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Boundary singularities of positive solutions of
quasilinear Hamilton-Jacobi equations
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Marta Garcia-Huidobro
Laurent Véron

Abstract We study the boundary behaviour of the solutions of (E) —Apu+ |Vu|? = 0 in a domain
Q c RY, when N > p > g > p— 1. We show the existence of a critical exponent ¢, < p such that if
p—1 < ¢ < g, there exist positive solutions of (E) with an isolated singularity on 0f2 and that these
solutions belong to two different classes of singular solutions. If g, < ¢ < p no such solution exists
and actually any boundary isolated singularity of a positive solution of (E) is removable. We prove
that all the singular positive solutions are classified according the two types of singular solutions that
we have constructed.
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1 Introduction

Let N >p>1,g>p—1land Q Cc RN (N > 1) be a C? bounded domain such that 0 € 9.
In this article we study boundary behavior at 0 of nonnegative functions v € C'(Q2\ {0})
which satisfy

—Ayu+|Vuli=0  inQ, (1.1)
where Apu := div/ (Vu[P~2?|Vu|). The two main questions we consider are as follows:
Q-1- Existence of positive solutions of (1.1).

Q-2- Description of positive solutions with an isolated boundary singularity at 0.

When p = 2 a fairly complete description of positive solutions of
—Au+ |Vu|?=0 (1.2)

in {2 is provided by Nguyen-Phuoc and Véron [23]. In particular they prove the following
series of results in the range of values 1 < g < 2.

1- Any signed solution of (1.3) verifies the estimates

|Vu(z)| < engq (d(x)) = Vo €, (1.3)

where d(x) = dist (x,09Q). As a consequence, if u € C(Q2\ {0}) is a solution which
vanishes on 992 \ {0}, it satisfies

u(z)] < cpad(@)z] 7T VzeQ. (1.4)

2-1f &L < g < 2 any positive solution of (1.3) in  which vanishes on 99 \ {0} is
identically 0. A isolated boundary point is a removable singularity for (1.2).

3-If1<qg< % and k& > 0 there exists a unique positive solution u := wuy of (1.3) in
Q which vanishes on 92 \ {0} and satisfies u(x) ~ cxykP?(z,0) where P is the Poisson

kernel in £2 x 0S).

4-1f1 < g < % there exists a unique positive solution u of (1.2) in thle half-space
RY == {z = (2/,2n) : 2’ € RV 2y > 0} under the form u(z) = |z|” 7 Tw(|z|tz)
which vanishes on ORY \ {0}. The function w is the unique positive solution of

“ANw+ (- 122+ V)3 = Ayw=0 inSY¥?

1.5
w=0 inasy ! (1)

where SV~ is the unit sphere of R, 8Siv 1= ORY M SN=1 A’ the Laplace-Beltrami
operator and Ay, > 0 an explicit constant.
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5-1f 1 < ¢ < &3 and u is a positive solution of (1.3) in £, which is continuous in 2\ {0}
and vanishes on 992 \ {0} the following dichotomy occurs:

(i) either u(z) ~ |z| T Tw(|z|'z) as = — 0,
(ii) or u(z) ~ ke P9 (x,0) as & — 0 for some k > 0.

The aim of this article is to extend to the quasilinear case 1 < p < N the above
mentioned results. The following pointwise gradient estimate valid for any signed solution
u of (1.1) has been proved in [7]: if 0 < p — 1 < g there exists a constant ¢y , > 0 such
that )

|Vu(z)| < enpgld(z)) a1=p Yz € Q. (1.6)

As a consequence, any solution u € C*(Q \ {0} satisfies

lu(z)] < ¢pg.0d(z) ]x]fﬁifp Vo € Q. (1.7)

Concerning boundary singularities, the situation is much more complicated than in the
case p = 2 and the threshold of critical exponent less explicit. We first consider the problem
in RY. Assuming p — 1 < ¢ < p, separable solutions of (1.1) in RY and vanishing on
RY \ {0} can be looked for in spherical coordinates (r,0) € Ry x SV~ under the form

u(@) = ulr,0) = r (o), >0, 0eSV = {SNIARYY  (18)

Then w is solution of the following problem

p—2

2
—div' <(ﬂ§w2 + |V/w]?) 2 V’w) — ByAs, (Biw? + \V’w\Q)pT w

+ (ﬁqzwz + \V’wP)% =0 in Siv_l (1.9)

w=0 on 85571,

where
pP—4q

= ———and Ag, = -1 - N 1.10
and V' is the covariant derivative on SV ~! identified to the tangential gradient thanks to
the canonical isometrical imbedding of SV~! into RY and div’ the divergence operator
acting on vector fields on S™V~!. The existence of a positive solution to this problem cannot
be separated from the problem of existence of separable p-harmonic functions which are
p-harmonic functions in RY which vanishes on ORY \ {0} and have the form ¥(z) =

U(r,0) = r~Py(o). Necessarily such a 1) must satisfy
—di! (6% + [90R) T 0 ) = o (0 + 19) T w =0 in Y

=0 on@SﬁrV_l.

(1.11)
We will refer to (1.11) as the the spherical p-harmonic eigenvalue problem. The study of
this problem has been initiated in the 2-dim case by Krol [18] (8 < 0) and Kichenassamy
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and Véron [19] (5 > 0). In this case w satisfies a completely integrable second order
differential equation. In the case where S iv ~L is replaced by a smooth domain S ¢ SN—1!
with N > 3, Tolksdorf [30] proved the existence of a unique couple (BS, 1;8) where BS <0
and ¢, has constant sign and is defined up to an homothety. Recently Porretta and Véron
[26] gave a simpler and more general proof of the existence of two couples (ﬂs, 1/15) and
(B%,¢¥) where 5 > 0 and s and 1y are positive solutions of 1.11 with 8 = B, and
B = B respectively and are unique up up to a multiplication by a real number. When p = 2
this problem is an eigenvalue problem for the Laplace-Beltrami operator on a subdomain of
SN-1 If§ = Siv ~1 B, and B% are respectively denoted by /3 and 8* and accordingly Vs
and 7} by v and ¢*. Since z — x is p-harmonic, = —1. Except in the cases N = 2
where it is the positive root of some algebraic equation of degree 2, p = 2 where itis N — 1
and p = N where it is 1, the value of 8* is unknown besides the straightforward estimate
B* > max{l, =y P1. Using the fact that ¢* depends only on the azimuthal variable and
satisfies a differential equation, we prove in Appendix II the following new estimate:

Theorem A Let 1 < p < N.
()If2 <p< N, then B, < N wzthequalztyonlylfp—ZorN

(ii) If 1 §p<2,thenﬁ*> pTl'

The p-harmonic function U*(x) = ¥*(r, o) = r~#"1)* (o) endows the role of a Poisson
kernel. To this exponent /3, is associated the critical value g, of ¢ defined by 3, = 34, or
equivalently
Blp—D+p B

go+1 Pt

The following result characterizes strong singularities.

Qs = (1.12)

Theorem B Ler 0 < p—1 < N, then
(i) If p — 1 < q < qx problem (1.9) admits a unique positive solution w,.
(ii) If ¢ < q < p problem (1.9) admits no positive solution.

This critical exponent corresponds to the threshold of criticality for boundary isolated
singularities.

Theorem C Assume g, < q < p < N. Ifu € C(Q\ {0}) is a nonnegative solution of (1.1)
in Q which vanishes on 0 \ {0}, it is identical zero.

As in the case p = 2 there exist positive solutions (1.1) in §2 with weak boundary singu-
larities which are characterized by their blow-up near the singularity. By opposition to the
case p = 2 where existence is obtained by use of a weak formulation of the boundary value
problem, combined with uniform integrability of the absorption term thanks to Poisson ker-
nel estimates (see [23]), this approach cannot be performed in the case p # 2; the obtention
of solutions with weak singularities necessitates a very long and delicate construction of
sub and super solutions. Furthermore, when p # N, the construction is done only if €2 is
locally an hyperplane near 0. In the sequel we denote by Br(a) the open ball of center a
and radius R > 0 and Bp = Bg(0). We also set B} (a) := RY N Bg(a), B := RY N Bg,
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By (a) :== RY N Bg(a) and By, := RY N Bp. If Q is an open domain and R > 0, we put
Qr=QNBg.

Theorem D Assume 0 <p—1<q <g. <p< N, R>0andQpr = BE. Then for any
k > 0 there exists a unique u == uy, € C(Q2g \ {0}), solution of (1.1) in Qp, vanishing on
O0r \ {0} and such that

ug(z)
= 1.1
20 () ¢
Furthermore limy, _, oo Uy, = uso and
lim |2]%7us (2) = wy(|z] " 2). (1.14)

z—0

Whenp =N, q. =N — %; in such a range of values we use the conformal invariance
of Ay and prove that the previous result holds if € is any C? domain. Finally, the isolated
singularities of positive solutions of (1.1) are completely described by the two types of
singular solutions obtained in the previous theorem and we prove:

Theorem F Assume 0 < p—1 < ¢ < q. <p < N, R > 0and Qg = B}. Ifu € C(Q\{0})
is a positive solution of (1.1) in 2 which vanishes on 9 \ {0}, then
(i) either there exists k > 0 such that

_u(x)
lim O (1.15)
(ii) or
1ii%|x|6qu(x) = w,(|z|t2). (1.16)

Aknowledgements This article has been prepared with the support of the MathAmsud col-
laboration program 13MATH-02 QUESP. The first two authors were supported by Fondecyt
grant N°1110268.

2 A priori estimates

2.1 The gradient estimates and its applications

We recall the following estimate and its consequences which are proved in [7].

Proposition 2.1. Assume q > p — 1 and v is a C* solution of (1.1) in a domain ). Then

IVu(z)] < enpg(d(x)) 77 Vo e Q. Q.1

The first application is a pointwise upper bound for solutions with isolated singularities.
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Corollary 2.2. Assume ¢ > p—1 > 0, R* > 0 and Q) is a domain containing 0 such that
d(0) > 2R*. Then for any x € Br+\ {0}, and 0 < R < R*, any u € C*(Q\ {0}) solution
of (1.1) in Q \ {0}) satisfies

u(@)] < enpg ||2]77 — Ratior | + max{|u(2)| : |2| = R}, 2.2)

ifp # q, and
lu(z)| < enp (In R —Infz]) + max{|u(z)] : [2| = R}, (2.3)
ifp=q.

The second application corresponds to solutions with boundary blow-up. For § > 0
small enough we set 25 := {z € Q: d(2) < 6}.

Corollary 2.3. Assume ¢ > p — 1 > 0, Q is a bounded domain with a C* boundary. Then
there exists 61 > 0 which depends only on ) such that any u € C(2) solution of (1.1) in
Q satisfies

—-p

()] < enpg |(d(@) 77 — 677 | 4 max{|u(z)| s d(z) = 61} Ve € Qs (24)

ifp # q, and

lu(z)] < enpq(Indy —Ind(x)) + max{|u(z)| : d(z) =01} Vo € Qg (2.5)
fr=q
Remark. As a consequence of (2.5) there holds forp > ¢ >p—1

q=p

uw(@) < (enpg + K max{|u(z)| : d(z) > 61 }) (d(x))a+1-r Vz € (2.6)

where K = (diam(€2)) 77777, with the standard modification if p=q.

As a variant of Corollary 2.3 the following upper estimate of solutions in an exterior
domain will be used in the sequel.

Corollary 2.4. Assumeq>p—1>0, R>0andu € Cl(Bf%O) is any solution of (1.1) in
B, - Then for any R > Ry there holds

u(2)] < enpg |(J2] = Ro)TT7 — (R — Ro) 717 | + max{|u(2)| : |2| = R} Vz € Bf
2.7
ifp#qand

lu(z)] < enp,q(In(Jz| — Ro) —In(R — Ry)) + max{|u(z)| : |z| = R} Vz € By (2.8)

ifp=q.
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Proof. The proof is a consequence of the identity

1 1
u(z) = u(z) +/ %u(tw + (1 —t)z)dt = / (Vu(tr + (1 —t)z),z — 2)dt
0 0
where z = ERIQJ. Since

[Vu(te + (1 - 1)2)] < Oxpglt || + (1 — )R — Ry) 77

Then (2.7) follows by integration using (2.1). O

2.2 Boundary a priori estimates

The next result is the extension to isolated boundary singularities of a previous regularity
estimate dealing with singularity in a domain proved in [7, Lemma 3.10].

Lemma 2.5. Assume p —1 < q < p, {2 is a bounded C? domain such that 0 € 0). Let
u € C1(Q2\ {0}) be a solutions of (1.1) in Q which vanishes on 9Q \ {0} and satisfies

u(@)] < o(l2])  VreQ, (2.9)

where ¢ : R — R, is continuous, nonincreasing and satisfies

6(rs) < vo(r)é(s) and rTTT(r) < c, (2.10)

for some vy, ¢ > 0 and any r,s > 0. There exist o« € (0,1) and ¢; = ¢1(p,q,Q) > 0 such
that

(@) V(@) < crg(f]) [ Vo € Q, @.11)
(ii) [Vu(@) = Vu(y)| < erg(la) 2] e —y* Va,ye |2l <[yl

Furthermore
d(x)
u(z) < clgb(|:ﬂ|)ﬁ Vo € . (2.12)
x
Proof. For { > 0, we set Q° := $Q. If £ € (0,1] the curvature of 99 remains uniformly
bounded. As in [12, p 622], there exists 0 < dg < 1 and an involutive diffeomorphism v
from Bgs, N Q" into Bs, N (02%)¢ which is the identity on B, N 99% and such that Dy(€)
is the symmetry with respect to the tangent plane T2 for any £ € 92 N Bs,. We extend
any function v defined in B, N 0 and vanishing on B, N 9Q% into a function ¥ defined
in B, by
. = =%
() = v(x) ?fx € B, N1 L (2.13)
—vo(x) ifxe Bs, N(02%9)C,

Ifv e CY(Bs, N 0) is a solution of (1.1) in Bjs, N Q% which vanishes on 9Q% N By,
satisfies

—Za%flj(x,W)JFB(x,W):o in B, (2.14)
~ O
J
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Asin [12, (2.37)] the A; and B satisfy the following estimates
() Aj(x, 0) =0

(i) Z Aj(z,m)&&; > Cr P~ ¢

(2.15)
0 9
(i) Z a—mAj(w,n)‘SCz!n!p ,
and
Bl < Cs(1 + al), 216

where the C; are positive constants. These estimates are the ones needed to apply Tolks-
dorf’s result [31, Th 1,2]. There exists a constant C, such that for any ball B3g C P(;O,
there holds

HVUHLOO ) < C, 2.17)

where C' depends on the constants I'y, (k = 1, 2, 3), ,p and [|0]| oo (g, ,)- We define

Dylul(y) == up = %u(ﬁy) vy € QF. (2.18)
e an
y ¢
lue(y)] < OB 1o(lyl)  VyeQ (2.19)
and
—Ayug 4 (Pap(0) TP |Vuy =0 in QF (2.20)

Using formula (2.13) we extend w, into a function %, which satisfies

—Zay (Vi) + (7 ¢(0) ™ P B(y, Vig) =0 in By, (221)

For 0 < |z| < & there exists £ € (0,2) such that % < |z| < dpf. Then y — uy(y)
with y = 7 satisfies (2.21) in Bs, and |ae(y)| < 74¢(|y|) since ¢ is a diffeomorphism
and Dy(€) € O(N) for any £ € 9Q N By,. The function @y remains bounded on any ball
Bsr(z) T :={y e RV : %0 < |y| < do}, therefore |V, (y)| < cforany y € Bg(z), for

some constant ¢ > 0. This implies
|Vu(z)| < c*y*éotb(%)(b(\x])]x\*l Vz € QN Bs,, (2.22)

which is (2.15)-(i). Moreover, by standard regularity estimates [20], there exists o € (0,1)
such that |Vi(y) — Vie(y')| < cly —y'|* for all y and 3’ belonging to Br(z). This
implies (2.11)-(ii).

Let 0 < 91 < §p such that at any boundary point z there exist two closed balls of radius
6 tangent to O at z and which are included in Q U {2} and in Q° U {2} respectively
(01 corresponds to the maximal radius of the interior and exterior sphere condition). Let
a € 0 and x € Q such that |z| = |a| = r < §; and let b = —rng where ny is the normal
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outward unit vector to 02 at 0. Let § € (0
the path ~ from a to x defined by (¢) =
x = cos fa + sin 0b and

, 5 ) be the angle between (ﬁ and (?C Consider
cos(tf)a + sin(tf)b with 0 < ¢ < 1. Then

1 1
u(z) = /o %u o~y(t)dt = /0 0(Vuo~(t),cos(td)b — sin(th)a)dt

Thus, by the Cauchy-Schwarz inequality and using (2.9),
u(@) < 9[Vuoy(t)] < cf fo|

where ¢ = ¢(p, ¢,2) > 0. Since there exists ¢ > 0 depending only on ¢; and the curvature
of 9 such that 710 < d(z) < &0, we get (2.12). O

Lemma 2.6. Assume p — 1 < q < p, Q is a bounded C? domain such that 0 € 0% and
Ro = max{|z| : z € Q}. Ifu € C(Q\ {0}) N CY(Q) is a positive solution of (1.1) which
vanishes on 002 \ {0}, it satisfies

q—p —d=P_
co | |x|ati-P — R3+1_p> ifg<p
u(x) < (2.23)
(- 1)n () ifg=p
forall x € Q, where co = ca(p,q) > 0.
Proof. For e > 0 we denote by P, : R — R, the function defined by
0 fo<r<e
P(r)={ —LZ5+3 02 15 3 ife <r <2 (2.24)
r— 3 if r > 2,

and by u, the extension of P,(u) by zero outside 2. There exists Ry such that Q@ C Bpg, .
Since 0 < P,(r) < |r| and P is convex, u, € C(RN \ {0}) N WLP(RN \ {0}) and

—Apue + [Vu <0 inRY.
LetR>Ry. lf p—1<qg<p

Uerlle)) = ez (2l = )7 — (R— )15 ) in Bp\ B, (2.25)

withco = (p—q¢) g +p—1) 4175, Then —A,U, + |VU|? > 0. Since u, vanishes on
0Bp and is finite on JBk,, it follows u. < U.. Letting successively ¢ — 0 and R — oo
yields to (2.23). If ¢ = p we take

R—e¢ )
Uelle) = =0t (Z=5)  in B\ B .20
which turns out to be a super solution of (1.1); the end of the proof is similar. (]

As a consequence of Lemma 2.5 and Lemma 2.6, we obtain.
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Corollary 2.7. Let p,q 2 and u be as in Lemma 2.6. Then there exists a constant c3 =
cs3(p, q, Q) > 0 such that

|Vu(z)| < e ]x]fﬁifp Vo e Q (2.27)

and .
u(z) < esd(z) |x| " aF=p vz € Q\ {0}. (2.28)

Remark. If Q is locally flat near 0, then estimates (2.27) and (2.27) are valid without any
sign assumption on u. More precisely, if Q2 N Bs, = Tp0€2 N Bs, we can perform the
reflexion of u through the tangent plane 7502 to 02 at 0 and the new function @ is a
solution of (1.1) in By, \ {0}. By Proposition 2.1, it satisfies

IVa(z)| < enpglel 77 Va € Bs \ {0). (2.29)
2

Integrating this relation as in [7], we derive that for any = € Bs, N (2, there holds
2

enpa (J17% = (3)7%) + max{Ju(=)| : |2| = %} ifp£q

4

ju(z)| < 0 ) |
enpn () +max{fu(2)] : |2] = %} ifp=q.

(2.30)

In the next result we allow the boundary singular set to be a compact set.

Proposition 2.8. Lerp — 1 < q < p. There exist r* € (0,01 and ¢4 = c4(N,p,q) > 0
such that for any nonempty compact set K C 08, K # 0€Y and any positive solution
u€ C(Q\ K)NCYQ) of (1.1) which vanishes on O\ K, there holds

u(z) < c;;d(x)(d;((x))*ﬁifp Vo € 00 s.t. d(z) < 7r*, (2.31)
where di (z) = dist (x, K).
Proof. Step 1: Tangential estimates. Let z € {2 such that d(x) < ¢;. We denote by o(x) the
projection of x onto 92, unique since d(z) < d;. Letr, 7', 7 > 0 such that %’I“ <r < %r
and 0 < 7 < %/ and put w; , = o(z) + T, (y). Since 09 is C?, there exists 0 < r* < §;
depending on € such that dg (wr ;) > %r whenever d(z) < r*. Leta > 0 and b > 0 to be

specified later on; we define 9(s) = a(r’ — s)qﬁfz’ —band v(y) = 0(|ly — wrgl) in [0,77)
and B,/ (w7 ) respectively. Then

1p—2 rat+2—p " N-1, p—1 p—q pil/ —F X
2 (195 = - 0 - S ) =t () - s )
q -Pp

where

o p—qg \"'P p—1 (N-D( —5)
X(s)_<a p) g+1—p s '
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For any 7 € (0, ") there exists a > 0 such that

_ qgt+1—p _ _ r
(a p—q > s Pl (INZDOT=s) o
qg+1-p g+1-p s
This implies
—Apu+ Vo[>0  in By(wrz) \ Br(wrg). (2.32)

Next we take b = a(r’ — 1) 7775, thus v = 0 on OB, (wr.z). Clearly B, (w,.,) C Q° since
7 < 41. Therefore v > 0 = w on 9Q N By (wrz) and u < v = oo on Q N B,/ (wr ). By
the comparison principle, v > w in Q@ N B,/ (w; ). In particular

q9—pP

u(z) <ov(z) <alr' —7— d(w))ﬁ —a(r' —1)at1-p.

We take now 7 = 7 and d(x) < § and we derive by the mean value theorem

u(z) < '~ T d(x) = ¢d() (dy (x)) "7, (2.33)

with ¢} = ¢} (p, q) > 0 Letting 7’ — Zr, we get (2.12).
Step 2: Global estimates. If d(x) > Ldk (), there holds

2 q9—p

d(x)(dx ()" > 2717 (d(x)) 717

Combining this inequality with (2.6) and obtain (2.12). O

Remark. Under the assumption of Proposition 2.8, it follows from the maximum principle
that u is upper bounded in the set 2. := {z € Q : d(z) > r*} = Q\ Q,~ by the solution

w of
—Ap,w+ [Vwl|? =0 in £«

w = ead(w)(dge () "7 in 8, (2.34)

and w itself is bounded by d* = max{cd(z)(dx (z)) " T cd(z) =r*}.

Next we prove a boundary Harnack inequality. We recall that §; has been introduced at
Corollary 2.3, and that the interior and exterior sphere conditions hold in the set {z € RY :
d(x) < 41}

Theorem 2.9. Let g > p — 1 and 0 € OS). Then there exists cs = c5(N,p,q,Q2) > 0
such that for any positive solution u € C(QU ((0Q\ {0}) N Bas,) N CH(Q) of (1.1) in Q,
vanishing on 9 \ {0}) N Bys,, there holds

u(y) _ ule)
ed(y) = @) Cdly)

forall x,y € B% N Q such that 1 |z| < |y| < 2|z|.

<c (2.35)

For proving Theorem 2.9 we need some intermediate lemmas. First we recall the fol-
lowing result from [3].
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Lemma 2.10. Assume that a € 052, 0 < r < 61 and h > 1 is an integer. There exists an
integer Ny, depending only on 61, such that for any points x and y in Q N Bs- (a) verifying
2

min{d(z),d(y)} > r/2", there exists a connected chain of balls By, ..., B; with j < Noh

such that
.%'EBl,yEBj, BiﬂBi_H;é@forlgigj—l

2.
and 2B; C Bo, (Q)NQfor1 < i <j. (2.36)
The next result is a standard Harnack inequality.

Lemma 2.11. Assume a € (02 \ {0}) N Basx and 0 < r < |a| /4. Letuw € C(QLU ((02\
3

{0}) N Bas, )) NCH () be a positive solution of (1.1) vanishing on (0Q\ {0}) N Bays, . Then
there exists a positive constant cg > 1 depending on N, p, q and 6, such that

u(z) < cfuly), (2.37)
forevery x,y € B% (a) N Q such that min{d(z),d(y)} > r/2" for some h € N.

Proof. For ¢ > 0, we define Ty[u] by
Ty[u)(z) = (TP u(lz), (2.38)

and we notice that if u satisfies (1.1) in 2, then T}[u] satisfies the same equation in Q¢ :=
¢~1Q. If we take in particular £ = |a|, we can assume |a| = 1, thus the curvature of the
domain /%! remains bounded. By Proposition 2.8

u(r) < cg Va € By(a) NQ (2.39)
where cg depends on IV, ¢, d;. Then we proceed as in [23], using Lemma 2.10 and internal
Harnack inequality as quoted in [32, Corollary 10]. (]

Since the solutions are Holder continuous, the following statement holds as in [32, The-
orem 4.2]

Lemma 2.12. Assume the assumptions on a and u of Lemma 2.11 are fulfilled. If b €
00N By(a) and 0 < s < 277, there exist two positive constants & and c; depending on
N, p, q and §2 such that

= b|°
0

u(z) <7 max{u(z) : z € By(b) NN} (2.40)

for every z € Bs(b) NS

As a consequence we derive the following Carleson type estimate.

Lemma 2.13. Assume a € (02 \ {0}) N B2s, and 0 < r < |a| /8. Letu € C(2U ((02\
3

{0}) N Bas, )) NC?(2) be a positive solution of (1.1) vanishing on (0Q\ {0}) N Bays, . Then
there exists a constant cg depending only on N, p and q such that

u(r) < cgu(a — in,) Vo € By(a) N (2.41)
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Proof. By Lemma 2.11 it is clear that for any integer h and x € B,(a) N such that
d(x) > 27", there holds
u(z) < cfula — 5n,). (2.42)

Therefore u satisfies inequality (2.40) as any Holder continuous function does. The proof
that the constant is independent of r and v is more delicate. It is done in [3, Lemma 2.4]
for linear equations, but it is based only on Lemma 2.12 and a geometric construction, thus
it is also valid in our case. O

Lemma 2.14. Assume a € (02 \ {0}) N B2s, and 0 < r < |a| /8. Letu € C(Q U ((02\
3

{0}) N Bys, )) NC?() be a positive solution of (1.1) vanishing on (92\ {0}) N Bas,. Then
there exist « € (0,1/2) and cg > 0 depending on N, p and q such that
1t < u(b —tn,) t

< c9-— 2.4
cor — u(a—gn,) _Cgr (2.43)

foranyb € B.(a) N0Qand 0 <t < Gr.

Proof. 1t is similar to the one of [23, Lemma 3.15]. U

Proof of Theorem 2.9. Assume x € B2s, N2 and setr = ‘—?.
3
Step 1: Tangential estimate: we suppose d(x) < §r. Leta € 0Q2\ {0} such that |a| = ||

and z € B,(a). By Lemma 2.14,

Bula—tn) _u(@) _ . ula—jn,)
@ el d@) "

We can connect a — 5n, with —2rn, by m; (depending only on V) connected balls B; =

Br(x;) with z; € Q and d(z;) > § for every 1 < i < my. It follows from (2.41) that

(2.44)

cg tu(—2rn,) <u(a—5n,) < cg"u(—2rn,),

which, together with (2.44) leads to

1 u(—2rn,) _ u(z) u(—2rn,)

a0 el d@) | e
with ¢ig = 869676711.

Step 2: Internal estimate: we suppose d(x) > §r. We can connect —2rn, with z by my
(depending only on N) connected balls B; = Ber(z;) with z; € Q and d(z}) > g for
every 1 < i < mg. By Harnack and Carleson inequalities (2.37) and (2.41) and since
Tzl < d(z) < x|, we get

a u(—2rn,) _ u(zr) _ 4cg"* u(—2rn,)
4087”2 || “dz) T o« ||

(2.46)
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Step 3: End of proof. Suppose % < s < 2|z|, we can connect —2rn,, with —sn,, by m3
(depending only on IN) connected balls B; = B (z}) with i € @ and d(z;) > r for
every 1 < ¢ < mg. This fact, jointly with (2.45) and (2.46), yields to

iu(_sno) S u(x) S Cllu<_sn0) (247)
cir |zl d(z) |z|
where ¢11 = ¢11(V, ¢, Q). Finally, if y € B% N Q satisfies @ < ly| < 2|x|, then by
applying twice (2.47) we get (2.35) with c5 = c2;. O

The following inequality is a consequence of Theorem 2.9.

Corollary 2.15. Assume q > p — 1 and 0 € 9S). Then there exists c12 > 0 depending on p,
q and Q such that for any positive solutions uy, uz € C(QU ((0Q\ {0}) N Bas, )) NCH(Q)
of (1.1) in Q, vanishing on (02 \ {0}) N Bag,, there holds

u(y) | Aco e fu®) .
sup{uz(y).yEBr\BQ}g 12 f{uz(y).yeBr\BQ}. (2.48)

3 Boundary singularities

3.1 Strongly singular solutions

In this section we consider the equation (1.1) in RY. We denote by (r,0) € Ry x SV-1
the spherical coordinates in R™V and

Sivfl = {(singba',cosqb) o' e SN2 9 e, g)}

If v(x) = r7Pw(o) satisfies (1.1) in RY and vanishes on @\ {0}, then 8 = 3, and w is
a solution of
1 2.2 12V o 2 2 12y
—div (( 20? + |[V'w|?) 2 Vw) — ByAg, (Biw? + |[V'w|?) 2 w
+ (ﬁqzwz—i-\V’w\Q)% =0 in Sf_l G3.1)
w=0 on &Sﬁv*l.
where 3, and A, have been defined in (1.10). We denote by (5., 9*) € R% x CZ(gffl)
the unique couple such max ¢, = 1 with the property that the function (r, o) B p* (o)
is positive, p-harmonic in R and vanishes on RY \ {0}. Then 1, = ¢ satisfies

—div/ ((ﬂfzb? V)T V'w) — Buhs, (B2 V)T =0 inSY
=0 on 855‘1.

(3.2)
Since the function v* is unique it depends only on the azimuthal variable §y_1 = cos™!( %)
(see Appendix II). Our first result is the following
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Theorem 3.1. If ¢ > ¢*, or equivalently 5, < f,, there exists no positive solution to
problem (3.1).

Proof. Suppose such a solution w exists and put § = 3,/0,, then 0 < § < 1. Setn = Y?,
where 1) is a positive solution of (3.2), and define the operator 7 by

p—2 p—2
7MFEMU«%WHVW)2V@—%MJ@%+WM%2n

.63
+(B7n* + [Vnl?) 2.

Since Vi = 0/~ 1V,

(,82772+’v/77’ ) _Hp 21/}(0 1)(p—2) (,831/12+’v/¢’2)p772

(ﬁ2772+‘vl77’ ) 5 Vn_gp 1¢(0 1)(p—-1) (52¢ _va‘ ) 22v¢7
therefore
T( ) —@r— 1¢(0 1)(p—1) le <(ﬁ*w2+|vl¢| ) 2 V,¢>
— P70 = 1)(p — 1)yl D=1~ (&w”HV%U W%P
— By g, 0P~ 2pO-DE=D) (822 4 [Vp[2) T g 1 gaypO-Da (5292 4 |92 2.

But 6qA5q9p_2 = 6*A5q9p_1 < 5*A3*9p_1 since f; < Bi. Using (3.2), we see that
T (n) > 0. Because Hopf Lemma is valid, there holds 9,7 < 0 on 355_1. Since w is C'*

in Siv ~1 and ¢ is defined up to an homothety, there exists a smallest function ¢ such that

1 > w, and the graphs of n and w over S i\/ ~1 are tangent, either at some o € S iv ~1, or only
at point o € (9Siv*1. We put w = 1 — w. Then
T(n) =T(n) = T(w) =2(1) - 2(0), 3.4)

where ®(t) = T (w;) with w; = w + tw.
We use local coordinates (o1, ...,0n—_1) on near «. We denote by g = (g;j)
the metric tensor on S™V~! and by ¢7* its contravariant components. Then, for any ¢ €

Cl(SNfl)’

SNfl

(% 3@
IVel? Z 7o = (Ve V),
]

IfX = (X', ..X% e CY(T'SN~') is a vector field, we lower indices by setting X ¢ = Z .

and define the divergence of X by

| |« 0 1« 0 .
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We write ®(t) = ®1(t) + Po(t) + P3(t) where
p=2 a
Dy (t) = —BAs, (Biwi + |V'wi?) 2w, ®a(t) = (Bowi + [Viwy|?)?
and

_2
P3(t) = —div’ (( éwg + |V’wt|2)pT V/wt> .

Then

ow ow
®i(1) — 94(0) = —Zaj% —bw and ®5(1) — P9(0) = ch?” + duw,
J j

where by
b= Behs, (Bl +IVerl”) " (0= D837 + V)
£-2 0 Ow
aj = (p—2)B4Ag, </8q2wt2 + ‘th’2> C o w Zgjkaﬁ‘;’
k
71
d=qf? (B2 + [Ver’)* o,
nd 2 2 2) 371 i Owt
Cj :q(ﬁqwt +|th| ) Zg] ﬁ

k

Furthermore

p—4

B3(1) — @3(0) = —(p — 2)div/ ((ﬁgwf T Vewl?)

(BRww + (V'wy, V'w),) V’wt>
—2
—div’ <(ﬁq2w? + |V’wt|2)pT V’w) .

Therefore we can write (1) — ®(0) under the form
(1) — ®(0) = —div'(AV'w) + (B, V'w), + Cw := Lw (3.5)
where

—4
(AX, X), = (B2 + [Var2) 7 (p— 2)(Viwy, X)2 + [V 2| X 2)

. (3.6)
> (ﬁgwg + |V'we[*) 2 min{1,p — 1}|V/w [?| X2

and B and C can be computed from the previous expressions. It is important to notice that

B2w}? + |V'wy|? is bounded between two positive constants my and ms in S "', Thus
the operator £ is uniformly elliptic with bounded coefficients. Since w is nonnegative and
vanishes at some point o where V'w(a) = 0 and w(«) > 0 or at some boundary point «
where w(a)) = 0 and dhw(a)) < 0 it follows from the strong maximum principle or Hopf
boundary Lemma (see [17]) that w = 0, contradiction. O
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Theorem 3.2. Assume q < q. or equivalently 3, > [B,. There exists a unique positive
solution w, to problem (3.1).

Proof. Existence. It will follow from [10]. Indeed problem (3.1) can be written under the
form

A(w) = —div' a(w, V'w) = B(w, V'w) in S 3.7
w=0 on 91, .
where
— 2 2
a(r,€) = (82r% + [¢| ) £, (3.8)

b2 .
B(r, &) = Behg, (Byr® +1€1%) 2 v — (Bor? +1€)2

The operator A is a Leray-Lions operator which satisfies the assumptions (1.6)-(1.8) of

[10, Theorem 2.1], and the term B satisfies (1.9),(1.10) in the same article. Therefore the

existence of a positive solution w € WO1 P (Siv Hn LOO(SiV ~1Y is ensured whenever we

can find a super solution @ € W1P(SY 1) N L>(SY 1) and a nontrivial subsolution

w € WHP(SY~1) of (3.7) such that

0<w<w in SN 1. (3.9)

First we note that n = 7 is a supersolution if the positive constant 7 is large enough. In
order to find a subsolution, we set again = ¢ with § = 3,/3, and ¥ as in (3.2). Now
6 >1,thusn € Wol’p(SiV*l). As above we have

T(n) = —r-190-D0-1) diy/ <(ﬁ2w2+lv’¢| )7 w)
R CE )7 |

— By, 07 20D (3202 1 [VG2) T 4 0D (5202 1 [9y[2)E
Now 5qA5q9p—2 = ﬁ*Aﬁqep— = ﬁ*(ABq — Aﬁ*) -1 4 ﬁ*AB*Hp_l and Aﬁq — Aﬁ* =
(Bg — B«)(p—1) = Bx(p — 1)(8 — 1), hence

T(n) = —67 0Dy ((ﬁ*WHV’w\ ) w)
=010~ 1)(p — YOI (822 4 [VpP2) T (VP
= Be(Ag, — Ag. )P~ 1p0= D=1 (242 4 IV'T/)|2)T
— B8 0P OO (8202 [T T g+ g0l (8202 +92)
Using the equation satisfied by ¢ yields to the relation
Tn) = —671(6 = 1)(p - D001 (822 1 (V) T |V'w|2
— B2p — 10— D@ VED (g2 1 [9hpf2) e
+ 01019 (G202 + V')

= 07710 = 1)(p — Dy DE=DE (202 4 |V'f2)
+ 909 (822 1 V')

o
2
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We will see that replacing 1 with m1) in the above computation, the right choice of m will
give T(n) < 0: Indeed, we need

P—gq
2

m@(qulfp)w(Gfl)(qulfp)Jrl < apflfq(g . 1)(p . 1) (,831/12 + ’v/w’2)

which holds to be true if we choose m to satisfy

pP—gq
2

min, g1 (8292 + V9 [?)

0—1)(g+1-p)+1
Max, . gN—1 p(0=1)( )

m@(qulfp) < ﬁﬂ(ﬂ*l)(qul*p)Jrlepflfq(a _ 1)(]? _ 1)

Therefore 0 < 7 < ng and standard regularity implies that the solution w is C! in gffl.
Actually w is C'*° since the operator is not degenerate.

Uniqueness. We use the tangency method developed in the proof of Theorem 3.1. Assume
w1 and w9 are two positive solutions of (3.2), then they are positive in Siv 1 and Onw; <0
on BSiV ~1 Either the w; are ordered and w; < ws, or their graphs intersect. In any case we
can define

T=inf{s > 1: sw; > wa}.

We set w* = 7w;. Then either the graphs of ws and w* are tangent at some interior point «,
or they are not tangent in Siv_l, Onw™ < Opwo < 0on BSiV_l and there exists o € BSiV_l
such that Opw*(a) = dpwa () < 0. Furthermore 7 (w*) > 0. If we set w = w* — wy, then,
as in Theorem 3.1,

—div'(AV'w) + (B, V'w), + Cw = Lw > 0
where

~ p—4
(AX, X)g = (Bjwi + [V'wil?) = (p = 2)(V'wr, X)§ + [V'wr[*| X]?)

p—d (3.10)
> (Bjwi + [Viw]?) # min{1, p — 1}V'w[?| X%,

in which w; = w9 + t(w* — wo) and ¢ € (0,1) is obtained by applying the mean value
theorem and B* and C* are defined accordingly. Since £ is uniformly elliptic and has
bounded coefficients, it follows from the strong maximum principle that w = 0. Thus
w* = Tw1 = wg and 7 = 1 from the equation. This ends the proof. O

3.2 Removable boundary singularities

The following is the basic result for removability of isolated singularities. It is valid in the
general case, but with a local geometric constraint.

Theorem 3.3. Assume ¢* < q < p < N, Qis a C? bounded domain with 0 € 0, such
that QN Bs = By for some § > 0. Ifu € C1(Q\ {0}) is a nonnegative solution of (1.1)
in Q which vanishes on 9Q \ {0}, then it is identically 0.
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Proof. Step 1: Assume @ C RY. For e > 0, we set 2. = QN B¢ and H, = RY N BE. For
k,n € Ny, n > diam (€2), we denote by vy, ,  (n € N,) the solution of the problem

—Apu +|Vou|T=0 in H.N B,
v=kx on d(H. N By). G.11)

RfmaBe

Ifk > @eqiﬁp for a suitable c; = c2(p,¢) > 0 (see Lemma 2.6), then vy, ,, . > w in Q.

Moreover there holds vy, < Vg 57 forn < n' and k < k’. Furthermore the function

Uenl@) = ez ((Jo] — 717 — (n— )at17 )

a priori estimate, we obtain that vy , . — v when n, k — oo and that the function v = v,
is solution of

is a super solution in B,, \ B, and there holds vy, , ¢ < Ue . By monotonicity and standard

—Apu+ |Vol[T=0 in H,
lim, . v(7) = 00 (3.12)
v=0 on ORY N Be.
Furthermore ap
u(x) < ve(r) < es(|z| —€)ati—r  in QL. (3.13)

The function v, may not be unique, however it is the minimal solution of the above problem
since the vy, ,,  is unique, and monotonicity in n and & holds. Actually, v. < ve if 0 <
e < €. For £ > 0, we recall that the transformation v — Ty[v] defined by (2.38) leaves
equation (1.1) invariant. As a consequence of the uniqueness of the approximations we
have Ty|v =V p- , which implies

vl k,n,e] P ff—n0-1e p

Tyl (@) = v, (3.14)

Letting ¢ — 0, we derive from the monotonicity with respect to ¢ and standard C'™ esti-
mates, that the following identity holds:

Tyjvol =vo  VE> 0. (3.15)

The function vy is a positive and separable solution of (1.1) in ]Rf which vanishes on
o0\ {0}. It follows from Theorem 3.1 that vy = 0, and so is .

Step 2: The general case. We assume that 2N By C Rf and we denote by M the maximum
of u on 0Bs N Q. Then the function (u — M) is a subsolution of (1.1) in N Bs which
vanishes on 92 N B; \ {0}. By Step 1, it is dominated by v, which ends the proof. O

Remark. The previous result is valid if « is a subsolution with the same regularity as w. If
u is no longer assumed to be nonnegative, only u™ vanishes. Furthermore, the regularity
of the boundary has not been used, but only the fact that € is locally contained into a half
space to the boundary of which 0 belongs.

Remark. 1f no geometric assumption is made on 92, we can prove that u(z) = o(|z| ")
near 0. The next result shows that the removability holds if ¢ > ¢..
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Theorem 3.4. Assume ¢* < ¢ < p < N and Q is a C*? bounded domain with 0 € o0 If
u is a nonnegative solution of (1.1) in Q which belongs to C*(Q \ {0}) and vanishes on
o0\ {0}, it is identically 0.

Proof. In [26] is proved that for any smooth subdomain S C SN, there exists a unique
s > 0and 1, > 0, up to an homothety, such that z — |z| ™7 1,(|z| ! z) is p harmonic in
the cone C'g = {x € RV \ {0} : || ' 2 € S} and 1) satisfies

—ai (8302 + 90) " 90.) = B, (02 + 90T 0. =0 ins
Ps=0 ondS,
(3.16)

We recall that S ¢ S ¢ SN-1 implies 8z < f35 is decreasing. Using the system of spherical
coordinates defined in (6.5), for e > 0 we denote by S := S, the spherical shell with vertex
the north pole N and latitude angle Oy € [0, %+e]. Because of uniqueness of 85, Bs, T O«
as € — 0. Therefore, if ¢ > g., or equivalently 5, < f, there exists J,¢ > 0 such that
QN Bs C Cs, N Bs and B; < Bs,. Since Theorem 3.1 is valid if Siv_l is replaced by S,
and 3, < B, it follows that u = 0 as in the proof of Theorem 3.3, Step 1 and 2. O

The next result, valid in the case p = N, is based upon the conformal invariance of the
N-Laplacian. In this case the exponent (3, corresponding to the first spherical N-harmonic
eigenvalue is equal to 1 and the corresponding spherical N-harmonic eigenfunction in Sﬂrv -1
is xy/ |z

Theorem 3.5. Assume N — % < g < N, Q is a bounded domain and 0 € 0X) is such
that there exists a ball B C )¢ to the boundary of which 0 belongs. If u is a nonnegative
solution of

“Ayut |[Vulf=0  inQ, (3.17)
which belongs to C(Q\ {0}) N Wol’N(Q \ Bc(a)) for any € > 0, it is identically 0.

Proof. We assume that the inward normal unit vector to 9 at 0 is ey = (0,0, ...,1) and
that the ball B1(a) of center a = —%e ~ and radius % touches OS2 at 0 and is exterior to
Q) (this can be 2assumed up to a rotation and a dilation). This is the consequence of the
exterior sphere condition at the point 0. It is always valid if 99 is C2. We denote by Z,,

the inversion of center w and power 1, i.e. Z,,(z) = w + ;:5‘2 . Under this transformation,

the complement of the ball B (a), which contains €2, is transformed into the half space RY
2

which contains the image Q of Q. Since u satisfies (3.17), @ = u o Z,, satisfies
—Ayii+ |z —wP TV |Vl =0 inQ. (3.18)
Furthermore since 0 = Z,,(0) and Z,, is a diffeomorphism, @ € C (5\ {0}) N CY(Q) and it

vanishes on 9Q \ {0}. Since |z —w| < 1 and ¢ < N, @ is a subsolution for (3.17) in G.
By Theorem 3.5, u = 0. (]
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3.3 Weakly singular solutions

The main result of this section is the following existence and uniqueness result concerning
solutions of (1.1) with a boundary weak singularity. We recall that 1), is unique positive
solution of (1.11) such that sup ¢, = 1. Our first result is valid for any 1 < p < N but it
needs a geometric constraint on ).

Theorem 3.6. Letp — 1 < q < q. < p < N and Q be a bounded C? domain such that
0 € 0. Assume that there exists 6 > 0 such that Q N Bs = Bgr. Then for any k > 0
there exists a unique positive solution u := uy, of (1.1) in €, which belongs to C*(Q\ {0}),
vanishes on 002 \ {0} and satisfies

lim uk(x) =

@) (3.19)

in the C*-topology of S iv L where

V. (2) = |2| ™ (2| ).

The proof of this theorem is long and difficult and requires a certain number of interme-
diate results.

Lemma 3.7. Let the assumptions on p, q and ) of Theorem 3.6 be satisfied. There exists a
unique positive p-harmonic function ®, in S, which is continuous in 2 \ {0}, vanishes on
o0\ {0} and satisfies
)
lim +(2)
z—0 \I/*(ac)

=1. (3.20)

Proof. For 0 < e < ¢ let ve be the unique p-harmonic function in £ \B—zr which is con-
tinuous in Q \ B, vanishes on 9 \ B, and achieves the value ¥, on 9B, N ). By the
maximum principle, and since ¥, (z) < D5+ where D = max{|z| : z € Q}, there holds

(U, — D), <o, <V, inQ\BF (3.21)

If e < € < 0, then v < v in O\ B—:,r By a standard regularity result v, converges to a
function @, continuous in €2\ {0}, p-harmonic in € such that

(\I/* - 576*)—1— S q)* S \I/*
in Q. Therefore (3.20) holds provided ﬁ remains in a compact subset of Siv ~1 Let
&, (x), then ¢.(r,0) < 1.(c) where r = |z|
€ Siv ~1. By standard C'1 estimates, ¢, (r,.) is relatively compact in the

C (Sf _1)—topology. Therefore the convergence of ig; to 1 when 2« to 0 holds not only

us define a function ¢, by ¢,(z) = |z
x

and o0 = &
||

when ﬁ remains in a compact subset of Siv ~1, but uniformly on Siv ~1, which implies
(3.21). Uniqueness follows classically by (3.21) and the maximum principle. O
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Lemma 3.8. Let the assumptions on p, q and Q) of Theorem 3.6 be  satisfied. If for some
k > O there exists a solution uy, of (1.1) in §), which belongs to C*(2\ {0}), vanishes on
I\ {0} and satisfies (3.19), then for any k > 0 there exists such a solution.

Proof. We notice that for any ¢ < 1 (resp ¢ > 1), cuy is a subsolution (resp. supersolution)
of (1.1) in Q. If ¢ < 1, the function ck®, is a supersolution of (1.1) which vanishes on
o2\ {0}. Furthermore

cup(r) . ck®.(v)

TS S R P S

Then there exists a solution uy of (1.1) in © which satisfies cup < uc, < ck®,. If ¢ > 1,
we set u* := T.o[ug], which means u*(x) = cPa%uy,(c? x) with § = (3, — B.)~'. Then u*
is a solution of (1.1) in 0 = 0—19(2 In particular, u* satisfies the equation in B (0). Since

c

¢ > 1, B} (0) C Bf (0). Putm = max{u* : z € B% (0)}. The function (u* — m),
rg rg

extended by 0 outside B, (0), is a subsolution of (1.1) in §2. Furthermore it satisfies
)
L —m). ()

= ck
250 W, (x) “

uniformly on any compact subset of S iv ~1. Therefore there exists a solution 1y, of (1.1) in
Q) which satisfies (u* — m); < uc, < ck®,, and in particular it vanishes on 992 \ {0} and
belongs to C*(2\ {0}). By [28], . is positive in . Thus u,, belongs to C1*(B; (0) \
{0}) and satisfies

X X X Vucr(x) — Vuer(y
21 Jucx(@)] + la] 7 [Vuuer(@)| + o 7 sup [V ek(®) = Veier(y)
1yl < |2l [z =yl
TFy

<M

by (2.11). Therefore the set of functions {1V (r, .)},~0 is uniformly relatively com-
: . SN-1 . . p .

pact in the topology of uniform convergence on S, . Since it converges to ckV'1), uni-

formly on compact subsets of Siv ~1, this convergence holds in C (§f_1). This implies

Uek ()
im
z—0 \If* (.YJ)

= ck. (3.22)

O

The next Lemma is the keystone of our construction. Its proof is very delicate and needs
several intermediate steps.

Lemma 3.9. Under the assumptions of Theorem 3.6 there exists a real number Ry such that
0 < Ry < § and a positive subsolution @ of (1.1) in BEO which is Lipschitz continuous in

BEO \ {0}, vanishes on EEO N ORY \ {0}, is smaller than U, and satisfies

()
e

=1. (3.23)
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Proof. The construction of the function u. We look for a solution under the form o =
W, — w for a suitable nonnegative function w.

Step 1: reduction of the problem. We use spherical coordinates for a C'' function u : x
u(z) = u(r,o), r = |z|, 0 = a7~ Then Vu = u,e + r~1V'u where e = |z| 'z,

q
IVul> = w2 + r~2|V'ul® and |Vu|? = <u$ + 72 \V’uﬁ) *. The expression of the p-
Laplacian in spherical coordinates is

p=2 N —1 p=2
—Apu = — <<u$ +r2 ]V’uf) ? ur> - (u% +r2 ]V’u!2> *u,

T
1 "
— —div' | (u2 4 r2|V'ul? Viu | .
2 "
Put v(t,o) = rP*u(r,o) with t = Inr € (—oo, In d], then v satisfies
Q] :=

p—2

_ (((vt — Bw)* + |V’v|2) e (ve — @w))t — div' <<(vt — B)? + |v/v|2) 2 V’v)

p—2 q
+ Mg, (0= Bo0)? + V') T (v = Buv) + et (v = Bov)? + ['0])* =0
3.24)
in (—oo,1Ind) x Sivfl wherev =1—(¢g+1—p)(B+1) =1— gqﬂ > 0and Ag, =
B«(p — 1) + p — N. Notice that v, satisfies

p—2

p=2
—div/ ((ﬂfwf + V) w}*) — Bubg, (8202 +|V'0[*) 7 v =0, (329)
hence it is a supersolution for (3.24). We look for a subsolution under the form

V(t,o) = —a(t)g(ys)
where g is a a continuous increasing function defined on R, vanishing at O and smooth on
R* and a(t) = " with v > 0 is to be chosen. Thus a’ = va, a” = y2a, V; = —vag(yy),
Vi = BV = =Butbs + a(Be = 7)g(¥), V'V = (1 — ag' (1)) V'¢), and

(Vi = BV + V'V = (=B + a(Be — )g(¥.)” + (1 — ag'(v.))? V4.
= (8292 + 2B (v — B )be) + (1 = 2ag (1:)) [V'4bu|* + O(a® | g(¥) || 1)
= 202 + [0 + 20 (Bu(7 = B)bug() = o () V) + O(a? llg(6) ).

Therefore
p—2
(Vi— 8.2 +[9VP) ?

p—2

= (537/)3 + |V'¢*|2) 2 Bi(y — Ba)bug(1hs) — gl(¢*) |V1/)*|2

B2Y2 + V', |
+ 0(a® |lg(¥) || 1),

1+ (p—2a
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and

q
2

et (Vi= B.V7 +[V'V])

By = B)vug(ihs) — g' (1) V[
B2 + |V, |?
+0(e"a® [|g(¥a)|l )

q
= (8202 + V0. %) |1+ qa

thus
(V=82 +1VVE) * (V- 57)

— 5 (B V) T b+ ae— ) (22 + 19 R) T g)

By = B)vug(ihs) — g' (1) V|

_aﬁ*(p— 2) ( 3’[/}3 4 ’V,’[/}*‘Q)ALT

Pu + O(a? [|g(1e) [l n)-

Finally,

p—2

—<<(Vt—ﬁ*V)2+\V’V!2> ’ (Vt—ﬂ*V)>t
zﬁw%wwW£ﬁ+wwﬁf¥am>

Be(V2 = By)bag(h) — vg' (¥.) |V |?

+5* (p - 2) 4—p
(B22 + |V, )2

+0(a? [lg(s)ll c2)-
(3.26)

s

Since

p—2
<(Vt — BV + !v'vlz) VIV =

p—2

<,831/13 + !V'w*\2> Tz (1 . ag/(w*)) /8*(7 — /8*)1/}*9(1/}*) — 9'(¢*) \V%\Q

V',
B2 + |V, | v

1+alp—2)

+0(a® gl en)

p—2

= (B2 + V') T v

+a <6f¢3 + |V,¢*|2)T 3292 + |V, 2

+0(@® gl en),

2 / 2
[(p _ )Py = B)eglv) — g (W) | VUl _ g'w*)] _—
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we get similarly

P— p—2

—div/ (((v; BV |V’V|2) 2 v’v) — —div! <<ﬁ$¢$ + |v’1,z)*|2> ? v’q,z)*)

p=2 _ —d 2
—adiv ((ﬁfd}f + ’v/w*‘Z) 2 [(p _ 2)/8*(7 B)xg(hi) — ' () [V |

B2Y2 + | V', [
+0(a® [|g(¥) | g2)-

- g'(%)

V’z/z*>

(3.27)
Noting that

~din/ ((@%wz )T w*) b= B, (B2 + 9) T 0 G2)

we obtain

e 1Q[V]

p=2 2 _ o~ 2
- [w? ~ o) (8202 + 19,2) 7 gl + fulp — 2y PO PN00) {0 [0 w*]

(P22 + rv'w*\2>45p
B2 Bi(y = BIeg(hs) — ' () [Vu® /

_ _ | Vb,

[(p Y B292 + V4| o )] v )

p—2 _ _ 2
(B2 + V') 2

By = B)ug(ihs) — ' (1) [V
B2 + |V, |?

~din/ <(ﬁf¢3 + V')

aq
2

14 qa

+0(allg(v:)llc2)-
(3.29)

et (5202 + [V )
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In this expression we have in particular

/8*(’7 - 5*)7/)*9(20*) - (¢*) |V¢*|2 ’ /
4 IV Y w*)] Vw*)

= (o= vy’ [ ) (3202 4 970.2) T 3 v

—div’ <(53w3 - |V’¢*I2) = [(p —2)

p—4

it (3202 +196.) 7 (0= 20800 (00) + (0= D) = )g()] 0

= (0= 1)g" (V) (8202 + V'] = v

+ (= 1)g/ () div! ((ﬁzwz )T w*)

(= Bgtba )0 + Beg ()2)
(52024 9 )

— (p — 2)Bidiv Vi | .

(3.30)
Using the equation (3.25) satisfied by 1), it infers that
” o 12) T Bely = B)ug () — g (W) [VO* /
—div <(53¢3 + [V ) [(p —2) 5202 1 [V P — g (W) |V m)

—2

= (0= 1) (8202 + [Vl?) T (0" (W)l = Bud g (0)00)

(o 2)Budiv ((v = B)g(u) e + Beg (0:)17) vl

(8202 +1v7wn?) *

(3.31)
Plugging this identity into the expression (3.29), we obtain after some simplifications

Q] = (8202 + V') T g QV] + e RV] + Ol g(4) o)
(3.32)
where

B(d — Bua)ug(yhs) — ag (1) |V |”

1+g¢
B2 + | V', |

)

(3.33)

RIV) = et (8202 + 1. P) |1
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and
et \2} ~ DA )

O\[V] = (v — Ag)(y — B2) [1 -2

+Kp—®&Amm=aAwq<y—m<1_

9(tx) 292 + |V
Veg (1) W%wq Vs
- _2 - N * 1 - *A * - Mx *
(r—2) o(0) ((Bs+ 1)y = Bilg, +B) +7v— B + B W) | 5202 1 [V
/l( )
-1 V|~

(3.34)
In this expression the difficult term to deal with is [(p — 4) 8. Ag, ¥ — 2A’1),] since it has
not a prescribed sign. However A’y = O(1),) by (6.18).

Step 2: The perturbation method and the computation with g(1.) = .. With such a choice
of function g

B2

%w+ww#}
V', |

B2 + |V'ap, >

O\[V] = (v — Ap )y — ) [1 -2
(3.35)
-2y As )+ 2]

Equivalently

B

W= [+ 02 o

} (V2 = (Mg, + o))
V'

2
B2 + V', | S

- [(p —2)(B: +2)

and finally

Bs

A1lV] = [1 +(p— Q)W

] vy = (Ap + B+ (0= 2)(Bc +2) + O(3)] -
(3.36)
Using the fact that § > % ifl<p<2andl << NT_ll if 2 < p < N (see Appendix

p
II), we have

A, + B+ (0 —2)(Bc +2) > o _ (3.37)
N+3p—-2)>N-3 ifl<p<2.

When N = 2, we have explicitly 8, = 1+2 V p 3p +3 (see [19, Th 3.3]). Therefore for all
N > 2 and p > 1, there holds

Ap, + B+ (p—2)(Bs +2) > 0. (3.38)
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We fix ¢g > 0 such that, whenever ¢, < €q, there holds

Ag, + B+ (p — 2)(Bs +2) + O(42) > % (Ag, + B« +(p—2)(B +2)). (339

If we fix o > 0 such that

< min {3 (45, + 8.+ (0= 2)(5. +2) 5. | (.40

we obtain
Q[V] < —min{l,p — 1}ym* V0 <~y <1, (3.41)

whenever 1, < €g, for some m depending only on p, ¢ and N (through ¥, and v), which,
in the same range of value of ,, yields to
.

<ﬁf¢f + yv’w*ﬁ) g QV] < —eirte V0 <y < 70, (3.42)

for some c;7 > 0 depending on N, p,q. This estimate is valid whatever is p > 1, but
only in a neighborhood of ¥, = 0. If we replace g() = ¥ by gr(ths) = e = for
0 < k < 1, and denote by Q; ;[V] the corresponding expression of Q;[V] which becomes
now Qi o[V]. We define similarly Qx[V], and Q[V] becomes Qo[V]. Since g} (¢.) =
e M — kgr (1) and g = —2ke "= + k2gx(¢),), we obtain

OuilV] = QuolV] + k(p— 1)Buhs it + (p— 1) <_i—’“ + /<:2> SR
+ (2 = p)Bs (—2k + k%) Py + O(12)

Notice that V1), vanishes only at the North pole ey, thus there exists kg € (0, 1] such that

(3.43)

1

k
k(1=p) Bl g, hut(p—1) (i— - k2> V'] > 5(2=p)1 B (—2k + k). Yk <k

whenever v, < ¢y which yields to

(8202 + IV'l?) 7 gh(@)QualV] < —erisk  Vk<hy (44

for some c15 = c14(N, p, q, €g). There exists c19 = c19(N, p, q) > 0 such that

% * - Mx * *) T f * V * 2
in Sivfl X (—00,1n d]. Moreover
O(allg(th)llce) < €7, (3.46)

for some ¢ = (N, p, q) > 0. We derive from (3.44)-(3.46)

e QuIV] < —c1sk + croe M 4 MG, VE < kg (3.47)
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Thus there exists Ty, < In ¢ such that Qx[V] < 0, for all ¢ < T}, and provided ¢, < €. This
local estimate will be used in the construction of the subsolution when p > 2.

Step 3: The case 1 < p < 2. Since the function ¥* depends only on the azimuthal angle
6 € (0; 5] we will write ¢*( ) = 1. (0) and V'), (0) = 1h.9(0)n where n is the downward
unit vector tangent to S™V=1 in the hyperplane going through ¢ and the poles. From (6.8),

’ B2, + 1,
(p —4)Belp, s — 249, = (p — 2) <5*A6*1/J* + 2W"‘¢§> ; (3.48)
since ¢ 2, = |V'¢,|? and thus
/ /8* w*
((p — 4)Belp, P — 2A7y) m
o B24p? B2 + gyt 2>
=2 < B+ 07, T B e V)
(3.49)

From Theorem 6.1-Step 4 in Appendix II, we know that 329, + 1),y > 0, thus the con-
tribution of this term to Q;[V] is nonpositive. We replace this expression in Q;[V] with
g(1+) = 1, and obtain

QY] = (1= 40)00 = 8 (14 0= D ) =~ s o 1)

2
+(p—2)7A mﬁQfﬁ*w —(p —2><<ﬁ*+2>V‘A5*5*)Wf%

BT + Yot
) G i

2,72 . + 202, — Ag, B2
§7<1+(p—2)252*7f*%> (W—Aﬁ*—ﬁ*)—(P—Q)V(ﬁ - ?éiwi;ﬁ v

* 20 — Mg, B2U2
§7<1+(p 2) 5o Sevs ><v—<A5*+ﬂ*+(p—2)(ﬁ + 2V mﬁﬂ))).
(3.50)

BRY2 + 42, (p—1)B2¢2 + 92,
We can write

(B« + 2)tb59 — Ap, BE2
Aot Bt =D T ur 7,
_ (Mg + (0= 1)B) B2 + (Mg, + Bulp— 1) +2(p —2))¥Z  (3.51)
(p — 1B2YE + ¥
> co (Mg, + Bulp — 1) +2(p — 2)).

This expression Ag, + S.(p — 1) + 2(p — 2) is always positive: obviously if N > 3 and
by using the explicit expression of 3, if N = 2. Thus there exists g and c¢1 > 0 such that
Q1[V] < —ey6 for 0 < v < 7. The pertubation method of Step 2, is valid in the whole
range of values of ¢, and we derive from (3.41)-(3.42) that (3.47) holds for all k£ < kg and
t < Tk. Therefore Qx[V] < 0.
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Step 4: The case p > 2. For ¢ > 0 to be fixed and ¥, > €y, v € (0,70], we take
g(hs) = 01/1* 7 Then we derive from (3.34):

_ (b = 1)B2Y2 + [V
QUV] = (7 = A )y = Bt g — (0= 1), <1 _ E)

(5 ) ,Bl* / 2 o o _A |V’1/)*|2
32 7/}* V.| (p—2)(Bs —7)(v 5*)IBE¢E n |V/¢*|2

=(1-p) [7(5* -7+ 7(5*573_7)%1‘3* w*F] .

— -t

(3.52)

. .
P = gpe 0 = ¢ = eg* e~ and we define g by

1
For k < kg we fix ¢ such that ce,

a 11— ek if 0 < 9. < e
9(¥«) = min {¢*€_kw*, 65* 6_k60¢* o } = a 11—
€ e P T ifeg < <1,
(3.53)
and we set V(t,0) = ¢*(0) — a(t)g(vs(0)) with (t,0) € (=00, Tj;] x S¥ ! and define
i(r,o) = =% (*(0) — a(lnr)g(1.(0))) accordingly for (r,0) € (—oo,eTk] x SN,
Since 1, is a decreasing function the coincidence set {c € Siv (o) = glisa
circular cone Xy, with vertex 0, axis e and angle 6. We set Ry = el

I = {x:(r,ﬁ) € B}, 100 <0< g} :{(7",0) € [0, Ro) x S¥1:0 < (o) <60},
Iy = {x:(r,G) € B}, :o<9<90} :{(r,a) €0, Ro) x S¥ 11 ep < . (0) < 1},

and define

a(r,0) =177 (u(0) = 17g(1s(0)))
uy(r, o) = r=3 (1 — rYe =)y, (o) if (r,0) e I'y

ug(r, o) = 5 <1 - r“’egl*e*ke‘)(l/} (o ))1> s (o) if (r,0) € I's.

The function @ is a subsolution separately on I'y and I'; and is Lipschitz continuous in
Q\ {0}. If we denote by g; and go the restriction of g to I'; and T'y respectively, that is to
Q and Qy, then gj(e9) > g5(e0) > 0. Let ¢ € C1(Bj; ) which vanishes in neighborhoods
of 0 and 8BEO, ¢ > 0, then

/ Va2 Va.vide + / Va7 (de < / Vg P2 B, i dS, (3.54)
Fi Qz’

)

where n; is the normal unit vector on X, outward from I';. Actually, np = —n; = n thus

Vi = u,e+ ’I“_B*_l(l —1r7g () V' = e + T_B*_l(l —1r7g (¢y))1hsg .
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and on Xg,,
vi e —r P71 —r7g)(0))tho 1 inI'y
u =
e +r~ P71 —r7gh(ep))tbo n inTy

Therefore

|Vu1|pf2 On, U1
= P (L= g ) (8 4 21— g () 20) T g in Ty
and
(Vg |P ™2 O, us
= (1= gh(eo) (3 + 21— gy () %) P i Ty,

By adding the two inequalities (3.54)

/ IValP 2 Va.Veda + / Va9 ¢dr < / <\Vu1\p_2 Bny 1 + |Vug|P 2 anqu> ¢ds.
Q Q 0
’ (3.55)

b
By monotonicity of the function X — (a2 + X?)2 and since

r N L = 1gh(e0)) = P =17l (e0)) 2 0,

we derive

p—2

PO (L = ghlea) (7 + 7R = gy 0) T
p=2
= L = g () (7 + 17221 = g () P02)

We derive that the right-hand side of (3.55) is nonpositive because 1,9 < 0, and therefore
@ is a positive subsolution of (1.1) in BEO dominated by ¥, and satisfying (3.23). O

Proof of Theorem 3.6. Let M = max{V,(z) : z € 8BEO}, then M = Rgﬁ*. The function
u* defined by

() = { (a(x) — M), %f x € Bf, .

0 if v € Q\ B} ,

is indeed a subsolution of (1.1) in whole {2 where it satisfies u* < W, and it vanishes on

o2\ {0}. Since ., is a positive p-harmonic function in €2 which vanishes on 902 \ {0} and

satisfies (3.20), it is supersolution of (1.1) and therefore it dominates u*. Therefore there

exists a solution u of (1.1) in €2 which vanishes on 92 \ {0} and satisfies u* < u < ®,.

This implies that (3.19) holds with k£ = 1 and we conclude with Lemma 3.8. This ends the

proof of Lemma 3.9. (]

When p = N the statement of Theorem 3.6 holds without the flatness assumption on
0%2. The proof of the next theorem is an easy adaptation to the one of Theorem 3.6, provided
Lemma 3.7, Lemma 3.8 and Lemma 3.9 are modified accordingly.
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Theorem 3.10. Assume N —1 < g < N — 3 and Q be a bounded C? domain such that
0 € ON). Then for any k > 0 there exists a umque positive solution v := uy, of (3.17) in Q,
which belongs to C*(Q\ {0}), vanishes on 9Q \ {0} and satisfies uniformly with respect to
s Siv -1

lim0 |z ug(x) = ki (o). (3.56)

Tr —
z/|z] = o

Since p = N, B, = 1 and 9, (0)

= |—1\" = cos O_1 with the identification of ¢ and
On—_1 := 0. In a more intrinsic manner (3.56) can be written under the form

i [222E) ) (3.57)
. Aé) d(x)
x €

We recall that if w € RY and T, denotes the inversion of center w and power 1, i.e.
Zo(z) =w+ ‘ |2,thenu—qu satisfies (3.18).

Lemma 3.11. Assume Q be a bounded C? domain such that 0 € 9). Then there exists a
unique N-harmonic function ®, in Q, which vanishes on 9Q \ {0} and satisfies

lim |z ®u(z) = Yu(0), (3.58)
z—0
z/|z] = o

uniformly with respect to o € S iv -1

Proof. Uniqueness is standard. Let w = —ey € Q°, with the notations of the proof of
Theorem 3.5, W' = —w, a = %eN and ¢/ = —a. We can assume that the balls Bl( )

and B (a’) are tangent to 9 at 0 and respectively subset of 2¢ and Q2. The function z
U(z) i —é—‘% which is N-harmonic in RY and vanishes on R ~1\ {0} is transformed by
the inversion Z,, of center w’ and power 1 into the function ¥, = ¥ o Z, which is positive
and N-harmonic in Bx (a") and vanishes on OB 1 (a’) \ {0}. The function ¥ = —¥ which
is N-harmonic in RY and vanishes on ORY !\ {0} is transformed by the inversion Z, of

center w and power 1 into the function ¥, = U o 7,, which is positive and /N-harmonic in
B (a) and vanishes on 9B1 (a) \ {0}. For ¢ > 0 we denote by ®, the solution of
3 2

—AnP. =0 in QN B¢
o, =0 in (Bf(a’) N9B.) U (02N BE) (3.59)
2
¢, =T, in B% (CL,) N OBk..

If0<é€ <e @ >V, in Bi(a)NIB, thus D > s in Q N BE. We also denote by
2

(75 the solution of
—Apn

0 in QN B
0 in QN B (3.60)
v, in QN oBC.

B o *6‘*>
I
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In the same way as above

0<e <e= &, <d  in QNIBE

T—w’

Using the explicit form of ¥, 7, : . — w + ﬁ andZ, 1z — W' + vz We see that
1+e
Vor B (@ynoB.< T YulBy @)noB.:
2 — € 2
thus 1
o, < 1“@ in QN BC.
—€

Letting ¢ — 0 we conclude that ®. converges uniformly in © \ {0} to ®, which vanishes
on 9\ {0} and satisfies (3.58). O

The proof of the next statement is similar to the one of Lemma 3.8 up to some minor
modifications, so we omit it.

Lemma 3.12. Let the assumptions on q and Q) of Theorem 3.10 be satisfied. If for some
k > 0 there exists a solution uy, of (3.17) in §), which belongs to C* (2 \ {0}), vanishes on
00N\ {0} and satisfies (3.56), then for any k > O there exists such a solution.

Lemma 3.13. Under the assumptions of Theorem 3.10 there exists a Lipschitz continuous
nonnegative subsolution 4 of (3.17) in Q which vanishes on OQ \ {0}, is smaller than @,
and satisfies

lim  |z|a(z) =0, (3.61)

z—0
z/|z] = o

uniformly with respect to o € Sivfl.

Proof. Let 7 > 0 to be fixed and let w be the solution of
—Anyw + |Vw|?=0 in By (3.62)
which vanishes on 9B, \ {0} and satisfies

lim |z|lw(z) =0 (3.63)
z—0
z/|lz| = o

in the C''-topology of S N=1 Tts existence follows from Theorem 3.6 and this function is
dominated by the N-harmonic function ¢, corresponding to this domain obtain in Lemma 3.11.
By Z,,, the half-ball B, is transform into the lunule G = B% (a’)\B% (3w') and @ = woZ,
satisfies

—AND + |z — PN VeT=0  inG. (3.64)

Since |z — w'| < 1in G, —Axw + |[V@]? < 0in G. We extend @ by 0 in 2\ G and the
resulting function @ is a subsolution of (3.17) in §2 which vanishes on 92\ {0}), is smaller
than the N-harmonic function ®, obtained in Lemma 3.11, and satisfies (3.61). O
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4 Classification of boundary singularities

We assume that Q@ C R is a C2 domain and 0 € 9. Furthermore, in order to avoid
extremely technical computations, we shall assume either that OS2 is flat near 0 or p = N.
We suppose that the tangent plane to 9 at 0 is ORY = {x = (z/,0) and the normal inward
unit vector at 0 is ey, therefore n = —e in the sequel. We denote by w,n-1 the unique
+
positive solution of (3.1) in Sﬂrv ~! and by U.v-1 the corresponding singular solution of
+

(3.1) in RY defined by N
Usf—l(ﬂf) = |g;|—5q wsf_l(m). (4.65)
We recall that v, is the unique positive solution of (3.2) with maximum 1 and U, the
corresponding p-harmonic function

_ X
U, (z) = |z| P w*(m). (4.66)
41 Thecasel <p< N

The first statement points out the link between weak and strong singularities.

Proposition 4.1. Under the assumptions of Theorem 3.6 there exists limy_oo U = Uco
which is the unique element of C(Q\ {0}) N C*(S2) vanishes on OBy \ {0}, satisfies (1.1)
in B;’ and

. Uso(®)
\ = 1. 4.
xl—% Ustl(.%') ( 67)
+

Proof. Uniqueness follows from (4.67) and the maximum principle. For existence, since
the mapping k£ — wy is increasing and uy, < U _nv-1, there exists limg ;o0 up = U <
+

U1 and ug € C(2\ {0}) N CY(R). It vanishes on OB \ {0} and satisfies (1.1) in

B;. In order to take into account the domain B; in the notations, we set uj, = uy, s. Since
the mapping  — uy, 5 is also increasing and uy s < kW,, there also exists lims_, o ug 5 :=
Uk 0o < kW, Then, forall £ > 0,

Tylup,s)(x) = 0P 6(0x) = g, p15(2). (4.68)
Letting £ — oo, we obtain

Tyftic,5)(2) = £P1t0e 5(02) = g g-15(), (4.69)
and letting 6 — oo, we obtain

Ty [too 00) () = Eﬁquoo,oo(ﬁx) = Uoo,00(T). (4.70)

This implies that
Uso,00(T, 0) = riﬁqw’(a), 4.71)
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and &' is a positive solution of problem (3.1). Therefore w’ = w ~-1 by Theorem 3.2. If
+
we let ¢ — 0 in (4.68) and take |z| = 1, z = o, we derive

}i_)r% Py, 5(4,0) = %gr(l) Uoo p-15(1,0) = Uso,00(1,0) = WeN -1 (o). (4.72)

This convergence holds in C*(S i\/ ~1) because of Lemma 2.5. This implies (4.67). O

The main classification result is as follows.

Theorem 4.2. Assume 1 < p < N,p—1< ¢ < ¢* and 92N Bs = {x = (2/,0) : || < 6},
forsome § > 0. Ifu € C(Q\{0})NC(Q) is a positive solution of (1.1) in Q which vanishes
on O\ {0}, then we have the following alternative

(i) either there exists k > 0 such that

. ou(z)
@ =P (4.73)

(ii) or

=1L (4.74)

Proof. Step 1. Assume

lim inf u(z)
z—0 \I/*(x)

then we claim that (4.73) holds. We first note that if 4.75 holds, there also holds

lim inf u(z)
z—0 Uq (m)

< 00, (4.75)

< o0, (4.76)

where v is the solution of (1.1) obtained in Theorem 3.6 with k£ = 1. If {z,, } is converging

to 0 and such that
u(z)

lim inf
o0 up () o0 g (2)

there also holds by the boundary Harnack inequality (2.35)

u(@n) _ ulzg) d(za) o u(@)
w1 () dzy) ui(zy) — 5 up(x)

Vo st |z| = |z,].
This implies in particular
u(z) < 2k + en)uy () Vst |z = |z,

where {¢, } is converging to 0, and by comparison principle

NS,

u(z) < Kup(x) Vo € RY st |z,| < 2| <

)



M.-F. Bidaut-Véron, M. Garcia Huidobro, L. Véron 36

for some K > 0 and all n € N,. Therefore

lim sup u(z) < 00. @4.77)
z—0 ul(x)
We can assume that k£ # 0, otherwhile (4.73) holds with £ = 0 and actually u remains
bounded near 0. As a consequence of the Hopf Lemma and C' regularity, there exists
K > 0 such that
u(z) < KVU,(z) Vze Bj. (4.78)
2

Let m = max{u(z) : |z| = d}. For 0 < 7 < ¢ we denote by k, the minimum of the x > 0
such that u(x) < kWU, (x) + m for 7 < |z| < §. Then u(x) < k¥, (x) + m, and either the
graphs of the mappings u(.) and k, VU, (.) 4+ m are tangent at some z, € By \ F:_r , or they
are tangent on the boundary of the domain, and the only possibility is that they are tangent
on |z| = 7. Since

VO (@) = 2] 27 (720 + [Vaf?),

it never vanishes. If we set w = u — (k; W, (x) + m), then
—Lw +|Vul|? =0 4.79)

where the operator
0 Oz
L= s el
izj: O <a” 3%‘)

is uniformly elliptic in a neighborhood of =, (see [16, Lemma 1.3]). Furthermore w < 0
and w(z,) = 0 by the strong maximum principle Vu(z,) must vanishes, which contradicts
the fact that Vu(z,) = Vw(x;) by the tangency condition, and Vw(z,) # 0. Therefore
|z,| = 7 and z, ¢ ORY. If 7 < 7, k; < k,/, and we set k = lim,_,q k,, which is finite
because of (4.78). There exists {7, } such that ¢,, :== 7=z, — 0g. Furthermore

rPu(r, o) < krpy(o) +mrP if 7 <r <8 and 7%u(r, o) = kb (or) + mrP
(4.80)
Put
ur (x) = 77 u(rz) (4.81)

Then
_Apu’T _|_ Tp—q—ﬁ*(Q-f—l—Q) |Vu7_|q = 0 in B;r \ {0}

and, by (4.78),
0 < up(z) < K |z| 7P in B% \ {0}.
2T

By Lemma 2.5, there holds the set of functions {u.(.)} is relatively compact in the C}. .

topology of RY \ {0}. Therefore, there exists a sequence {7,,} C {7, } converging to 0,

and a positive p-harmonic function v in RY, continuous in ]Rf \ {0} and vanishing on
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ORY \ {0}, such that u,; — v, and v satisfies (4.78) in @ \ {0}. By Theorem 5.1 v is
separable, therefore there exists k* such that v = £*W,. In particular,

lim s (1,0) = k*4.(0) (4.82)

7}, —0

in the C'(SY ™) topology. Combining (4.80), (4.81)and (4.82) we conclude that k* = k
and
lim TB*UT (1,0) = k(o) (4.83)

7}, —0

Using Theorem 3.6, it is equivalent to

=0 ug (T}, 0)

=1 (4.84)

uniformly on Siv ~1. For any € > 0, there exists n. > 0 such that n > n, implies
up—e(7h,0) S u(7),0) < Upie(y, 0)
By comparison principle,
Up—e <u<Ugpe+m  in By \B;Z , (4.85)

and finally
Ugp—e KU L Ugge +M in B;, (4.86)
Since € is arbitrary and using again Theorem 3.6, it implies

lim 7u(7", 7 _

= 4.87
r—0 \I/*(T‘,O') ' (“4.87)

locally uniformly on SV ~1. But since the convergence holds in C'!(S iv ~1), (4.73) follows.
Step 2. Assume

CO
lim 7 = (4.88)

For any 0 < € <  and k > 0, there holds

up(z) < u(x) < ve(x) in B \ B (4.89)

where v, has been defined in (3.12), and letting € to 0 and & — oo, we derive
Uso () < u(z) < wvo(x) in B; \ {0}. (4.90)
We have seen in Theorem 3.3 that vy is a separable solution of (1.1) in Rf which vanishes

on ORY \ {0}, therefore vo(x) = U n-1(x). This implies
+

Uso (1) < u(z) < |z|” BQWN 1( ) in B\ {0}. (4.91)

We conclude using Proposition 4.1. U
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42 Thecasep =N

When p = N, the assumption that J€2 is an hyperplane near 0 can be removed. The proof
of the next results is based upon Theorem 3.10. The following result is the extension to the
case p = N of Proposition 4.1.

Proposition 4.3. Under the assumptions of Theorem 3.10 there exists limy_, oo U = Uco
which is the unique element of C(Q\ {0}) N CY(Q)) which satisfies (3.17) in §, vanishes
on OB \ {0} and such that

im ————

=1. 4.92
z—0 Usf—l (x) ( )

Proof. We denote by u$! the unique positive solution of (3.17) satisfying (3.56) obtained
in Theorem 3.6. Then ,
Teluy!] = U s (4.93)

because of uniqueness. We denote by B := Bi(a) and B’ := Bi(a’) the two balls tangent
2 2

to OS2 at O respectively interior and exterior to {2 introduced in the proof of Lemma 3.11.
Estimate (3.57) implies
up” <up <up (4.94)

the left-hand side inequality holding in €2 and the right-hand side one in B. Therefore
Ic 1cl 7
Tylug] == uls,-p., < Tylup] < Tolug] = ulh, s, ., (4.95)

the domains of validity of these inequalities being modified accordingly. Using again (3.57)
we obtain
Tplub ] < Ty[uP“]  inB*Y, (4.96)

for any 0 < ¢/ < £ and ¢/8a=F= ' < ¢Pa=P+[_In the same way
Tyluf) > Tyuf]  in B, (4.97)

for any 0 < ¢’ < ¢ and ¢"Pa=P<}/ > ¢Pa=P+k. Since uf upP, uP" are increasing with respect
to k, they converge respectively to u& uB , uB” and there holds for any £ > 0

TuZ’) < T[] < Ty, (4.98)
from (4.95) and
() Ty [ul") < Ty[ul"] in B 99)
(i) Tp[uB) > Ty[uf] in B*

for any 0 < ¢/ < /. Notice that , replacing ¢ by ¢¢' we can rewrite (4.98) as follows
To[Ti[u]] < To[Tilulk]] < To[TiuZ]]. (4.100)
Because of the monotonity with respect to £ the following limits exist

UP" =1lim Ty[uf] and UP = lim T;[u2). (4.101)
£—0 £—0
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By Lemma 2.5 applied with ¢(|z|) = |z|~% and since there holds uZ (z) < c|z|~% and

uB (z) < c|lz| P4, we derive

() IVTuB)(@)] < cola] P vr e B
(@) VT [ul](@) = VI [ul] ()] < colz| P71z —y|*  Va,y € B, |2| <yl
(iii) TyuB](z) < colx|~Pa=1(dist (x, 0B*))™ Vr € BY,

(4.102)

and

(i) VT )(x)] < eafa] Pt Vz € B!
(i0) VTl (@) = VLuE ()] < cola[ 517w —y|* Yo,y € B, Jz| <y
(iii) TyuB )(z) < colz|~Pa=1(dist (z,0B" "))~ Vr € Bt

(4.103)

Thus the sets of functions {Ty[uZ ]} and {T;[uZ]} are equicontinuous in the C"*-loc topol-
ogy and by uniqueness, the limits in (4.106) holds in this topology. Hence U 5" and UB* are
positive solutions of (3.17) in RY which vanish on ORY \ {0}. Furthermore U B < UB°
Since for any £, ¢’ > 0, Ty[Ty[uZ"]] = Ty [uB’], it follows Ty [UP] = UP" and in the
same way Ty [U”] = UP. This means that U and UZ" are self-similar solutions of (3.17)
in RY and they vanish on 9R% \ {0}. Hence

UB=U"" = st (4.104)

Applying again Lemma 2.5 to u}, with ¢(|z|) = |z| =%« we have

(i) IVT[u](@)] < cafa] P Vo € Qf

(i) VL)) - VIuPly)] < cole| P10z —yl* Va,ye 0, Jo] <yl

(iii) Ty[usl](z) < cola|~Pa=1(dist (x, 0Q))* vr € QF.

(4.105)

This implies that the set of functions {7} [uf} ]|}, is equicontinuous in the C'-loc topology of
R% and there exists a sequence {¢,} — 0 and a function U such that Ty, [u%] — U* in this
topologyof RY, and U is a positive solution of (3.17) in RY which vanishes on ORY \ {0}.
From (4.98) and (4.104) there holds U*? = Usi\r-l and therefore

lim Ty[ul] = Ugn-1. 4.106
lim Tyfueg] = Ugn—s (4.106)
This implies (4.92) and

. Q

lim rPausl (r,0) = wen-1(0) (4.107)
uniformly on compact subsets of S i\/ -1 (]

Up to minor modifications the proof of the next classification theorem is similar to the
one of Theorem 4.2.

Theorem 4.4. Assume N —1 < ¢ < N — 3 Ifu € C(Q\ {0}) N CY(Q) is a positive
solution of (3.17) in Q which vanishes on 92 \ {0}, then we have the following alternative
(i) either there exists k > 0 such that (4.73) holds,

(ii) or (4.74) holds.
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S Appendix I: Positive p-harmonic functions in a half space

In this section we prove the following rigidity result.

Theorem 5.1. Assume 1 < p < N and u € C*(RY) N C(@ \ {0}) is a positive p-
harmonic function which vanishes on ORY \ {0} and such that |z|* u(x) is bounded. Then
there exists k > 0 such that

u(z) = k¥, (z) VoeRY. (5.1)

Proof. Since |x|? u(z) is bounded, |z|** ™ Vu(z) is also bounded and there exists m > 0
such that u(z) < mW,(z) in By. We denote by k the infimum of the ¢ > 0 such that
u(x) < c¥,(z). Then

0<u(z) <k¥.(r) VoeRY\{0} (5.2)

and we assume that £ > 0 otherwhile v = 0. Assume that the graphs over Rf of the
functions = — u(z) and « — kW, (x) are tangent at some point 29 € RY or zg € ORY \
{0}. Since VU, never vanishes in Kf \ {0} it follows from the strong maximum principle
or Hopf boundary Lemma that © = kW¥,. If the two graphs are not tangent in @f \ {0},
either they are asymptotically tangent at 0, or at co.

(i) In the first case there exists two sequences {k, } increasing to k and {z,} C ]Rf con-

verging to zero such that 5(&3) = ky,. We set 7, = |2,,| and u,, () = ri*u(rnz). Then

T

m); therefore

Uy, is p-harmonic and positive and 0 < u,., () < k || ™ 1, (

IV, (@) < Clz| ™" and |Vu,, () — Vau,, (@) < Clz| 771 |z —2/|* (5.3)

for 0 < |z| < |=|" and some constants C' > 0 and a € (0, 1). Up to a subsequence, we can
topology ofﬁf\{o} and 72 — £ € St
The function U is p-harmonic and positive in Rf and satisfies 0 < U < k¥, in Rf and
UE) = kU, (&) if € € SYLor Uy (€) = kWsuy (&) if € € 0SY L. Tt follows from the
strong maximum principle or Hopf boundary Lemma that U = kW ,. Therefore u,, — kW,
and in particular

assume that u,,, converges to some U in the C}. _

rﬁ*u(rn, o)

. . N-1

rlnlgo W =k uniformly on S1' 7. 5.4
For any ¢ > 0, there exists n. € N, such that for n > n., (k — €)U,(z) < u(z) <
(k 4+ €)W, (z) if |z| = r,. Which implies (k — €)U,(z) < u(x) < (k + €)V, for |z| > r,
and therefore in RY. Since ¢ is arbitrary, we deduce that u = kV,.
(ii) if the two graphs are tangent at infinity, there exist two sequences {k,, } increasing to k
and {x,, } such that r,, = |z,,| = oo with u(z,) = k, V. (z,,) and

nﬁl* u(rp, o)

lim ——2— =k uniformly on S " (5.5)

e (o)
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Therefore we look at the supremum of the ¢ > 0 such that u > cW,. If the set of such c is
empty, it would means that
u(z)

=0.
mGRﬁ \I’*(CC)

Clearly, if this infimum is achieved at some point, the strong maximum principle or Hopf
boundary lemma imply v = 0, contradicting (5.5), and this relation prevents also this
infimum be achieved at infinity. We are left with the case where there exists a sequence
{z,} € RY, converging to 0, such that

i
n00 W, (21)

=0. (5.6)

By boundary Harnack inequality [5, th 2.11], there exists ¢ > 0 such that

— u(z) u(zn) U(Z) B
1\Iv*(z) S S € RY st [2] = [z (5.7)

Combining (5.6) and (5.7), we derive that

lim sup =0, (5.8)
n—=00 11—z, | Y (2)

Denoting by ¢, the infimum in the above relation, we obtain that u < €, ¥, in Rf \ Be,
and finally u = 0, contradiction. Thus we are left with the case where there exists k' €
(0, k] which is the supremum of the ¢ > 0 such that u > ¢V,. In particular v > k'U,.
Remembering that u < kW, we get k = &/ implies u = kV,.

Next we assume that &’ < k. Clearly the graphs of u and &’ ¥, cannot be tangent in Kf,
because of strong maximum principle or Hopf boundary Lemma. They cannot be tangent
at infinity because of (5.5). Therefore there exists two sequences {k/, } increasing to k&’ and

{zI,} C ]Rf converging to 0 such that ﬁ(é&,)) = k],. As in case (i) we obtain that

ru(rh, o)

ngo o) = k' uniformly on S 1, (5.9)
where ], = |z},|, and finally derive that v = k’W,, a contradiction with (5.5). Therefore
k = k', which ends the proof. O

Remark. In the case p = N the result holds under the weaker assumption | 1|im u(z) = 0.
T|—00

This is due to the fact that this condition implies by regularity

lim L)x -0
|z|—o00 wsf—l(m)

and therefore
u(z) <mPu(x) Vost |z[>1
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u(z)
wsﬁq(‘—i‘)

u < mW, holds RY, and we conclude by Theorem 5.1.

. Using the inversion = — —Z5, we obtain that the estimate

where m = max;—; PR

Remark. We conjecture that the rigidity result holds under the mere condition

lim |z| " u(z) =0, (5.10)

|z|—o00

were (* is the exponent (positive) corresponding to the regular spherical p-harmonic func-

tion under the form ) .
U, = |z]” u (=), (5.11)

||

see [30], [26]. Note that B* =1 whenp=N.

6 Appendix II: Estimates on [,

When N =2and 1 < p < 2,itis proved in [19] that
3—p+2yp?—5p+7
B = . 6.1)
3(p—1)

Up to now no estimate is known when N > 2 except in the cases p = 2 where [, =
N — 1 and p = N where 3, = 1, besides the classical one

N —
B> =2 (62)
p—1
valid when p < N. In this section we prove the following result
Theorem 6.1. Assume 1 < p < N. Then the following estimates hold
N -1
1<p<2= B> (6.3)
p—1
N — N -1
2<p< N = max<1, P <P < —— (6.4)
p—1 p—1
Remark. 1t is worth noticing that when p = 2 or p = N, there holds 5, = %.

Proof of Theorem 6.1. We consider the following set of spherical coordinates in ]Rf with
x=(21,...,TN)
r1 =rsinfy_1sinfy_o...sin 05 sin 64
9 =rsinfy_1sinfy_s...sin by cos 61
: (6.5)
TN_1=7rsinfOn_1cosOn_o
TN =rcosfy_1
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with 6, € [0,27] and 6}, € [0,7] for k = 2,..., N — 2 and Oy_1 € [0,F]. Under this
representation, a solution w of (3.2) verifies

p—2

1 2
. N-2 2, 2 2 2
sin On-1 | Biw* +wy, | + = |Vorw| Won_,
sin“ On_1 .
N—-1

1
sinN—2 On_1

1 1 e .
]ngw]2> Vow

c 7 e N=2 2 2 2
2 0n ldwe/ [sm On_1 < wetwy, T+

sin? O _1
p—2

. N_ 1 2
= B, [sinV 20y 4 ( 2w? +w§N71 +— |V9/w|2> w]

sin2 QN_ 1

(6.6)
where Vg and divy, denotes respectively the spherical gradient the divergence in variables
0’ = (01,...,0N_2) parametrizing SN=2 and Ag, is defined in Introduction. If w is the
unique positive solution of (3.2) (up to homothety), it depends only on € _; and is C*°.
For simplicity we set Oy_1 = 6 € [0, §] and w = w(0) satisfies

1 P32 B
[sinN_2 6 ( wa + wg) . we} = B:Ag, [SinN_2 6 ( wa + wg) . w]
9

sinV29
in (0, %)
w(5) =0, wp(0) =0.
(6.7)
Step 1: The eigenvalue identity. Equation (6.7) can also be written under the form
2
—wgg — (N —2)cot Owy — (p — 2)Mw2 = Bulgw (6.8)

202 + wg 0
Since

/S
0

by multiplying by cos 6 sin’¥ =2 6 and integrate on (0, 7). Noticing that

us

(woo + (N —2) cot B wy) cos fsin’ "2 0dh = (N — 1)/ *  cos B sinV 2 0de,
0

N -1
B, +1-N=(p—1) <5* _ﬁ> (B« +1)
we derive
T 92
(2—-p) ’ %wgw cos 0sin’¥ =2 0d
0 5*("} + Wy
N1 - (6.9)
=(p-1) <ﬂ* — p—_1> (B« +1) /QujcosﬁsinN2 0do.
- 0

Step 2: Elliptic coordinates and reduction. Writting w(6) = w(0) + af? + 0(6?), wy(0) =
2a6 + o(0) and wyg(0) = 2a+o(1), then —Na = [,Ag,. This implies that w is decreasing
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near 0. It is immediate that it cannot have a local minimum in (0, §), therefore it remains
decreasing in the whole interval. We parametrize the ellipse

E,={(z,y) x>0,y <0, 224+ 57%* =r?}
by setting
w=rcos¢ and —wy = Brsin¢ with ¢ = ¢(f) and r = r(0).

The functions r and ¢ are C2. Hence 7y cos ¢ — rsin ¢ppg = —[rsin ¢, then ry cos ¢ =
(¢ — @)rsin¢g and 19 = (¢g — [)r tan ¢. Plugging this into (6.8), we derive

(- 1)7"79 + dycoté+ (N = 2)cot ) + Ag, cot & =0, (6.10)

and finally

(p—1)(¢g — B) tan ¢ + (g — Ag,) cot ¢ = (2 — N) cot 6. (6.11)
Step 3: Estimates on ¢g. We can write (6.11) under the equivalent form

cos 0 sin ¢

(p = 1)(¢9 — B) tan® ¢ + ¢y — Ap, = (2— N)

. 12
cos ¢ sin 6 (©6.12)

Since
Cos ¢

. sing¢ .
lim — = lim
6—0sinf@ 60 cos @

®o = ¢6(0),

A
we derive ¢p(0) —Ag, = (2—N)¢pg(0) and thus ¢y(0) = v B T Similarly, the expansion
of ¢(6) near § = T yields to ¢p(5) = B« Since p < N, Ag, /(N — 1) < .. We claim
now that

() < B VO € (0,5). (6.13)
If Ag, < fs, then
(2—N)cot§ = (p—1)(¢g— ) tan ¢+ (¢g — A, ) cot ¢ > ((p—1) tan ¢+ cot ¢)(¢g — 3)

thus (6.13) holds.

Next we assume 3, < Ag,. It means 0 < (p — 2)5, — (N — p) and thus p > 2. We claim
that

N -2
B < . (6.14)
p—2
We proceed by contradiction and assume
N -2
By > ——. (6.15)
p—2

Then

@—%(ﬁ—ﬁv_p N_2>

p—2 p—2
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Equivalently
Bi(Ap, — ) > N — 2.
Since
lim cot #tan ¢ = lim cos 0 im sin 0 1
02 9—Z COS qS 9—> e g Sin gb 5*
and

cos 6 sin ¢

(p—1)(¢o(0) — Bu) tan® ¢ = Am —900) + (2= N) o d

=5 (ﬁ*(AB* Be) +2=N)+o(1)

if follows that (6.15) is equivalent to the fact that there exists € > 0 such that ¢g(6) > 7
for any 6 € [5 — €, 3). Since ¢(0) < S, there exists 6 € (0, Z) such that ¢g(f) = S and
be9(0) > 0. We compute ¢gg and get

(p = 1)eo(0)(9(0) — Bs) sec® $(6) + (p — 1)deo(0) tan §(6) + dge(¥) cot ¢(6)

— 60(6)(¢0(6) — As.) cse? §(6) = (N — 2) csc?
Hence, at 0 = 0
— 1) (0) ((p — 1) tan ¢(8) + cot ¢(0)) = Bi(B — Ag,) csc? ¢(0) + (N —2) csc? 0

From (6.11),

cot ¢(f) = A]BV 3 cot

Therefore

(p = 1)go(0) ((p — 1) tan ¢(8) + cot $(6))

(¢
N-2\> . 27
+ ( 5*> cot® 0 ,8*(,8* - AB*) + (N - 2)(1 + cot 9)

- (1 Ap, -
= Be(Be —Ag,) + N =2 — <(N_2) +2—N> cot? d
NAﬁé > N —
= —(p—2)(ﬁ* +1) </8* - p_2> - Aﬁ 5* (5*( )—Ag*)COtQé

<0,
(6.16)

using (6.15) and the fact that N > p. This is a contradiction, thus (6.14) holds and there
exists € > 0 such that ¢g < B, in [§ — €, 5).

We claim now that ¢y < S, in [0, ). If it is not true, there exist ; < 6 < § such that
09(01) = dg(02) = By, doa(61) > 0, Ppgg(01) < 0, since Cauchy-Lipschitz theorem applies
to equation (6.11) in (0, 5). We put ¢(61) = ¢ and ¢(62) = ¢2. Using the equation
satisfied by ¢gg, we obtain for i = 1, 2,

((p — 1) tan ¢; + cot ¢;) pgg(6;)

N—2 N -2 (6.17)
=2-p)(B+1) <ﬂ* i 2) RV (B«(N — 1) — Ag,) cot? 6;.
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Since cot is decreasing in (0, 5), cot® 61 > cot? 6, hence
0 < ((p—1)tan g1 + cot ¢1) gga(61) < ((p — 1) tan g2 + cot ¢2) ggg(62) < 0,
a contradiction. Therefore ¢y < f3, in (0, ).
Step 4: End of the proof. Since 12 = 2w? + wg, rg = r(¢pg — Ps) tan ¢, thus
rrg = (Biw 4 wgg) wg = r(dp — Bi) tan ¢.

Since wy < 0 on (0, 5), it follows from Step 3 that B2w 4 wygg > 0 and finally

T 92
2 wtw . _
Mw%w cos 0 sinV =2 6dh > 0.
0 Biw? +wy

The conclusion follows from (6.9). O

Remark. Since wy(%) = —c* < 0, it follows w(#) = —wp(f) cot § + O(5 — 0) as § — %,
and from the eigenfunction equation (6.8)

Biw +wep o 5
mwe = (Biw + weg)(1 + o(1)).

Therefore

—(p— Dwgg = (Bulg, + (p—2)B2 +2 — N)w(l +0(1)) ash — g

and since A’w := wgy + (N — 2) cot O wy

ary, = Be(Bi(2p = 3) +pp—_N1) TN =D 0401y ash - 5

Because w is C°° we obtain finally
|A'w| < cw, (6.18)

for some ¢ > 0.
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