2.8

u(xr) < ¢y Va € Ban(a) NQ (2.42)

where cg depends on N, ¢, 6;. Then we proceed as in [11], using Lemma 2.10 and internal Harnack
inequality as quoted in [16, Corollary 10]. U

Since the solutions are Holder continuous, the following statement holds as in [16, Theorem 4.2]:

Lemma 2.12. Let the assumptions on a and u of Lemma 2.11 be fulfilled. If b € 02 N B,(a) and
0 < s < 271y, there exist two positive constants § and c; depending on N, p, q and € such that

§
u(z) < e7 i ;5b| max{u(z) : z € B.(b) N Q} (2.43)

for every x € Bg(b) NS
As a consequence we derive the following Carleson type estimate.

Lemma 2.13. Assume a € (0Q\{0})NBas;, and0 < r < |a| /8. Letu € C(QU((02\{0})NBas, )N
3

C?(Q) be a positive solution of (1.1) vanishing on (92 \ {0}) N Bays,. Then there exists a constant cg
depending only on N, p and q such that

u(r) < cgu(a — in,) V€ By(a) N (2.44)

Proof. By Lemma 2.11 it is clear that for any integer i and 2 € B,.(a) N such that d(x) > 27"r, there
holds
u(z) < cfula —in,). (2.45)

Therefore u satisfies inequality (2.43) as any Holder continuous function does. The proof that the con-
stant is independent of r and « is more delicate. It is done in [1, Lemma 2.4] for linear equations, but it
is based only on Lemma 2.12 and a geometric construction, thus it is also valid in our case. U

Lemma 2.14. Assume a € (0Q2\{0})NB2s; and0 < r < |a| /8. Letu € C(QU((02\{0})N Bas,))N
3

C?(2) be a positive solution of (1.1) vanishing on (92\ {0}) N Bas,. Then there exist o € (0,1/2) and

cg > 0 depending on N, p and q such that

1t  ub—tn,) t
— < ——= < 9— (2.46)
cor — ula—In,) r

foranyb € B.(a) N0Qand 0 <t < Gr.
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Proof. 1t is similar to the one of [11, Lemma 3.15]. ]
Proof of Theorem 2.9. Assume x € B2s, M) and setr = ‘—?.
3

Step 1: Tangential estimate: we suppose d(x) < §r. Leta € 92\ {0} such that |a| = |z|and = € B, (a).
By Lemma 2.14,
< u(z) < 8Cgu(a - %na)‘
d(x) ]

We can connect a — 5n, with —2rn, by m; (depending only on V) connected balls B; = B (z;) with
r; € Qand d(z;) > 5 for every 1 <4 < mj. It follows from (2.44) that

(2.47)

cg tu(—=2rn,) <wula - §n,) < g u(—2rn,),

which, together with (2.47) leads to

1 u(=2rn,) _ u(x) < cmu(—?rno)

, (2.48)

co ol T d() ]

with ¢19 = 8cgeg .

Step 2: Internal estimate: we suppose d(x) > §r. We can connect —2rn, with 2 by ms (depending
only on N) connected balls B, = B%(ac;) with 2} € Q@ and d(2]) > §r forevery 1 < i < my. By
Harnack and Carleson inequalities (2.40) and (2.44) and since § |z| < d(z) < |z|, we get

a u(=2rn,) _ u(z) _ 4¢f™ u(—2rn,)
4eg™ |z “dx) T o« ||

(2.49)

Step 3: End of proof. Suppose I%I < s < 2|z, we can connect —2rn,, with —sn,, by m3 (depending
only on N) connected balls B} = B (z;) with 7 € Qand d(z7) > r for every 1 < i < mg. This fact,
jointly with (2.48) and (2.49), yields to

— < <cn
c1 |z d(x)

1 u(—sn,) _ u(z) u(—sn,) (2.50)
||
where ¢11 = ¢11(N, q,). Finally, if y € B% N 2 satisfies |i2| < |y| < 2|x|, then by applying twice
(2.50) we get (2.38) with c5 = c;. O
The following inequality is a consequence of Theorem 2.9.

Corollary 2.15. Assume q > p—1and 0 € 0N). Then there exists c12 > 0 depending on p, q and ) such
that for any positive solutions u1, uy € C(Q U ((0Q\ {0}) N Bas,)) N CL(Q) of (1.1) in Q, vanishing
on (002 \ {0}) N Bys,, there holds

sup {ul(y) cy € B\ Bz} < ¢qg inf {ul(y) iy € B, \Bz} . (2.51)
uz(y) 2 2
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3 Boundary singularities

3.1 Strongly singular solutions

In this section we consider the equation (1.1) in Rf . We denote by (r,0) € R x SV~ the spherical
coordinates in RY and

SN ! {(smtba cos @) : U'ESN_Z,th[O,g)}.

If v(z) = r~Pw(o) satisfies (1.1) in RY and vanishes on 9RY \ {0}, then 8 = 3, and w is a solution of

-2

_2
—div' <(ﬁgw2 + \V’w[z)pT V’w) — ByAs, (Biw® + !V’w[z)% w
(52002 + Vw2 )2 —0 in Si\f—l (3.1)

w=0 on GSiV_l.

where 3, and Ag, have been defined in (1.10). We denote by (8.,¢*) € R x C’Q(gf*l) the unique
couple such max ¢, = 1 with the property that the function (r, o) — 7“76*1/}*(0') is positive, p-harmonic
in RY and vanishes on OR%Y \ {0}. Then 1), = ¢ satisfies

—ai (8262 +1962) T W) = Bk, (3202 + [90) T 0 =0 in s

=0 on 855_1.

(3.2)

Since the function ¢* is unique it depends only on the azimuthal variable O5_1 = cos*1(|7N) (see
Appendix II). Our first result is the following

Theorem 3.1. If ¢ > q., or equivalently 3, < [3, there exists no positive solution to problem (3.1).

Proof. Suppose such a solution w exists and put 6 = 3/, then 0 < 6 < 1. Setn = Y?, where 1) is a
positive solution of (3.2), and define the operator 7 by

p—2
T(n)z—div’<(ﬁ202+lv’nl) v )—mAﬁq( 22 4 (V) g
+ (820 + |V'n)?)

(3.3)

q
2

Since V) = 9/~ 1V,

(B2 + |V'n2) 7 C 20D ) (B20% + [V'p2) 7

-2

— p—2
(52772 + |V/77| )T \v& n= or— lw(G 1)(p—1) (5*7/) + |V ¢| ) 2 V/¢,
therefore

7—(,'7) _ _Hp—lw(e—l)(p—l)divl ((ﬁ$¢2 |v/w| ) 2 v/ )
_ 9[)—1(9 _ 1)( )w(e 1)(p—1)—1 (ﬁ2¢2 + |v/w| ) |V’¢|2
— B, 07O DE (8207 4 |TPP) T g+ 090D (22 + |Vf2)E
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But 8,Ag, 0P~ = B.Ag,0P~1 < B, A, 6P ' since B, < fB.. Using (3.2), we see that T (n) > 0. Because
Hopf Lemma is valid, there holds d,1) < 0 on 9S i\f ~1 Since wis C'in S i\/ ~1 and 1 is defined up to an

homothety, there exists a smallest function %) such that > w, and the graphs of n and w over S i\/ ~Lare
tangent, either at some « € Sivfl, or only at a point o € 35571. We put w = 1) — w. Then

T(n) =T - T(w) = (1) - (0), 3.4
where ®(t) = T (wy) with wy = w + tw.

We use local coordinates (o1, ...,on—1) on SV ! near . We denote by g = (g;;) the metric tensor
on SV~! and by ¢7* its contravariant components. Then, for any ¢ € C1(SN~1),

2 0p 0
2 _ Z jk 9P 9P _

If X = (X',..X% e CY(T'SN-1) is a vector field, we lower indices by setting X = Zg&XZ- and
i

define the divergence of X by
1 0 1 0 ,
i = == 3 (i) - o5 ().
TV ; b V14l 250 Z
We write ®(t) = ®1(t) + Po(t) + P3(t) where

p—2
2

p—= g
O1(t) = —Belg, (Bjw] + V') = wry  @a(t) = (Bjwi + [Viwi]?)?

and
—2
P3(t) = —div’ ((52%2 + |V'wt|2)pT V'wt> )
Then
ow ow
J J j J
where -
b= /BqAﬁq </8q2wt2 + ‘th‘2> ’ <(P - 1)5301? + ]thIQ) s
52 5 Ow
aj = (p— 2)5qABq </8§wt2 + ‘th‘2> : Wi ZgﬂkTﬂ;
k
2) 3!
d =82 (w® + |Var?)* wr,
and

2 2 237! ik 0wt
¢ =4 (5qwt + [Vl > Zg dor
k
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Furthermore
P3(1) — @3(0) = —(p — 2)div’ ((ﬁqzwf + \V’th)% (BRuww + (V'wy, V'w),) V’wt>
— div’ <(ﬁq2wtz - \V’th)% V’w> .
Therefore we can write (1) — ®(0) under the form
(1) — ®(0) = —div'(AV'w) + (B, V'w), + Cw := Lw (3.5)

where
p—4
(AX,X)g = (B2w} + |V'wi[?) g (p—2)(V'wy, X)2 + [V'wy|*| X ?) 3.6
> (8202 + [V'wr[2) 7 min{l,p — 1} V'wy 2| X 2.

and B and C can be computed from the previous expressions. It is important to notice that ﬁgwf—i- |V wy|?
1

is bounded between two positive constants m; and my in Siv ~~. Thus the operator £ is uniformly
elliptic with bounded coefficients. Since w is nonnegative and either at some point o, V'w(a)) = 0 and
w(a) > 0, or at some boundary point o where w(a) = 0 and dphw(a) < 0, it follows from the strong
maximum principle or Hopf Lemma (see [7]) that w = 0, contradiction. ]

Theorem 3.2. Assume q < q. or equivalently B, > (.. There exists a unique positive solution w, to
problem (3.1).

Proof. Existence. It will follow from [4]. Indeed problem (3.1) can be written under the form

A(w) = —div' a(w, Vo) =B(w,V'w)  inSY! 3.7)
w=0 on 655‘1, .
where b2
— (R2,2 2\
a(r.€) = (Bir*+1g?) = & (3.8)

B(r,€) = s, (B2 +167)'T r— (52 +16P)?
The operator A is a Leray-Lions operator which satisfies the assumptions (1.6)-(1.8) of [4, Theorem 2.1],
and the term B satisfies (1.9),(1.10) in the same article. Therefore the existence of a positive solution
w € Wol’p(SiV*l) N L>®°(SY 1) is ensured whenever we can find a supersolution @ € W'P(SY~1) N
L>(SY~1) and a nontrivial subsolution w € WP(SY 1) of (3.7) such that

0<w<w in SY . (3.9)

First we note that = ng is a supersolution if the positive constant 7 is large enough. In order to find a
subsolution, we set again 1 = ¢ with & = 3,/B. and ¢ as in (3.2). Now 6 > 1, thus € Wol’p(SiV_l).
As above we have

7—(,'7) _ _Hp—lw(e—l)(p—l)divl ((ﬁ$¢2 |v/w| ) 2 v/ )
_ 9[)—1(9 _ 1)( )w(e 1)(p—1)—1 (ﬁ2¢2 + |v/w| ) |V’¢|2
— B, 07O DE (8207 4 |TPP) T g+ 090D (22 + |Vf2)E
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Now By Ap, 0772 = Bulp, 077" = B(Ap, —Ap,)0P '+ Bulp, 0P and Ag, —Ap, = (B,—B.)(p—1) =
Bulp—1)(0 — 1), hence
T(n) = —0r 1= DE=Ddiy’ ((5*w2+|w| )T )
— P10 — 1)(p — 1)pO-DE-D-1 (5242 1 [V 2) T Vg2
— Bu(Ag, — Dg, )P~ 00D (527 4 \WPW
— BoAp B71ODED (22 1 [VI[2) T g 4 gaOa (522 4 [VIpf2) B

Using the equation satisfied by 1 yields to the relation

T(n) = —0P~1(0 — 1)(p — 1)p@-DE-D-1 (8242 4 |7/y2) T |V'w|2
— B2(p— 1)(6 — 1)6r~1p0-DE=D=1 (8292 4 |77p|2) 2
+ 01p0=DT (3292 4 |V h[2) 2

=771 (0 — 1)(p — D DE=DL (5292 + [V'y]?)
+ p6=Da (822 4 |V'[?) &

o
2

If we replace n := 1, = % by 1 := 1, = (ma))? in the above computation, the inequality 77,,) < 0
will be true provided

PO DD < grtoa(g - 1)(p — 1) (8202 +[T) T
which is satisfied if we choose m small enough so that (m))? < 5 and satisfying

pP—q
min, gy (B9% +[V9[7) 2

0—1)(q+1—p)+1
mameSiV_l 1/}( )( )

mflat+1-p) < ﬁiefl)(qul*p)Jrlep—l—q(a _ 1)(]) _ 1)

I . . . . aN-1 .
Therefore 0 < 7,,, < 1 and standard regularity implies that the solution w is C'* in S L . Actually wis
C™ since the operator is not degenerate.

Uniqueness. We use the tangency method developed in the proof of Theorem 3.1. Assume w; and wo
are two positive solutions of (3.2), then they are positive in .S iv ! and dyw; < 0 on DS iv ~1. Either the
wj are ordered and w; < wo, or their graphs intersect. In any case we can define

T =inf{s > 1: swy > wa}.

We set w* = Tw;. Then either the graphs of w9 and w* are tangent at some interior point ¢, or they are
not tangent in Sivfl, Opw™ < Opwso < 0 on OSiV*I and there exists o € 85571 such that Opw* () =
Onws(a) < 0. Furthermore 7 (w*) > 0. If we set w = w* — wy, then, as in Theorem 3.1,

—div'(AV'w) + (B, V'w), + Cw = Lw > 0
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where
(AX, X)y = (82w} + | Viwr?) T (p 2)(V'wy, X)2 4+ |[V'wy | X |?)

2 / poe _ 1121 v 2 (3.10)
> (B 2 4+ |V w|? ) min{1,p — 1}|V'w|?| X7,

IS

in which w; = wy +t(w* —wy) and ¢ € (0, 1) is obtained by applying the mean value theorem and B and
C are defined accordingly. Since L is uniformly elliptic and has bounded coefficients, it follows from
the strong maximum principle that w = 0. Thus w* = 7w; = wo and 7 = 1 from the equation. This
ends the proof. U

3.2 Removable boundary singularities

The following is the basic result for removability of isolated singularities. It is valid in the general case,
but with a local geometric constraint.

Theorem 3.3. Assume ¢* < q < P < N, Qis a C? bounded domain with 0 € 0%, such that QN Bs =
B for some § > 0. If u € C*(2\ {0}) is a nonnegative solution of (1.1) in Q2 which vanishes on
O\ {0}, then it is identically 0.

Proof. Step 1: Assume Q C RY. For e > 0, we set 2. = QN B¢ and H. = RY N BE. For k,n € N,,
n > diam (€2), we denote by vy, , « (n € N,) the solution of the problem

—Apu + Vot =0 in H. N B,
v=kx on d(H.N By,). G.11)

RfmaBe

q—=p . .
If k > cpeat1-7 for a suitable co = ca(p, q) > 0 (see Lemma 2.6), then vy, , ¢ > u in QL. Moreover there
holds vy e < Vi . forn < n'and k < k’. Furthermore the function

Uenl®) = ez ((Jo] = 777 — (n— )t )

is a supersolution in B,, \ B, and there holds vy, . < Ue,. By monotonicity and standard a priori
estimate, we obtain that vy, ,, ¢ — v when n, & — oo and that the function v = v, is solution of

—Apu+|Vou|T=0 in H,
lim| e v(z) = 00 (3.12)
v=0 on ORY N Be.
Furthermore v
uw(z) < ve(z) < co|z| — €)t1-7  in QL. (3.13)

The function v, may not be unique, however it is the minimal solution of the above problem since the

Uk.n,e 18 Unique, and monotonicity in n and & holds. Actually, v, < v if 0 < e < €. For ¢ > 0, we recall

that the transformation v +— Tj[v| defined by (2.41) leaves equation (1.1) invariant. As a consequence

of the uniqueness of the approximations we have Ty[vk p.] =V p-q_ , which implies
(atl-pEkt—1nf—1e

Ty[ve] = vp-1,. (3.14)
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Letting ¢ — 0, we derive from the monotonicity with respect to € and standard C''® estimates, that the
following identity holds:
Ty[vo] = vo Ve > 0. (3.15)

The function vy is a positive and separable solution of (1.1) in RY which vanishes on 9Q\ {0}. It follows
from Theorem 3.1 that vg = 0, and so is .

Step 2: The general case. We assume that 2 N By C Rﬂ\rf and we denote by M the maximum of u on
0BsN$. Then the function (u— M) is a subsolution of (1.1) in 2N Bs which vanishes on 92N Bs\{0}.
By Step 1, it is dominated by vg, which ends the proof. U

Remark. The previous result is valid if « is a subsolution with the same regularity. If u is no longer
assumed to be nonnegative, only " vanishes. Furthermore, the regularity of the boundary has not been
used, but only the fact that € is locally contained into a half space to the boundary of which 0 belongs.

Remark. 1f no geometric assumption is made on <2, we can prove that u(z) = o(|z| %) near 0. The
next result shows that the removability holds if ¢ > g,.

Theorem 3.4. Assume ¢* < q < p < N and Q is a C? bounded domain with 0 € 0. If u is
a nonnegative solution of (1.1) in § which belongs to C*(2\ {0}) and vanishes on 9§\ {0}, it is
identically 0.

Proof. As it is proved in [12], for any smooth subdomain S C S™¥~!, there exists a unique B, > 0
and 1* > 0, unique up to an homothety, such that & — || =< 47 (|z| ™ 2) is p harmonic in the cone
Cs={x e RN\ {0} : || "2 € S} and * satisfies

p—

2 —2
—di/ ((533¢:2 + | VyE?) W;) — Bushp, (B2 2+ V)7 g =0 inS
Yir=0 ondS,

(3.16)
Furthermore S € S ¢ SN~!implies 8.5 < B.s. Using the system of spherical coordinates defined in
(6.5) in Appendix II, for ¢ > 0 we denote by S := S, the spherical shell with vertex the north pole N
and latitude angle O _1 € [0, § + ¢]. Because of uniqueness of 3., Bis, T B« as € — 0. Therefore, if
q > g, or equivalently 8, < f, there exists 6,e¢ > 0 such that Q@ N Bs C Cgs. N Bs and 3; < Bys,.
Since Theorem 3.1 is valid if Siv ~1is replaced by S, and By < Bxs. it follows that u = 0 as in the proof
of Theorem 3.3, Steps 1 and 2. U

The next result, valid in the case p = IV, is based upon the conformal invariance of the N-Laplacian.
In this case the exponent (3, corresponding to the first spherical N-harmonic eigenvalue is equal to 1 and
the corresponding spherical N-harmonic eigenfunction in S i\f “Lisay/ |z

Theorem 3.5. Assume N — % < q < N, Qis a bounded domain and 0 € OS2 is such that there exists a
ball B C Q)€ to the boundary of which 0 belongs. If u is a nonnegative solution of

—Anu+|Vul'=0  inQ, (3.17)

which belongs to C(2\ {0}) N Wol’N(Q \ B(0)) for any € > 0, it is identically 0.



M.-F. Bidaut-Véron, M. Garcia Huidobro, L. Véron 20

Proof. We assume that the inward normal unit vector to 02 at 0 is ey = (0,0, ..., 1) and that the ball
B = Bi(a) of center a = —%e ~ and radius % touches 0f2 at 0 and is exterior to €2 (this can be assumed
up to a 2rota‘[ion and a dilation). This is the consequence of the exterior sphere condition at the point 0.
It is always valid if 9 is C2. We denote by 7., the inversion of center w = —ey and power 1, i.e.

Zo(z) =w+ | - 7:"2 . Under this transformation, the complement of the ball B1 (a), which contains €2, is
- 2

transformed into the half space RY which contains the image  of Q. Since u satisfies (3.17), & = uoZ,
satisfies

—Ayii+ |z —w V|Vl =0  inQ. (3.18)

Furthermore since 0 = Z,,(0) and Z,, is a diffeomorphism, @ € C (6\ {op)n C'(£2) and it vanishes on
o0\ {0}. Since |xr —w| < 1and ¢ < N, @ is a subsolution for (3.17) in G. By Theorem 3.4, 4 = 0.
(]

3.3 Weakly singular solutions

The main result of this section is the following existence and uniqueness result concerning solutions of
(1.1) with a boundary weak singularity. We recall that v, is unique positive solution of (1.11) such that
sup ¥, = 1. Our first result is valid for any 1 < p < N but it needs a geometric constraint on §2.

Theorem 3.6. Letp — 1 < g <q. <p < Nand) C Rf be a bounded C? domain such that 0 € 0.
Assume that there exists 6 > 0 such that Qg :== QN By = B;’. Then for any k > 0 there exists a unique
positive solution u := uy, of (1.1) in Q, which belongs to C*(Q\ {0}), vanishes on 9O\ {0} and satisfies

()
i}i% Tz) k (3.19)
in the C*-topology of S iv L where

U (x) = [o| 7 (|2 2).

The proof of this theorem is long and difficult and requires a certain number of intermediate results.

Lemma 3.7. Let the assumptions on p, q and ) of Theorem 3.6 be satisfied. There exists a unique

positive p-harmonic function @ in §, which is continuous in Q \ {0}, vanishes on O\ {0} and satisfies
d

oy 2:(@)

z—0 \If*(.%')

=1. (3.20)

Proof. For( < e < ¢ let v be the unique nonnegative p-harmonic function in Q\B—e+ which is continuous
in Q\ BQL , vanishes on 02 \ B, and achieves the value W, on 9B, N Q. Since 2 C ]Rf , Ve < W, in

Q\ BS. Hence inequalities 0 < € < ¢ < § imply v, < v in \B—z,r Because ¥, < § P+, there holds
ve+ 07 >0, (3.21)

in Q \ By . Since v, and U, coincide on B and vanish on RY N (B} \ B), (3.21) holds also in
By \ Bf. Because v, > 0 there holds

(U, —0P)y <v.<¥, inQ\BI. (3.22)
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By a standard regularity result v, converges to a function ®, continuous in Q \ {0}, p-harmonic in
such that

(\I/* - 5_6*)—1— S q)* S \II*
in Q. Therefore (3.20) holds provided ﬁ remains in a compact subset of .S iv ~1. Let us define a function

by by bu () = z|% ®,(z), then bu(r,0) < 1,(c) where r = |z and 0 = & € SV—1, By standard
|| +
ChH estimates, (5*(7“, .) is relatively compact in the C (Siv A)—topology. Therefore the convergence of

iigg to 1 when = to 0 holds not only when ﬁ remains in a compact subset of S iv ~1, but uniformly

on S¥~1, which implies (3.20). Uniqueness follows classically by (3.20) and the maximum principle.
U

Lemma 3.8. Let the assumptions on p, q and ) of Theorem 3.6 be satisfied. If for some k > 0 there
exists a solution uy, of (1.1) in §, which belongs to C1(Q \ {0}), vanishes on 9 \ {0} and satisfies
(3.19), then for any k > 0 there exists such a solution.

Proof. We notice that for any ¢ < 1 (resp ¢ > 1), cuy is a subsolution (resp. supersolution) of (1.1) in
Q. Let ®, be as in Lemma 3.7. If ¢ < 1, the function ck®, is a supersolution of (1.1) which vanishes on
o2\ {0}. Furthermore
cug(z)
im =ck = lim ————=.
z—0 \I/*(x) z—0 \I/*(x)
Then there exists a solution u.; of (1.1) in © which satisfies cup < uqp < ck®,. If ¢ > 1, we set
u* := T,o[ug], which means u*(z) = c?1%uy(c? ) with @ = (8, — B.) L. Then u* is a solution of (1.1)
in Q¢ = C%Q In particular, u* satisfies the equation in B (0). Since ¢/ > 1, B, (0) C B; (0). Put
0 0

m = max{u* : @ € 9B (0)}. The function (u* —m), extended by 0 outside BE(O), is a subsolution
0 -0

of (1.1) in €. Furthermore it satisfies

lim ﬂ = ck,
z—0 \If*(.%')

uniformly on any compact subset of Siv ~L. Therefore there exists a solution ., of (1.1) in 9 which
satisfies (u* —m)+ < ue, < ck®,, and in particular it vanishes on 9Q\ {0} and belongs to CH(Q\{0}).
By [13], uy, is positive in §2. Thus u,, belongs to C1%(B; (0) \ {0}) and satisfies

Vuq(x) — Vu
Vuck(56)| + |$|1+ﬁ*+a sup | ck‘( ) — ck(y)|
ly] < lal |z —y]
TFy

|2 e ()] + |2+ <M

by (2.11). Therefore the set of functions {r®*!Vu.(r,.)},>o is uniformly relatively compact in the
topology of uniform convergence on §JI—1. Since it converges to ckV’1), uniformly on compact subsets

of § i\/ ~1as 7 — 0, this convergence holds in C'(S i\f ~1). This implies

uck(x) — ck.

@) (3.23)
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O

The next Lemma is the keystone of our construction. Its proof is very delicate and needs several
intermediate steps.

Lemma 3.9. Under the assumptions of Theorem 3.6 there exists a real number Ry such that 0 < Ry < §
and a positive subsolution U of (1.1) in BEO which is Lipschitz continuous in BEO \ {0}, vanishes on

BEO N ORY \ {0}, is smaller than U, and satisfies

o (@)

limy 5 = 1. (3.24)

Proof. The construction of the function @. We look for a subsolution under the form u = ¥, — w for a
suitable nonnegative function w.

Step 1: reduction of the problem. We use spherical coordinates for a C'! function u :  + u(z) =
u(r,o),r=|z|, o = ‘—:’;‘ Then Vu = uye 4+ r~'V'u where e = |z| ™ z, |[Vu|? = u2 4 r~2 |V'u® and

q
|Vul? = <u? +r 2|V u|2) *. The expression of the p-Laplacian in spherical coordinates is
p—2 p—2
p=2 N —1 p=2
—Apu = — <<u% +r2 |V’u|2) : ur> -— (u% +r72 |V’u|2> * o,
T

s
-2

1 b—=
— —div ((u% + 2 ]V’u!2> ? V’u> )
,
Put v(t,o) = rP*u(r,o) witht = Inr € (—o0, In d], then v satisfies

Qv] :=

_ <((Ut - /8*7))2 + ‘Vh)’?) 2 (’Ut —_ ,8*’0)> — div' <((Ut . 5*1))2 n ’V’U‘2) b= v/y) (325)
t
+ Aﬁ* <(Ut - /8*7))2 + ‘V/U‘Q)p% (’Ut — ﬂ*’l}) + el/t ((Ut . ,8*’0)2 X ‘V/UF)% -

in (—o0,Ind) x SY ' where v = 1—(¢+1—p)(Bi+1) = 1—% > 0and Ag, = B.(p—1)+p—N.
Notice that 1), satisfies

p—2

p—2
—div/ ((53w3 + [V[*) ? V’w*) = Buhg. (B2 4+ [V'0*) T =0, (3.26)
hence it is a supersolution for (3.25). We look for a subsolution under the form

V(t,0) = ¢ — a(t)g(¢x)

where ¢ is a continuous increasing function defined on R, vanishing at 0 and smooth on R* and
a(t) = €' with v > 0 to be chosen. Thus a’ = va, a’ = 7%a, V; = —yag(s), Vi — BV =
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—Btbx + a(Be —7)g(i), V'V = (1 — ag' (1+)) V"¢, and
(Vi = BV + V'V = (=Buhs + a(Be = 1)g(w))> + (1 — ag/(1))? [V
= (8202 + 2B, (v = B)g(s) ) + (1 = 2ag/ () [V'9ul* + O(a® [lg(¥) | c1)
= 8202 + |V + 20 (Bu(y = BY.g(6.) — 0/ () [V]?) + O(a? llgtn) e )-

Therefore

(R

p—2
2

By = B)ug(th) — ' (102) [Viba |2

t+ -2 202 1 [V

= (B2 +1vP)

+0(a® [lg(W)]l o),

and

et (Vi = BV)2 + W'V

IS N———"
N

By = B)wug(ihs) — g' (1) V]
242 + Ve, |
+0(e"a® [|g(¥s) | ),

14 qa

et (8202 + V')

thus

p—2

(V=B +IVVP) * (V- BY)

5 (3202 4 1V0) T b+ alB ) (B2 4 19) T g(wn)
By = BYng(ibs) = 9/ () [V

—aB(p—2) Pu + 0@ lg(a) | en)-
(8292 + V') 7
Finally,
- (= swp+9vE) T -
=a {(72 — B:7) (/m + |V >_ 9(¢) (3.27)

Bi(7? = Boy)eg(ths) — 79 (14) [V |?
(8292 + [V' ) =

+B:(p — 2) Pu| + 0@ [|g(v:) || c2)-
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Since
—2

(V= BV +IVVP) * vV =

p—2
2

Bily = B)vug(ihs) — g'(0,) [V

V,*
B2 + |V, [? v

(B202 +19"0’) T (1= ag ()

1+a(p—2)

+0(@® gl en)

= (202 + [v'0.P) T v
| 9B = Bubug(¥) — g () [V
B+ V[
+ 0@ |lg(¥e)lln),

V',

a (8202 + V') — g ()

we get similarly

ﬂM(«m—m)-HVW)QVV)—wW(@%VvaUQQWQ

By — B)ug(ihs) — g/ (0.) |V, [
B2Y2 + |V, |?

+0(a” lg(¥) c2)-

—adiv' <(53¢3 + \v’w*ﬁ) B [(p —-2) — g ()

V’¢*>

(3.28)

Noting that
it (8202 41V0) T V) b= B (B2 90F) T v 629

we obtain

e "QV]

% * 2 * * x) — ! * \Y *2
:[w2—mw(ﬁwawvwﬁ) o0+ i (p - 2) P 000 Z%%)'¢'w4
(B29F + V') 2

ﬁxv—ﬂomywo—gwmﬂvmf , ,
el = &wm*w-<>wwyg
<@m+ww\>p
mw+ww|

—div <(53¢3 + \v’w*F) T [(p —2)

4m<w—@wmm+ww|) 9() + Bo(p—2)

(8202 4+ V) |1+ ga O(alg(®)llc2).

(3.30)
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In this expression we have in particular

y o\ By = Bvug(ihs) — ¢ () VUL ]* ,
—div <(ﬁfzp§+|v s ) [(p—?) 3202 1 [V —g(¢*)] Vzb*)

— (o= i | (6) (8263 + 1V F) T 9

it (3202 + 196.) 7 0= 280 (00) + (0= D) = Bu)g(v.)] 0
= (0 - 19" (W) (8262 + (V) * [V

+ (p = 1)g/ () div/ ((ﬁzwz FIV?) T w*)

((’7 — B:)g(thi)ths + ﬁ*g'(%)?ﬁf)
(B2 +vul?) *

— (p — 2)B.div Vi |

(3.31)

V’¢*>

Using the equation (3.26) satisfied by 1., it infers that

iy N By = B)eg(s) — g/ () [V]>
—div <(5f¢f + |V, | > [(p —2) 5242 1 ‘V'w*’2 —g'(¥s)

(9/,(¢*)|V,7;Z)* |2 - 5*AB*9,(¢*)¢*)

p—2
2

= (p—1) (8202 + IV'l”)

(o 2)B.di ((v = B)g(Wu) s + Beg () ¥3) o

(8202 + V) *

(3.32)
Plugging this identity into the expression (3.30), we obtain after some simplifications

p—2

Q) = (8202 + (V) T g() @iV + e RIV] + OGallg()|a), B3
where

Bila' — Bra)bug(yhs) — ag (. [Vib|”

RIV] = e (8202 +9"6.7) G202 + [V,

1+gq

] : (3.34)
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and
B21p?
B2 + V9 !2] = = Db,
g (1/1*)>> Bsths
g(1) B2 + |V, |?

Uug' (¥)

QY = (= Aa)r =5 1+ -2 9@

+ [(p — 4) B g, by — 2471, ] (7 — By <1 —

m g () ﬁwww] V'3
W) o2

(3.35)
In this expression the difficult term to deal with is [(p — 4)B8.Ag, ¥ — 2A’1),] since it has not a pre-
scribed sign. However A’ = O(1),) by (6.18) in Appendix II.

Step 2: The perturbation method and the computation with g(1.) = 1. With such a choice of function
9

2,/,2
QUVI= (= A )y = 50 |1+ (- D20 | = - DB,
(3.36)
V', |
~ (2= 2)lly = A )R+ ) T 5 0(02)
Equivalently
B2} 2
V] = [1 +(p— Q)W] (72 = (Mg, + B:))
V' |?
~4@—M&+%@éj%@? ow#
and finally

B3
BRIV + IV ]?

Using the fact that 8 > % ifl<p<2andl < B < % if 2 < p < N (see Theorem 6.1 in
Appendix II), we have

Q[V] = [H(p 2) } [v = (Mg, + B+ (p—2)(B +2)) + O3] . (3.37)

As. + Bulp— 1) ifp > 2
A, + Bt (-2 +2) 23 7 | (3.38)
N+3(p—-2)>N-3 ifl<p<2.

When N = 2, we have explicitly 8, = 1“\/3(1’; 13”+ (see [9, Th 3.3]). Therefore for all N > 2 and
p > 1, there holds
Ap, + B+ (p — 2)(Be +2) > 0. (3.39)

We fix ¢g > 0 such that, whenever 1, < €, there holds

Ag, + B+ (p = 2)(Bs +2) + O(¥) > % (Ag. + B+ (P —2)(Bs +2)). (3.40)
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If we fix g > 0 such that

o < min {3 (45, + 8. + (0= 2)(5. +2) 8. | (41

we obtain
Q1[V] < —min{l,p —1}ym? V0 <~y < 7, (3.42)

whenever 1, < €q, for some m depending only on p, ¢ and N (through v, and v/), which, in the same
range of value of v, yields to

p—

<ﬁ$w$ + yv’w*ﬁ) P () [V] < —cirhe VO <y < 0, (3.43)

for some c17 > 0 depending on N, p, g. This estimate is valid whatever is p > 1, but only in a neighbor-
hood of 1, = 0. If we replace g(t)x) = b, by gr(¥h«) = th.e " for 0 < k < 1, and denote by Q; x[V]
the corresponding expression of Q;[V] which becomes now Q; o[V]. We define similarly Qx[V], and
Q[V] becomes Qy[V]. Since g (1s) = e *¥* — kgy(1,) and g} = —2ke *¥* + k% g (¢).), we obtain

k
QLA[V] = QuolV] + k(p — 1)BAs.tb + (p— 1) (—z— n k) VP

+(2=p)B (2K + k%) . + O(42)

(3.44)

Notice that V1), vanishes only at the North pole ey, thus there exists kg € (0, 1] such that

2k

k(1 — p)BAp. s + (r—1) <¢_ - kQ) ‘V,d}*F = %(2 —p)+Bs (_Qk + k2) (08 Vk < ko

whenever ¥, < ¢y which yields to

p—

(8262 + 19'0.P) * g()QualV] < —cisk Yk < ko (3.45)

for some c13 = c13(N, p, q, €g). There exists c14 = c14(N, p, q) > 0 such that

q ! 2
2,2 2\ 2 Vt’B*(7 — Ba)ugr (V) — gk(w*) [V, | <
(8202 + 1V'.?)* |1+ ge Bty Tr < e (3.46)
in S7~! x (—00,1nd]. Moreover
O(allg(¥s)llc=) < €"'e (3.47)
for some ¢ = ¢, (N, p,q) > 0. We derive from (3.45)-(3.47)
e MQLV] < —eisk + crae ™V 4 eME Yk < ko (3.48)

Thus there exists T < Ind such that Qx[V] < 0, for all ¢ < T} and provided ¥, < €. This local
estimate will be used in the construction of the subsolution when p > 2.
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Step 3: The case 1 < p < 2. Since the function ¥* depends only on the azimuthal angle ¢ € (0; 5]
we will write 1, () = 1. (6) and V'), (0) = 1.9(0)n where n is the downward unit vector tangent to

SN=1in the hyperplane going through ¢ and the poles. From (6.8),
B2, + ¢*99>
— D) BuNg, ) — 20", = (p— 2 Ag by + 25— | 3.49
(0= 9580, = 2000 = (p=2) (B + 20t Lo (349)
since ¢ 2, = |V'¢,|? and thus
(0 — 8. Mg — 280) P00
2,2 2,12 :
= (-2 <A5*72 G, +2ﬁ*—ﬁ*f*jw*9§%> :

From Theorem 6.1-Step 4 in Appendix II, we know that 321, + 10,99 > 0, thus the contribution of this
term to Q1 [V] is nonpositive. We replace this expression in Q;[V]| with g(¢,) = 1), and obtain

B3

Q1[V] = (v — A ) (7 — Bs <1+ —2L>—A* (p—1

1V]= (v = Ap)(v = Bs) (p )/ﬁwzw,‘f@ 8.5(p—1)

B :

+ (p — 2)7Ag, (p—2) ((B« +2)y — Ag, B)

I S 70
B+ 07, 02+ 07,
2.1.2
o
oy B2 o (Be+2))92, — Mg B2
§7<LHP m%%+w%>w Mo = 80) = (=2 B S

B ) (B 202 — Ay B2
§VQ+@ ”&w+ﬁ)<y<“”””“’m @—n@w+ﬁe>>

We can write

(B +2)17p — Ap, 8207
(p—1)82¢2 + 42,
(Mg, + (p = DB BEF + (g, + Bu(p = 1) +2(p — 2)) 92, (3.52)
(P - 1)ﬁf¢f + 7/)39
>ci5 (Mg, +B«(p—1)+2(p —2))

A5*+5*+(p—2)

for some positive constant ci5. This expression Ag, + B.(p— 1) +2(p — 2) is always positive: obviously
if N > 3 and by using the explicit expression of 5, if N = 2. Thus there exists vy and ¢1g > 0 such
that Q1[V] < —cy6 for 0 < 4 < 5. The perturbation method of Step 2, is valid in the whole range of
values of v, and we derive from (3.42)-(3.43) that (3.48) holds for all £ < ko and ¢ < T},. Therefore
r[V] <.

1—2L
Step 4: The case p > 2. For ¢ > 0 to be fixed and 1, > €, v € (0, 0], we take g(1+) = cip» *. Then
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we derive from (3.35):

(p — 1)B2Y2 + [V/ih, |2 v
B2y VP DA (1 - 6*>

QV]= (v —Ap)(y = Bs)

V(B =) 17 Vi’
—(p—1) ( = )¢* PV P~ (0= 2)(Be — (Y — Aﬁ*)ﬁzw’2 " !v"w - (3.53)
B —7) -5
=(1-p) [w(ﬁ* —w)+%w* v
1-X a
For k < ko we fix ¢ such that ce, ™ = ege ™0 <= ¢ = ¢* 7% and we define g by
a 1_ 2 Py e v if 0 < s < €
9(1).) = min {¢*€_kw*,€g* ekeogp, } ={ 2 -2 (3.54)
e e Fop, P ifeg <the <1,

and we set V(t,0) = ¢*(0) — a(t)g(1.(0)) with (t,0) € (—o0,Ty] x SY ' and define i(r, o) =
r= P (y* (o) — a(Inr)g(¥s(0))) accordingly for (r,0) € (—oo,e’*] x SY 1. Since 1), is a decreasing
function the coincidence set {o € S¥ ' : ¥, () = €} is a circular cone ¥y, with vertex 0, axis ey and
angle . We set Ry = e’k

Flz{x:(r,H)GBEO:60<0<§}:

{(T,O’) € [0, Ry) X Siv_l (0 <u(o) < eo},
Iy = {x —(r0) € B}, :0<6< 90} - {(r,a) € [0, Ro) x S¥ 1 eq < . (0) < 1},

and define

a(r,0) = r=P (u(0) = 17g(1s(0)))
uy(r,o) = 1P+ (1 — re =)y, (o) if (r,0) e I'y

us(r, o) = r- (1 — e e—’“ow*(a))l%) (o) i (r,6) € Iy,

The function 7 is a subsolution separately on I'; and I'y and is Lipschitz continuous in Q \ {0}. If we
denote by g1 and g the restriction of g to I'y and I'y respectively, that is to Q1 and 9, then g} (o) >
gh(€0) > 0. Let ¢ € CX(Bj;,) which vanishes in neighborhoods of 0 and 9B, , ¢ > 0, then

/ Vil ~? V. V(dr + / Vil (dx < / Vi [P~ O, uiCdS, (3.55)
Iy Q; 0

0

where n; is the normal unit vector on Xy, outward from I';. Actually, np = —n; = n thus
Vi = dre + 1 711 = g () V' = e + 711 = 17¢ (1) )theg 1.

and on Xg,,
e —r P71 —17g)(€0))tbo 1 inTy

Vi =
e +r 71 —17gh(e))tbo 1 in Ty
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Therefore

|VU1 |pi2 am Ul

p—2
= —r P 1 =g (o)) (@2 4+ 77272 (1 = 17 (€0))?Y2)) * tug  inTy
and

‘VUQ‘p_Q 8n2 u9
p=2 .
= 17571 = gh(e0)) (@ +r72P (L = r7gh(e0)) ) 7 wup  in T

By adding the two inequalities (3.55)

1w vavcis+ [ vilrcs < [ (1Vaar o + Va2 o) S, @56
b0

b
By monotonicity of the function X — (a2 + X?)2 and since

r PN L =1 gh(e0)) = (L =17 (60)) 2 0,

we derive

p—2

P (1= g (e0)) (@2 4 22— i gh(eo))02)
p—2
> 01— g () (@2 + 221~ 1] (o)) 20%)

We derive that the right-hand side of (3.56) is nonpositive because 1,y < 0, and therefore @ is a positive
subsolution of (1.1) in BEO dominated by ¥, and satisfying (3.24). O

Proof of Theorem 3.6. Let M = max{V,(x) : x € 83}'0}, then M = R, P+ The function u* defined
by
~ . +
() = (a(z) — M)+ ¥f x € By, N
0 it © € Q\ B} ,

is indeed a subsolution of (1.1) in whole 2 where it satisfies u* < W, and it vanishes on 92 \ {0}.
Since @, is a positive p-harmonic function in €2 which vanishes on 992 \ {0} and satisfies (3.20), it is
supersolution of (1.1) and therefore it dominates u*. Therefore there exists a solution u of (1.1) in
which vanishes on 02 \ {0} and satisfies ©* < u < ®,. This implies that (3.19) holds with k£ = 1 and
we conclude with Lemma 3.8. This ends the proof of Lemma 3.9. U

When p = N the statement of Theorem 3.6 holds without the flatness assumption on 2. The proof
of the next theorem is an easy adaptation to the one of Theorem 3.6, provided Lemma 3.7, Lemma 3.8
and Lemma 3.9 are modified accordingly.

Theorem 3.10. Assume N —1 < q < N — % and ) be a bounded C? domain such that 0 € OSY. Then for

any k > 0 there exists a unique positive solution u := uy, of (3.17) in €, which belongs to C*(Q \ {0}),

vanishes on 92 \ {0} and satisfies uniformly with respect to o € S i\/ -1

lim |z ug(x) = k(o). (3.57)
0

xTr —
z/|z] = o
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Since p = N, then 3, = 1 and 1, (o) = T = cos Oy with the identification of o and Oy _1 := 6.

_|T

In a more intrinsic manner (3.57) can be written under the form

i [222E) g (3.58)
e @)

We recall that if w € RY and Z,, denotes the inversion of center w and power 1, i.e. Z,(x) =
w + —‘;:Uﬁz , then @ = w o 7, satisfies (3.18).

Lemma 3.11. Assume 2 be a bounded C? domain such that 0 € 0S). Then there exists a unique N-
harmonic function ®, in S0, which vanishes on 02 \ {0} and satisfies

lim |z D (z) = Yu(0), (3.59)
z—0
z/|z] = o

uniformly with respect to o € S iv -1

Proof. Uniqueness is standard. Let w = —ey € Q°, with the notations of the proof of Theorem 3.5,

w' = —w,a = —3ey and d’ = —a. We can assume that the balls B1(a) and B (a’) are tangent to
2 2

0 at 0 and respectively subset of 2¢ and 2. The function z — ¥(z) = —ﬁ% which is /N-harmonic

in RY and vanishes on ORY \ {0} is transformed by the inversion Z,, of center w’ and power 1 into the

function ¥,, = W o 7, which is positive and N-harmonic in B1(a’) and vanishes on dB1(a’) \ {0}.
2 2

The function ¥ = —W which is N-harmonic in RY and vanishes on 9RY \ {0} is transformed by the

inversion Z, of center w and power 1 into the function ¥,, = W o 7, which is positive and /N-harmonic
in B¢ (a) and vanishes on 9B1 (a) \ {0}. For ¢ > 0 we denote by @, the solution of
3 2

—AnD, =0 in QN B¢
P, =0 in (Bf(a’) N0B.) U (02N BY) (3.60)
2
b, =", in B% (a') N OB..

If0< e <e ®s >V, in Bi(a')NIBe, thus @ > P in QN BE. We also denote by U. the solution
2

of
~Ay

0 in QN Be
0 in 90 N B (3.61)
o, in QN oBC.

o> 100 150

€
€
€
In the same way as above

0<é <e= b, <d. in QNoB¢

T—w
z—wl|?

Using the explicit form of ¥, 7, : x — w + and Z, :x — ' + ﬁ we see that

1+¢€
VorlB, (anoB. < T YulBy @)noB.:
2 — € 2
thus 14
. <— %, inQN B

— €
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Letting ¢ — 0 we conclude that ®. converges uniformly in © \ {0} to ®, which vanishes on 9 \ {0}
and satisfies (3.59). O

The proof of the next statement is similar to the one of Lemma 3.8 up to some minor modifications,
SO we omit it.

Lemma 3.12. Let the assumptions on q and ) of Theorem 3.10 be satisfied. If for some k > 0 there
exists a solution uy, of (3.17) in §), which belongs to C*(Q \ {0}), vanishes on 92 \ {0} and satisfies
(3.57), then for any k > 0 there exists such a solution.

Lemma 3.13. Under the assumptions of Theorem 3.10 there exists a Lipschitz continuous nonnegative
subsolution U of (3.17) in Q2 which vanishes on 02\ {0}, is smaller than ., and satisfies

lim  |z|i(z) = o, (3.62)
z—0
z/|z] = o

uniformly with respect to o € S_J‘_Vfl.

Proof. Let 7 > 0 to be fixed and let w be the solution of
—Anyw + |Vw|?=0 in By (3.63)
which vanishes on 9B, \ {0} and satisfies

lim |z|jw(z)=0 (3.64)
z—0
z/|x| = o

in the C''-topology of S N=1 Tts existence follows from Theorem 3.6 and this function is dominated
by the N-harmonic function ®, corresponding to this domain, obtained in Lemma 3.11. By Z,,, the

half-ball By is transform into the lunule G = B (d’) \ Bz (%w’ ) and @ = w o I, satisfies
2 3

—AND + |z — POV Ve =0 G (3.65)

Since |z — | < 1in G, —Anyw + |[Vw|? < 0in G. We extend @ by 0 in 2 \ G and the resulting
function @ is a subsolution of (3.17) in © which vanishes on 92 \ {0}), is smaller than the N-harmonic
function @, obtained in Lemma 3.11, and satisfies (3.62). O

4 Classification of boundary singularities

We assume that Q C R is a C? domain and 0 € 0f2. Furthermore, in order to avoid extremely technical
computations, we shall assume either that 9€) is flat near O or p = N. We suppose that the tangent plane
to 0Q at 0 is ORY = {z = (2/,0)} and the normal inward unit vector at 0 is ey, therefore n = —ey
in the sequel. We denote by WeN-1 the unique positive solution of (3.1) in Siv ~1 and by US_IX—I the

corresponding singular solution of (1.1) in Rf defined by

— || Pa il
Usf—l(x)—|$| stfl( ). (4.66)

x
|z
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We recall that 1), is the unique positive solution of (3.2) with maximum 1 and W, the corresponding

p-harmonic function

U, (z) = |2 w%). (4.67)

41 Thecasel <p< N
The first statement points out the link between weak and strong singularities.

Proposition 4.1. Under the assumptions of Theorem 3.6 there exists limy_,oo U = Uso Which is the
unique element of C(2\ {0}) N CY () which vanishes on 9\ {0}, satisfies (1.1) in Q2 and

lim _Uool®) (z)

= 1. 4.
z—0 Usf_l(x) ( 68)

Proof. Uniqueness follows from (4.68) and the maximum principle. For existence, since the mapping
K+ wy is increasing and uy, < U v—1, there exists limy, ;o0 ug = Uoo < U n—1 and use € C(2\{0})N
+ +

C1(9). It vanishes on 0B; \ {0} and satisfies (1.1) in B; . In order to take into account the domain B;"
in the notations, we set u, = uy, 5. Since the mapping  — wuy, s is also increasing and uy, s < kW, there
also exists limgs_, o0 Up 5 1= Up 00 < kW, Then, for all £ > 0,

Tolug.s)(x) = Paug 5(0x) = uye, -15(2)- (4.69)
Letting £ — oo, we obtain

Tiftioo,5)() = P00 5 (L) = tng g-15(), (4.70)
and letting 6 — oo, we obtain

T[too,00) () = fﬁquoopo(éx) = Uoo,00(T). 4.71)

This implies that
uoo,OO(r’ J) = Tﬁﬁqw/(g)’ 4.72)
and ' is a positive solution of problem (3.1). Therefore w' = w ~-1 by Theorem 3.2. If we let £ — 0 in
+

(4.69) and take |z| = 1, x = o, we derive

lim (50w 5(¢,0) = lim uy p-15(1,0) = tiss.0o(1,0) = w n-1(0). (4.73)
=0 : =0 °% : §
This convergence holds in C*(S i\/ ~1) because of Lemma 2.5. This implies (4.68). O

The main classification result is as follows.

Theorem 4.2. Assume 1 <p < N,p—1<q < ¢*and 92N Bs = {x = (2/,0) : |2'| < §}, for some
§> 0. Ifuc C(Q\ {0}) NCYQ) is a positive solution of (1.1) in 2 which vanishes on 9\ {0}, then

we have the following alternative:

(i) either there exists k > 0 such that
- u(x)
| =k 4.74
2Ly “474)
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(i) or
- u(z)
1 =1. 4.75
xl—% Ustl (.%') ( )
+
Proof. Step 1. Assume
()
hgﬁn_g(r)lf . (@) < 00, 4.76)

then we claim that (4.74) holds. We first note that if (4.76 ) holds, there also holds

lim inf u(z)
z—0 ul(x)

< 00, 4.77)

where u; is the solution of (1.1) obtained in Theorem 3.6 with k£ = 1. If {x,,} is converging to 0 and

such that for some £ > 0
u(z)

lim inf =k = lim w(zn) ,
z—0 uy(x) n—o0 uy ()

there also holds by the boundary Harnack inequality (2.38) applied to both u and uy,

ur(z,)  d(zn) ui(zn) — ° wup(x)

This implies in particular

u(@n) _ uln) d(wn) > o2 ) Vo st |x| = |z,|.

u(z) < 2k + en)uy () Vst |z = |z,

where {¢, } is converging to 0, and by the comparison principle

)
u(z) < Kui(z) Vo e RY st |z,| < 2| < 5
for some K > 0 and all n € N,.. Therefore
imsup 7 < o (4.78)

z—0 u1(z)

We can assume that & # 0, otherwise (4.74) holds with k£ = 0 and actually u remains bounded near 0.
As a consequence of the Hopf Lemma and C' regularity, there exists X > 0 such that

u(r) < KU.(z) Vze€ B} (4.79)

Let m = max{u(z) : |z| = 6}. For 0 < 7 < § we denote by k. the minimum of the x > 0 such that
u(z) < kU, (x)+mforr < |z| <. Then u(x) < k¥, (x)+m, and either the graphs of the mappings
u(.) and k,V,(.) + m are tangent at some z, € By \ Fi, or they are tangent on the boundary of the
domain, and the only possibility is that they are tangent on |z| = 7. Since

IV (2)7 = || 204D (8292 4 |V ),
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it never vanishes. If we set w = u — (k; W, (x) + m), then
—Lw+ |[Vul?=0 (4.80)

where the operator
0 0
L= g
ZZ; Oz; <% 3%’)

is uniformly elliptic in a neighborhood of z, (see [6, Lemma 1.3]). Furthermore w < 0 and w(x,) =
0 by the strong maximum principle Vu(z,) must vanish, which contradicts the fact that Vu(xz,) =
Vw(z,) by the tangency condition, and Vw(z,) # 0. Therefore |x.| = 7 and z, ¢ ORY. If 7/ < 7,
k; < k., and we set k = lim,_,( k,, which is finite because of (4.79). There exists {7,,} such that

op =T tx, — 0¢. Furthermore

P u(r, o) < kppy(o) +maP* if 7 <r <4 and TPu(r,0.) = kepy (o) + mrPe. (4.81)
Put
ur (x) = 77 u(rz) (4.82)
Then
—Apuy + P10 |7y (T =0 in BY )\ {0}

and, by (4.79),
0<u,(x) <Klz[?  inB%\{0}.
2T

! . topology of RY \ {0}.
Therefore, as ¢ < ¢*, there exist a sequence {7,,} C {7} converging to 0, and a positive p-harmonic
function v in RY’, continuous in R\ {0} and vanishing on 9R% \ {0}, such that u,; — v, and v satisfies

(4.79) in @ \ {0}. By Theorem 5.1 in Appendix I, there exists k£* such that v = k*,. In particular,

By Lemma 2.5, the set of functions {u,(.)} is relatively compact in the C}

lim0 urr (1,0) = ™y (o) (4.83)

!
T?’L

in the Cl(SiV_l) topology. Combining (4.81), (4.82)and (4.83) we conclude that £* = k and

lim 7% uy (1,0) = k(o) (4.84)
7/ —0 "

Using Theorem 3.6, it is equivalent to

(o)
=0 ug (1}, 0)

=1 (4.85)
uniformly on S i\f ~1. For any € > 0, there exists n. > 0 such that n > n, implies

ukfé(T;w U) < u(T;w U) < ukJre(T;u U)

By comparison principle,
up—e <u<ugc+m  inBj \ B/, (4.86)
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and finally
Up—e <u<upre+m  in By, (4.87)
Since e is arbitrary and using again Theorem 3.6, it implies
u(r,0)

lim

=k 4.
r—0 W, (1, 0) ’ (4.88)

locally uniformly on S™¥~!. But since the convergence holds in C'*(S i\f ~1y, (4.74) follows.

Step 2. Assume

CO N
lim 7 = (4.89)

For any 0 < € < ¢ and k£ > 0, there holds
up(z) < u(x) < ve(x) in Bf \ BX (4.90)

where v, has been defined in (3.12) and wy, is given by Theorem 3.6. Letting ¢ — 0, & — oo, and using
Proposition 4.1, we derive

Uso () < u(x) < vg(x) in B; \ {0}. (4.91)

We have seen in Theorem 3.3 that vy is a separable solution of (1.1) in RY which vanishes on IR \ {0},
therefore vo(z) = U ~v—1(x). This implies
+

oo (@) < u(z) < |z| P wsf_l(i) in B\ {0}. (4.92)

x|

We conclude using Proposition 4.1. U

42 Thecasep =N

When p = N, the assumption that OS2 is an hyperplane near 0 can be removed. The proof of the
next results is based upon Theorem 3.10. The following result is the extension to the case p = N of
Proposition 4.1.

Proposition 4.3. Under the assumptions of Theorem 3.10 there exists limy_,o U = Uso Which is the
unique element of C(2\ {0}) N CY(Q) which satisfies (3.17) in §, vanishes on O \ {0} and such that

: Uso ()
9161_% W =1. (4.93)
Proof. We denote by uS! the unique positive solution of (3.17) satisfying (3.57) obtained in Theorem 3.6.
Then

Tylu}!] = uphy-s. (4.94)
because of uniqueness. We denote by B := B (a) and B' := B 1 (a") the two balls tangent to 9 at 0

respectively interior and exterior to 2 introduced in the proof of Lemma 3.11. Estimate (3.58) implies

uP’ < uf <ulP (4.95)
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the left-hand side inequality holding in €2 and the right-hand side one in B. Therefore

To[uf) =l s, < To[uf) < To[uf] = ull, ., (4.96)
the domains of validity of these inequalities being modified accordingly. Using again (3.58) we obtain
Tp[ul ] < T,ul]  inB"*, (4.97)
for any 0 < ¢/ < £ and ¢/Pa=F= ' < ¢Pa=P+[_In the same way
Teub] > TyuP]  in B (4.98)

for any 0 < ¢/ < £ and ¢'Pa=B/ > (Pa=P+[; Since ui’ uf, uf/c are increasing with respect to k, they

converge respectively to u& ul, ugc and there holds for any ¢ > 0

T uB] < Tul)] < Tul), (4.99)
from (4.96) and
() Ty uB ] < Ty[uB"] in B’ @100
(44) Tolul) > Tylul)] in B '

for any 0 < ¢’ < ¢. Notice that , replacing ¢ by ¢¢' we can rewrite (4.99) as follows
Ty TouZ )] < Tp[Toul]) < To[Te[uZ]). (4.101)
Because of the monotonicity with respect to ¢ the following limits exist

UB =1im T,[uf] and UP = lim T;[u?). (4.102)
£—0 £—0

By Lemma 2.5 applied with ¢(|z|) = ||~ and since there holds u2 (x) < c|z|~% and v () <
c|xz| =P, we derive

(i) VT uB](z)] < cplz| Pt Vo € B*
(it) |V [ul)(z) = VL [ul])(y)| < cola| P71 —y|*  Va,ye B Jz[ <|y|  (4.103)
(iii) Ty[uB](z) < colx|~Pa=1(dist (z, 0B*))™ Vr € B,
and
(i) |VT[ul ()] < colz| P Vo e B!
(i) !VTZ[ 2 )(@) = VI Jy)| < eofa =0z —y|* Va,y € B faf <y
(ii7)  Ty[uB () < cp|z|~Pa=1(dist (&, 0B't))™ Vr € Bt

(4.104)
Thus the sets of functions {T}[u2 ]} and {T;[u5]} are equicontinuous in the C''-loc topology and by
uniqueness, the limit in (4.102) below holds in this topology. Hence U B and UB* are positive solutions
of (3.17) in RY which vanish on ORY \ {0}. Furthermore U”* < UP" Since for any £,¢' > 0,
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T [To[uB]) = Ty [ul"), it follows Ty [UP"] = UP" and in the same way Ty [UP] = UP. This means

that U and UP" are self-similar solutions of (3.17) in R% and they vanish on ORY \ {0}. Hence
UB =UB” = s (4.105)

Applying again Lemma 2.5 to u}, with ¢(|z|) = || =%« we have

(1) VTl (x)] < cgla| Pt Vo € Qf
(i) VT [ud](@) = VI [ul)(y)] < cola| 10w —y|* Yo,y € QF Ja| <|y|  (4.106)
(#3i) Ty[usl](z) < cola|~Pa=1(dist (x, 0Q))® Vr € QF.

This implies that the set of functions {7}[uS}]}s is equicontinuous in the C'!-loc topology of RY and
there exists a sequence {/,,} — 0 and a function U such that T}, [ufl] — U* in this topology of RY,
and U is a positive solution of (3.17) in RY which vanishes on 9R%Y \ {0}. From (4.99) and (4.105)
there holds U*? = sN-1 and therefore

lim 7 [ull] = Ugn-1. (4.107)

This implies (4.93) and
lii% rPaus (r,0) = (A}Sif—l(a) (4.108)
uniformly on compact subsets of Siv -1 O

Up to minor modifications the proof of the next classification theorem is similar to the one of Theo-
rem 4.2.

Theorem 4.4. Assume N —1 < ¢ < N — 1 Ifu e C(Q\ {0}) N C(Q) is a positive solution of (3.17)
in Q which vanishes on 9Q \ {0}, then we have the following alternative:

(i) either there exists k > 0 such that (4.74) holds,
(ii) or (4.75) holds.

S Appendix I: Positive p-harmonic functions in a half space

In this section we prove the following rigidity result.

Theorem 5.1. Assume 1 < p < N andu € C*(RY) N C’(@\ {0}) is a positive p-harmonic function
which vanishes on ORY \ {0} and such that |2|* w(z) is bounded. Then there exists k > 0 such that

u(r) = kV.(z) VoeRY. (5.1)

Proof. Since |z|** u(z) is bounded, |z|** ™! Vu(z) is also bounded and there exists m > 0 such that
u(z) < mW¥,(z) in By . We denote by k the infimum of the ¢ > 0 such that u(z) < ¢V, (). Then

0 <u(z) <k¥.(r) VoeRY\{0} (5.2)
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and we assume that k£ > 0 otherwise u© = 0. Assume that the graphs over Rf of the functions x — u(z)
and z — kU, (z) are tangent at some point zg € RY or zg € IRY \ {0}. Since V¥, never vanishes

in Ef \ {0} it follows from the strong maximum principle or Hopf Lemma that v = kW,. If the two
graphs are not tangent in Kf \ {0}, either they are asymptotically tangent at 0, or at co.

(i) In the first case there exists two sequences {k, } increasing to k and {z,,} C RY converging to zero

such that \ff(f;g) = kn. Weset 7, = |2,| and uy, () = riu(rpa). Then uy, is p-harmonic and positive

and 0 < u,., () < k2|7 ¢.(Z); therefore

]

[e7

IV, (@) < Clz| 7" and |Vuy, (z) — Vau,, (@) < C 2|77 |z — 2| (5.3)

for 0 < |z| < |2’| and some constants C' > 0 and o € (0, 1). Up to a subsequence, we can assume that
u,, converges to some U in the C} . topology of Kf \ {0} and £= — ¢ € S¥=1. The function U is
p-harmonic and positive in RY and satisfies 0 < U < kW, in RY and U (&) = kW, (€) if ¢ € SY " or
Uy (&) = kWU, py (&) i€ € BSiV*l. It follows from the strong maximum principle or Hopf Lemma that
U = kV.. Therefore u,, — k¥, and in particular

lim rﬁ*u(rn, o)

rn—0 ”(b*(O')

For any ¢ > 0, there exists n. € N, such that for n > n., (k — €)¥,(x) < u(z) < (k4 €)W, (x) if
|z| = r,,. This implies (k — €)W, (z) < u(x) < (k + €)W, for |z| > 7, and therefore in RY. Since e is
arbitrary, we deduce that u = kWV,.

=k uniformly on S 1. (5.4)

(i) if the two graphs are tangent at infinity, there exist two sequences {k,, } increasing to k and {x,, } such
that r,, = |z,| — oo with u(z,,) = k, V. (z,,) and

rﬁ* u(rp, o)

. _ . N—1
. ignoo 71/}* ) k  uniformly on S\ 7. (5.5)
Therefore we look at the supremum of the ¢ > 0 such that u > cW,. If the set of such c is empty, it
would mean that
inf )
$ER$ \I/*(I')

Clearly, if this infimum is achieved at some point, the strong maximum principle or Hopf Lemma imply
u = 0, contradicting (5.5), and this relation prevents also this infimum be achieved at infinity. We are
left with the case where there exists a sequence {z,} C ]Rf , converging to 0, such that

11m u<zn)
n—oo W, (zn)

=0. (5.6)

By boundary Harnack inequality [2, th 2.11], there exists ¢ > 0 such that

() _ ) ()

N J—
To2) S Voo = “Tafe) T2 SR st 2=l (5.7)
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Combining (5.6) and (5.7), we derive that

lim sup L . (5.8)

n—00 |z|=|2n] \I/*(Z)

Denoting by ¢,, the supremum in the above relation, we obtain that u < €, ¥, in Rf \ B,,, and finally
u = 0, contradiction. Thus we are left with the case where there exists &’ € (0, k| which is the supremum
of the ¢ > 0 such that u > ¢¥,. In particular v > k’¥,. Remembering that u < k¥, we get k = k/,
which implies u = kWV,.

Next we assume that & < k. Clearly the graphs of u and k’¥, cannot be tangent in @f, because
of strong maximum principle or Hopf Lemma. They cannot be tangent at infinity because of (5.5).
Therefore there exist two sequences {k/,} increasing to k" and {z],} C RY converging to 0 such that

% = k],. As in case (i) we obtain that
/ﬁ* /
lim rn u(rn, o) =k’ uniformly on Siv -1 (5.9
r,, —0 Py (O’)
where 7/, = |2/, |, and finally derive that u = k’W,, a contradiction with (5.5). Therefore k = k/, which
ends the proof. U

Remark. In the case p = N the result holds under the weaker assumption ‘ l‘im u(z) = 0. This is due
T|—00

to the fact that this condition implies by regularity

u(z)

lim =0

|z|—o00 w8§_1 (‘—i‘)

and therefore
u(z) <mUu(x) Vo st |z|>1,

u(x)
st—l(ﬁ)

holds RY, and we conclude by Theorem 5.1.

. Using the inversion = — —%5, we obtain that the estimate u < mW,

where m = max|;|— PR

Remark. We conjecture that the rigidity result holds under the mere condition

lim |z| % u(z) =0, (5.10)

|z|—o00

were [3 is the (positive) exponent corresponding to the regular spherical p-harmonic function under the

form o
b= le"w(%), (5.11)

see [14], [12]. Note that B =1 when p = N.
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6 Appendix II: Estimates on [,

When N =2and 1 < p < 2, itis proved in [9] that
3—p+2yp?—5p+7
By = . (6.1)
3p-1)

Up to now no estimate is known when N > 2 except in the cases p = 2 where 5, = N — 1 and
p = N where (8, = 1, besides the classical one

N —
Bo>=-—L (6.2)
p—1
valid when p < N. In this section we prove the following result
Theorem 6.1. Assume 1 < p < N. Then the following estimates hold:
N -1
1<p<2= B> , (6.3)
p—1
N — N -1
2<p<N:>max{1, p}<ﬁ*<—. (6.4)
p—1 p—1
Remark. 1t is worth noticing that when p = 2 or p = N, there holds 5, = %.

Proof of Theorem 6. 1. We consider the following set of spherical coordinates in Rf withx = (21, ...,2N)

1 =rsinfy_1s8infpn_o...sin H, sin 61
r9 =rsinfy_1sinfy_s...sin by cos 01
(6.5)
TN_1=7rsinfOn_1cosOn_o
TNy =rcosly_1

with 6, € [0,27] and 0}, € [0, 7] for k = 2,..., N — 2 and fy_1 € [0, 5]. Under this representation, a
solution w of (3.2) verifies

p—2

1 2
. N-—2 2 2 2 2
sin On_1 | Piw* +w + — Vgrw W
[ < * On_1 SIHQHN_1| | N-1 .
N—-1

1
sinV 2054

p—2 -
71 ; G NV —2 2,2 2 1 2\ 2
B Sil’l2 9]\[,1 d’LUé/ [511’1 9]\/’,1 <ﬁ*w + w@N—l + Sil’l2 9N71 |V@/UJ| v@’w (66)

p—2
. N 1 2\ 2
sinV 20N 4 ( 2w? —l—ngi1 + —— |Vouw| w

= *A
BiAg, sin? O _1

where Vg and divy, denotes respectively the spherical gradient the divergence in variables 6’ = (61, ..., n_2)
parametrizing S~ 2 and A, is defined in Introduction. If w is the unique positive solution of (3.2) (up



M.-F. Bidaut-Véron, M. Garcia Huidobro, L. Véron 42

™

to homothety), it depends only on #x_; and is C*°. For simplicity we set f_; = 6 € [0, 5] and
w = w(#) satisfies

1 22 =
————— |sinV 20 (B%w? + w3) = wg] = BilAg, [SimN2 0 (B2w? + wj) T w
[4

.3  ©7
w(5) =0, wy(0) =0.
Step 1: The eigenvalue identity. Equation (6.7) can also be written under the form

Biw+wpy o

—wpg — (N —2)cot Qwy — (p — Q)ng = [l g, w. (6.8)
* 0

uy

By multiplying (6.8 ) by cos @ sin® ~2 § and then integrating over (0, :

) we obtain

/S
0

Noticing that

us

(wgo + (N — 2) cot B wy) cos fsin’ "2 0dh = (N — 1)/ * wcos B sinV "2 4.
0

Bubs. 1= N =(p=1) (8. 3= ) (8. +1
we derive

us

T 50

2 Dyw + wep . N—
%w%wcos@smjv 20d6
Biw? 4+ w

(2-p)
0 (6.9)

=(p-1) <ﬂ* — E) (Bs+1) /Qw(:osﬁsinN2 0de.
p—1 0
Step 2: Elliptic coordinates and reduction. Writing w(0) = w(0) + ab? + 0(62), we(0) = 2ad + o(6)
and wpg(#) = 2a + o(1), then —Na = [, Ag,. This implies that w is decreasing near 0. It is immediate
that it cannot have a local minimum in (0, 5 ), therefore it remains decreasing in the whole interval. We
parametrize the ellipse

E,={(z,y) : x>0,y <0,2”+ 57> =r?}

by setting
w=rcos¢ and —wy = Brsin¢ with ¢ = ¢(#) and r = r(0).

The functions r and ¢ are C2. Hence 7 cos ¢ — r sin ¢y = —Br sin ¢, then ry cos ¢ = (¢g — ¢)rsin ¢
and 79 = (¢pg — [)r tan ¢. Plugging this into (6.8), we derive

(- 12 + gy cot ¢ + (N = 2) cot 0) + As. cot ¢ =0, (6.10)

and finally
(p—1)(¢o — B)tan ¢ + (g — Ag,)cot ¢ = (2 — N) cot 6. (6.11)
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Step 3: Estimates on ¢y. We can write (6.11) under the equivalent form

cos 0 sin ¢

(p—1)(¢p — B)tan® ¢ + ¢g — A, = (2 — N) (6.12)

cos ¢ sinf’

Since ]
. sing . Ccoso
lim — = lim
6—0sinf@  6—0 cos

P9 = ¢9(0),

A
we derive ¢p(0) — Ag, = (2— N)¢y(0) and thus ¢4 (0) = I B T Similarly, the expansion of ¢(f) near
0 = 7 yields to ¢g(5) = B« Since p < N, Ag, /(N — 1) < .. We claim now that

po(0) < B VOE(0,%). (6.13)
If Ag* < B, then
(2= N)cott = (p—1)(¢g — B) tan ¢ + (¢g — A, ) cot ¢ > ((p — 1) tan ¢ + cot ¢)(¢g — )

thus (6.13) holds.
Next we assume [, < Ag,. It means 0 < (p — 2)3, — (N — p) and thus p > 2. We claim that

N 14
O (6.14)
We proceed by contradiction and assume
N -2
By > ——. (6.15)
p—2
Then N N -2 N -2
— p — —
—-2) (52— . — =(p-2)B+1) (8 — .
R R AL ICER I R = B
Equivalently
,8*(/\5* — ,8*) >N — 2.
Since ) " )
COS S111
li t 0t =i = li = —
01—% cot f tan ¢ 61—% cos @ 01—{% Ppsing Py
and 0 sin o
- - 2 _ . . COS U S1n
(p —1)(¢9(6) — B) tan” ¢ Alﬁ* ¢o(0) +(2—N) cos & 5in 0
A (B«(Ag, — B) +2—=N) +o(1)

if follows that (6.15) is equivalent to the fact that there exists ¢ > 0 such that ¢4(f) > 5 for any
0 €[5 —¢€%). Since ¢g(0) < B, there exists 6 € (0,%) such that ¢p(6) = /3 and ¢gg(6) > 0. We
compute ¢gg and get
(P = 1)¢0(0)(¢0(0) — Bs) sec? $(0) + (p — 1)doo (9) tan ¢(0) + poo(#) cot (0)
— ¢9(0)(dg(0) — Ag,) csc? ¢(0) = (N — 2) csc? 6
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Hence, at 0 = 6

(p— 1)dos(8) ((p — 1) tan $(8) + cot (8)) = B (B — As.) ese? G(6) + (N — 2) csc® §

From (6.11),

_ N —9 _
cot QS(H) = m COta

Therefore

(p = L)oo (0) ((p — 1) tan §(0) + cot $(0))

N-2\ 27 27
=1+ <7> cot® 8 | Be(Bx — Ag,) + (N —2)(1 + cot” §)
AB* _/8*

= Bu(Bu —Ap) + N —2 - <M+2—N> cot? (6.16)
NA%_ﬁ*N 2
=—(p=2)(B: + 1) (ﬁ*— __2> 1, :ﬁ (B(N —1) — Ag,) cot?d

<0,
using (6.15) and the fact that N > p. This is a contradiction, thus (6.14) holds and there exists ¢ > 0
such that ¢p < By in [§ — €, 5).
We claim now that ¢y < S, in [0, §). If it is not true, there exist §; < 6o < 7 such that ¢y(61) =

b9(02) = Bs, do(01) > 0, dpo(61) < 0, since Cauchy-Lipschitz theorem applies to equation (6.11) in
(0,5). We put ¢(01) = ¢1 and ¢(f2) = ¢2. Using the equation satisfied by ¢y, we obtain for i = 1,2,

((p — 1) tan ¢; + cot ;) pgg(6;)

N -2 N -2 (6.17)
=(2-p)(B:+1) <ﬁ* - p—2> A A (B«(N —1) — Ag,) cot? 6;.

), cot? 01 > cot? 0, hence

™

Since cot is decreasing in (0, §

0< ((p — 1) tan ¢1 + cot ¢1) ¢99(91) < ((p — 1) tan ¢2 + cot (bg) (bg.g(@g) <0,

a contradiction. Therefore ¢g < f3, in (0, 5).
Step 4: End of the proof. Since 12 = 2w? + wg, rg = r(¢pg — Ps) tan ¢, we have

rro = (ﬂfw + w.gg) wp = (g — Bi) tan ¢.
Since wy < 0 on (0, 5), it follows from Step 3 that B2w 4 wgg > 0 and thus

2 fw+tw
Mﬁugw cos O sin =2 0dh > 0.
0 Biw?+ wj

The conclusion follows from (6.9). O
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Remark. Since wy(§) = —c* < 0, it follows w(#) = —wy(#) cot  + O(5 — 6) as & — %, and from the
eigenfunction equation (6.8)

B2w+ wpy )
mwe = (Biw +weg)(1 + o(1)).

Therefore -
—(p—Dwgs = (Buhg, +(p—2)B2 +2— N)w(l +0(1)) asf — 5

and since A’w := wgy + (N — 2) cot O wy

Bu(Be(2p =3) +p—N) + (p ~2)(N ~2)
p—1

—ANw=

(1+0(1) asf — g

Because w is C°° we obtain finally
|Aw| < e, (6.18)

for some ¢ > 0.

References

[1] Bauman P., Positive solutions of elliptic equations in nondivergence form and their adjoints Ark.
Mat. 22, 153-173 (1984).

[2] Bidaut-Véron M.F., Borghol R., Véron L., Boundary Harnack inequality and a priori estimates of
singular solutions of quasilinear elliptic equations, Calc. Var. Part. Diff. Equ. 27, 159-177 (2006).

[3] Bidaut-Véron ML.F., Garcia Huidobro M., Véron L., Local and global behaviour of solutions of
quasilinear Hamilton-Jacobi equations, J. Funct. Anal. 267, 3294-3331 (2014).

[4] Boccardo L., Murat F.,, Puel J., Résultats d’existence pour certains problemes elliptiques quasil-
inéaires, Ann. Scuola. Norm. Sup. Pisa 11 (2) 213-235 (1984).

[5] Borghol R., Véron L., Boundary singularities of solutions of N-harmonic equations with absorp-
tion, J. Funct. Anal. 241, 611-637 (2006).

[6] Friedman A., Véron L., Singular Solutions of Some Quasilinear Elliptic Equations,, Arch. Rat.
Mec. Anal. 96, 258-287 (1986).

[7] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Grundlehren
der mathematischen Wissenschaften 224, 2nd ed. Berlin, Heidelberg, New- York, Tokyo, Springer
Verlag (1983).

[8] Kroll, I. N., The behaviour of the solutions of a certain quasilinear equation near zero cusps of the
boundary, Proc. Steklov Inst. Math. 125, 140-146 (1973).

[9] Kichenassamy S., Véron L., Singular solutions of the p-Laplace equation, Math. Ann. 275, 599-615
(1986).



M.-F. Bidaut-Véron, M. Garcia Huidobro, L. Véron 46

[10] Lieberman G., The natural generalization of the natural conditions of Ladyzhenskaya and
Ural’tseva for elliptic equations, Comm. Part. Diff. Eq. 16, 311-361 (1991).

[11] Nguyen Phuoc T., Véron L., Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi
equations, J. Funct. An. 263, 1487-1538 (2012).

[12] Porretta A., Véron L., Separable p-harmonic functions in a cone and related quasilinear equations
on manifolds, J. Europ. Math. Soc. 11, 1285-1305 (2009).

[13] Pucci P, Serrin S., Zou H., A strong maximum principle and a compact support principle for
singular elliptic inequalities, J. Math. Pures Appl. 78, 769- 789 (1999).

[14] Tolksdorf P., On the Dirichlet problem for quasilinear equations in domains with conical boundary
points, Comm. Part. Diff. Equ. 8, 773-817 (1983).

[15] Tolksdorf P., Regularity for a More General Class of Quasilinear Elliptic Equations, J. Diff. Equ.
51, 126-150 (1984).

[16] Trudinger N., On Harnack type inequalities and their applications to quasilinear elliptic equations,
Comm. Pure Appl. Math. 20, 721-747 (1967).



