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Abstract We study the boundary behaviour of the solutions of (E) −∆pu+ |∇u|q = 0 in

a domain Ω ⊂ R
N , when N ≥ p > q > p− 1. We show the existence of a critical exponent

q∗ < p such that if p − 1 < q < q∗ there exist positive solutions of (E) with an isolated

singularity on Ω and that these solutions belong to two different classes of singular solutions.

If q∗ ≤ q < p no such solution exists and actually any boundary isolated singularity of a

positive solution of (E) is removable. We prove that all the singular positive solutions are

classified according the two types of singular solutions that we have constructed.
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1 Introduction

Let N ≥ p > 1, q > p− 1 and Ω ⊂ R
N (N > 1) be a C2 bounded domain such that

0 ∈ ∂Ω. In this article we study boundary singularities of functions u ∈ C(Ω \ {0})
which satisfy

−∆pu+ |∇u|q = 0 in Ω (1.1)

where ∆pu := div
(

∇u|p−2|∇u|
)

. The two main questions we consider are as follows:

Q-1- Existence of positive solutions of (1.1).

Q-2- Description of positive solutions with an isolated boundary singularity at 0.

When p = 2 a fairly complete description of positive solutions of

−∆u+ |∇u|q = 0 (1.2)

in Ω is provided by Nguyen-Phuoc and Véron [22]. In particular they prove the
following series of results in the range of values 1 < q < 2.

1- Any signed solution of (1.3) verifies

|∇u(x)| ≤ cN,q(dist (x)
− 1

q−1 ∀x ∈ Ω, (1.3)

where d(x) = dist (x, ∂Ω). As a consequence, if u ∈ C(Ω \ {0}) is a solution which
vanishes on ∂Ω \ {0} it satisfies

|u(x)| ≤ cq,Ωd(x)|x|−
1

q−1 ∀x ∈ Ω. (1.4)

2- If N+1
N ≤ q < 2 any positive solution of (1.3) in Ω which vanishes on ∂Ω \ {0} is

identically 0. A point is a removable singularities.

3- If 1 < q < N+1
N and k > 0 there exists a unique positive solution u := uk of (1.3)

in Ω which vanishes on ∂Ω \ {0} and satisfies u(x) ∼ cNkP
Ω(x, 0) where PΩ is the

Poisson kernel in Ω× ∂Ω.

4- If 1 < q < N+1
N there exists a unique positive solution u of (1.3) in R

N
+ under the

form u(x) = |x|−
1

q−1ω(|x|−1x) which vanishes on ∂RN+ \ {0}. The function ω is the
unique positive solution of

−∆′u+ ((q − 1)2ω2 + |∇′ω|2) q
2 − λN,qω = 0 in SN−1

+

ω = 0 in ∂SN−1
+

(1.5)

where ∆′ is the Laplace-Beltrami operator on SN−1 and λN,q > 0 is an explicit
constant.

5- If 1 < q < N+1
N and u is a positive solution of (1.3) in Ω which vanishes on ∂Ω\{0}

the following dichotomy holds:

(i) either u(x) ∼ |x|−
1

q−1ω(|x|−1x) as x→ 0,
(ii) or u(x) ∼ kcNP

Ω(x, 0) as x→ 0 for some k ≥ 0.
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In this article we extend to the quasilinear case 1 < p ≤ N the above mentioned
results. The following pointwise gradient estimate valid for any signed solution u of
(1.1) is proved in [7]: if 0 < p− 1 < q there exists a constant cN,p,q > 0 such that

|∇u(x)| ≤ cN,p,q(dist (x))
− 1

q+1−p ∀x ∈ Ω. (1.6)

As a consequence, any solution u ∈ C1(Ω \ {0} satisfies

|u(x)| ≤ cp,q,Ωd(x) |x|−
1

q+1−p ∀x ∈ Ω. (1.7)

Concerning boundary singularities, the situation is more complicated than in the
case p = 2 and the threshold of critical exponent less explicit. We first consider the
problem in the half space R

N
+ := {x = (x′, xN ) : x′ ∈ R

N−1, xN > 0}. Assuming
p− 1 < q ≤ p, separable solutions of (1.1) in R

N
+ and vanishing on R

N
+ \ {0} can be

looked for in spherical coordinates (r, σ) ∈ R+ × SN−1 under the form

u(x) = u(r, σ) = r−
p−q

q+1−pω(σ), r > 0 , σ ∈ SN−1
+ := {SN−1 ∩R

N
+}. (1.8)

Then ω is solution of the following problem

−div
(

(

β2qω
2 + |∇′ω|2

)
p−2

2 ∇′ω

)

− βqΛβq
(

β2qω
2 + |∇′ω|2

)
p−2

2 ω

+
(

β2qω
2 + |∇′ω|2

)
q
2 = 0 in SN−1

+

ω = 0 on ∂SN−1
+ ,

(1.9)

where βq =
p−q
q+1−p and Λβq = βq(p−1)+p−N . The existence of positive solution to

this problem is conditioned to the existence of spherical p-harmonic functions which
have been studied by Krol [18], Tolksdorf [29], Kichenassamy and Véron [19] and
more recently by Porretta and Véron [25]. One of the main point is that there exists
a separable positive p-harmonic function ψ under the form ψ(r, σ) = r−βψ(σ) which
is positive on SN−1

+ and negative on SN−1
− := −SN−1

+ if and only if ψ satisfies the
spherical p-harmonic eigenvalue problem

−div
(

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ∇′ψ

)

− β∗Λβ∗
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ψ = 0 in SN−1
+

ψ = 0 on ∂SN−1
+ ,

(1.10)
There exists a unique couple (ψ∗, β∗) for which (1.10) has a solution with β∗ > 0
and ψ∗ > 0 (up to an homothety on ψ∗). The exponent β∗ which is larger than
max{1, N−p

p−1 }, is not known explicitely except in the cases p = 2, and it has the
value N − 1, p = N and it is 1, and N = 2 (see [18], [19]) and it is the root of an
algebraic equation of degree 2. In Appendix II we prove the following new estimate:

Theorem B Let 1 < p ≤ N .
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(i) If 2 ≤ p ≤ N , then β∗ ≤ N−1
p−1 with equality only if p = 2 or N .

(ii) If 1 ≤ p < 2, then β∗ >
N−1
p−1 .

To this exponent β∗ is associated the critical value q∗ of q defined by β∗ = βq, or
equivalently

q∗ :=
β∗(p− 1) + p

β∗ + 1
= p− β∗

β∗ + 1
. (1.11)

The following result characterizes strong singularities.

Theorem C Let 0 < p− 1 ≤ N , then
(i) If p− 1 < q < q∗ problem (1.9) admits a unique positive solution ω∗.

(ii) If q∗ ≤ q < p problem (1.9) admits no positive solution.

This critical exponent corresponds to the threshold of criticality for boundary
singularities.

Theorem D Assume q∗ ≤ q < p ≤ N . If u ∈ C(Ω \ {0}) is a nonnegative solution
of (1.1) in Ω which vanishes on ∂Ω \ {0}, it is identical zero.

As in the case p = 2 there exist positive solutions (1.1) in Ω with weak boundary
singularities which are characterized by their blow-up near the singularity; their
existence, based upon the delicate construction of sub and super solutions is much
more difficult than in the case p = 2 (see [22]). Furthermore it is done only if Ω is
locally an hyperplane near 0. In the sequel we denote by BR(a) the open ball of
center a and radius R > 0 and BR = BR(0). We also set B+

R(a) := R
N
+ ∩ BR(a),

B+
R := R

N
+ ∩BR, B−

R (a) := R
N
− ∩BR(a) and B−

R := R
N
− ∩BR.

Theorem E Assume 0 < p− 1 < q < q∗ < p ≤ N , R > 0 and ΩR := Ω∩BR = B+
R .

Then for any k > 0 there exists a unique u := uk ∈ C(ΩR \ {0}), solution of (1.1)
in ΩR, vanishing on ∂ΩR \ {0} and such that

lim
x→0

uk(x)

ψ∗(x)
= k. (1.12)

Furthermore limk→∞ uk = u∞ and

lim
x→0

|x|βqu∞(x) = ω∗(|x|−1x). (1.13)

When p = N and N−1 < q < N− 1
2 we prove that the previous result holds if Ω

is any C2 by using the conformal invariance of ∆N . Finally, the isolated singularities
of positive solutions of (1.1) are completely described by the two types of singular
solutions obtained in the previous theorem and we prove:

Theorem F Assume 0 < p − 1 < q < q∗ < p ≤ N , R > 0 and ΩR = B+
R . If

u ∈ C(Ω \ {0}) is a positive solution of (1.1) in Ω which vanishes on ∂Ω \ {0}, then
(i) either there exists k ≥ 0 such that

lim
x→0

u(x)

ψ∗(x)
= k. (1.14)
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(ii) or
lim
x→0

|x|βqu(x) = ω∗(|x|−1x). (1.15)

Aknowledgements This article has been prepared with the support of the Math-
Amsud collaboration program 13MATH-02 QUESP. The first two authors were sup-
ported by Fondecyt grant N◦1110268.

2 A priori estimates

2.1 The gradient estimates and its applications

We denote by d(x) the distance from x ∈ Ω to ∂Ω and we recall the following
estimate proved in [7].

Proposition 2.1 Assume q > p− 1 and u is a C1 solution of (1.1) in a domain Ω.
Then

|∇u(x)| ≤ cN,p,q(d(x))
− 1

q+1−p ∀x ∈ Ω. (2.1)

The first application is a pointwise upper bound for solutions with isolated sin-
gularities.

Corollary 2.2 Assume q > p−1 > 0, R∗ > 0 and Ω is a domain containing 0 such
that d(0) ≥ 2R∗. Then for any x ∈ BR∗ \{0}, and 0 < R ≤ R∗, any u ∈ C1(Ω\{0})
solution of (1.1) in Ω \ {0}) satisfies

|u(x)| ≤ cN,p,q

∣

∣

∣
|x|

q−p
q+1−p −R

q−p
q+1−p

∣

∣

∣
+max{|u(z)| : |z| = R}, (2.2)

if p 6= q, and

|u(x)| ≤ cN,p (lnR− ln |x|) + max{|u(z)| : |z| = R}, (2.3)

if p = q.

The second estimate corresponds to solutions with boundary blow-up.

Corollary 2.3 Assume q > p− 1 > 0, Ω is a bounded domain with a C2 boundary.
Then there exists δ1 > 0 such that if we denote Ωδ1 := {z ∈ Ω : d(z) ≤ δ1}, any
u ∈ C1(Ω) solution of (1.1) in Ω satisfies

|u(x)| ≤ cN,p,q

∣

∣

∣

∣

(d(x))
q−p

q+1−p − δ
q−p

q+1−p

1

∣

∣

∣

∣

+max{|u(z)| : d(z) = δ1} ∀x ∈ Ωδ1 (2.4)

if p 6= q, and

|u(x)| ≤ cN,p,q (ln δ1 − ln d(x)) + max{|u(z)| : d(z) = δ1} ∀x ∈ Ωδ1 (2.5)

if p = q.
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Remark. As a consequence of (2.5) there holds for p > q > p− 1

u(x) ≤ (cN,p,q +Kmax{|u(z)| : d(z) ≥ δ1}) (d(x))
q−p

q+1−p ∀x ∈ Ω (2.6)

where K = (diam(Ω))
p−q

q+1−p , with the standard modification if p = q.

As a variant of Corollary 2.3 we have an upper estimate of solutions in an exterior
domain.

Corollary 2.4 Assume q > p − 1 > 0, R > 0 and u ∈ C1(Bc
R0

) is any solution of
(1.1) in Bc

R0
. Then for any R > R0 there holds

|u(x)| ≤ cN,p,q

∣

∣

∣
(|x| −R0)

q−p
q+1−p − (R −R0)

q−p
q+1−p

∣

∣

∣
+max{|u(z)| : |z| = R} ∀x ∈ Bc

R

(2.7)
if p 6= q and

|u(x)| ≤ cN,p,q (ln(|x| −R0)− ln(R−R0))+max{|u(z)| : |z| = R} ∀x ∈ Bc
R (2.8)

if p = q.

Proof. The proof is a consequence of the identity

u(x) = u(z) +

∫ 1

0

d

dt
u(tx+ (1− t)z)dt =

∫ 1

0
〈∇u(tx+ (1− t)z), x− z〉dt

where z = R
|x|x. Since

|∇u(tx+ (1− t)z)| ≤ CN,p,q(t |x|+ (1− t)R−R0)
− 1

q+1−p

by estimate (2.1), the result follows by integration. �

2.2 Boundary a priori estimates

The next result is the extension of a regularity estimate dealing with singularity in
a domain proved in [7].

Lemma 2.5 Assume p − 1 < q < p, Ω is a bounded C2 domain such that 0 ∈ ∂Ω.
Let u ∈ C1(Ω \ {0}) be a solutions of (1.1) in Ω which vanishes on ∂Ω \ {0} and
satisfies

|u(x)| ≤ φ(|x|) ∀x ∈ Ω, (2.9)

where φ : R∗
+ 7→ R+ is continuous, nonincreasing and satisfies φ(rs) ≤ γφ(r)φ(s)

and r
p−q

q+1−pφ(r) ≤ c for some γ, c > 0 and any r, s > 0. Then there exist α ∈ (0, 1)
and c2 = c2(p, q,Ω) > 0 such that

(i) |∇u(x)| ≤ c2φ(|x|) |x|−1 ∀x ∈ Ω,

(ii) |∇u(x)−∇u(y)| ≤ c2φ(|x|) |x|−1−α |x− y|α ∀x, y ∈ Ω, |x| ≤ |y| . (2.10)

Furthermore

u(x) ≤ c2φ(|x|)
d(x)

|x| ∀x ∈ Ω. (2.11)
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Proof. For ℓ > 0, we set Ωℓ := 1
ℓΩ. If ℓ ∈ (0, 1] is bounded the curvature of ∂Ωℓ

remains uniformly bounded. As in [12, p 622], there exists 0 < δ0 ≤ 1 and an

involutive diffeomorphism ψ from Bδ0 ∩ Ω
δ0 into Bδ0 ∩ (Ωδ0)c which is the identity

on Bδ0 ∩ ∂Ωδ0 and such that Dψ(ξ) is the symmetry with respect to the tangent

plane Tξ∂Ω for any ξ ∈ ∂Ω ∩ Bδ0 . We extend any function v defined in Bδ0 ∩ Ω
δ0

and vanishing on Bδ0 ∩ ∂Ωδ0 into a function ṽ defined in Bδ0 by

ṽ(x) =

{

v(x) if x ∈ Bδ0 ∩ Ω
δ0

−v ◦ ψ(x) if x ∈ Bδ0 ∩ (Ωδ0)c,
(2.12)

If v ∈ C1(Bδ0 ∩Ω
δ0) is a solution of (1.1) in Bδ0 ∩Ωδ0 which vanishes on ∂Ωδ0 ∩Bδ0 ,

ṽ satisfies

−
∑

j

∂

∂xj
Ãj(x,∇ṽ) +B(x,∇ṽ) = 0 in Bδ0 . (2.13)

As in [12, (2.37)] the Aj satisfy the following estimates

(i) Ãj(x, 0) = 0

(ii)
∑

i,j

∂

∂ηi
Ãj(x, η)ξiξj ≥ Γ1 |η|p−1 |ξ|2

(iii)
∑

i,j

∣

∣

∣

∣

∂

∂ηj
Ãj(x, η)

∣

∣

∣

∣

≤ Γ2 |η|p−2 ,

(2.14)

as for B there holds
|B(x, η)| ≤ Γ3(1 + |η|)p. (2.15)

These estimates are the ones needed to apply Tolksdorf’s result [30, Th 1,2]. There
exists a constant C, such that for any ball B3R ⊂ Bδ0 , there holds

‖∇ṽ‖L∞(BR) ≤ C (2.16)

where C depends on the constants Γk (k = 1, 2, 3), N , p and ‖ṽ‖L∞(B3R). We define

Φℓ[u](y) =
1

φ(ℓ)
u(ℓy) ∀y ∈ Ωℓ. (2.17)

Then Φℓ[u] := uℓ satisfies

|uℓ(y)| ≤
φ(ℓ |y|)
φ(ℓ)

≤ γφ(|y|) ∀y ∈ Ωℓ (2.18)

and
−∆puℓ + (ℓβqφ(ℓ))q+1−p |∇uℓ|q = 0 in Ωℓ. (2.19)

We extend uℓ by the formula (2.12) into a function ũℓ which satisfies

−
∑

j

∂

∂yj
Ãj(y,∇ũℓ) + (ℓβqφ(ℓ))q+1−pB(y,∇ũℓ) = 0 in Bδ0 . (2.20)
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For 0 < |x| < δ0 there exists ℓ ∈ (0, 2) such that δ0ℓ
2 ≤ |x| ≤ δ0ℓ. Then y 7→ ũℓ(y)

with y = x
ℓ satisfies (2.20) in Bδ0 and |ũℓ(y)| ≤ γ∗φ(|y|) since ψ is a diffeomorphism

and Dψ(ξ) ∈ O(N) for any ξ ∈ ∂Ω ∩ Bδ0 . The function ũℓ remains bounded on
any ball B3R(z) ⊂ Γ := {y ∈ R

N : δ0
2 < |y| < δ0}, therefore |∇ũℓ(y)| ≤ c for any

y ∈ BR(z), for some constant c > 0. This implies

|∇u(x)| ≤ cγ∗δ0φ(
2
δ0
)φ(|x|)|x|−1 ∀x ∈ Ω ∩Bδ0 . (2.21)

For proving 2.10)-(ii) there exists α ∈ (0, 1) such that |∇ũℓ(y)−∇ũℓ(y′)| ≤ c |y − y′|α
for all y and y′ belonging to BR(z). This implies the claim.

Let 0 < δ1 ≤ δ0 such that at any boundary point z there exist two closed balls
of radius δ1 tangent to ∂Ω at z and included in Ω∪{z} and in Ω

c ∪{z} respectively
(δ1 corresponds to the maximal radius of the interior and exterior sphere condition).
Let a ∈ ∂Ω and x ∈ Ω such that |x| = |a| = r ≤ δ1 and let b = −rn0 where n0 is

the normal outward unit vector to ∂Ω at 0. Let θ ∈ (0, π2 ) be the angle between
−→
0a

and
−→
0x. Consider the path γ from a to x defined by γ(t) = cos(tθ)a+ sin(tθ)b with

0 ≤ t ≤ 1. Then x = cos θa+ sin θb and

u(x) =

∫ 1

0

d

dt
u ◦ γ(t)dt =

∫ 1

0
θ〈∇u ◦ γ(t), cos(tθ)b− sin(tθ)a〉dt

Thus, by Cauchy-Schwarz and using (2.9),

u(x) ≤ θ |∇u ◦ γ(t)| ≤ c′2θ |x|−
1

q+1−p ,

where c′2 = c′2(p, q,Ω). But there exists c′′2 > 0 depending only on δ1 and the
curvature of ∂Ω such that c−1θ ≤ d(x) ≤ cθ. This implies (2.11). �

Lemma 2.6 Assume p − 1 < q ≤ p, Ω is a bounded C2 domain such that 0 ∈ ∂Ω
and R0 = max{|z| : z ∈ Ω}. If u ∈ C(Ω \ {0})∩C1(Ω) is a positive solution of (1.1)
which vanishes on ∂Ω \ {0}, it satisfies

u(x) ≤











c1

(

|x|
q−p

q+1−p −R
q−p

q+1−p

0

)

if q < p

(p − 1) ln
(

R0

|x|

)

if q = p
(2.22)

for all x ∈ Ω, where c1 = c1(p, q) > 0.

Proof. For ǫ > 0 we denote by Pǫ : R 7→ R+ the function defined by

Pǫ(r) =







0 if 0 ≤ r ≤ ǫ

− r4

2ǫ3 + 3r3

ǫ2 − 6r2

ǫ + 5r − 3ǫ
2 if ǫ < r < 2ǫ

r − 3ǫ
2 if r ≥ 2ǫ,

(2.23)

and by uǫ the extension of Pǫ(u) by zero outside Ω. There exists R0 such that
Ω ⊂ BR0

. Since 0 ≤ Pǫ(r) ≤ |r| and Pǫ is convex, uǫ ∈ C(RN \{0})∩W 1,p
loc (R

N \{0})
and

−∆puǫ + |∇uǫ|q ≤ 0 in R
N .
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Let R > R0. If p− 1 < q < p

Uǫ,R(|x|) = c1

(

(|x| − ǫ)
q−p

q+1−p − (R − ǫ)
q−p

q+1−p

)

in BR \Bǫ, (2.24)

with c1 = (p−q)−1(q+p−1)
q−p

q+1−p . Then −∆pUǫ+ |∇Uǫ|q ≥ 0. Since uǫ vanishes on
∂BR and is finite on ∂Bǫ, it follows uǫ ≤ Uǫ. Letting successively ǫ→ 0 and R→ ∞
yields to (2.22). If q = p we take

Uǫ,R(|x|) = (p− 1) ln

(

R− ǫ

|x| − ǫ

)

in BR \Bǫ, (2.25)

which turns out to be a super solution of (1.1); the end of the proof is similar.
�

As a consequence of Lemma 2.5 and Lemma 2.6, we have.

Corollary 2.7 Let p, q Ω and u be as in Lemma 2.6. Then there exists a constant
c3 = c3(p, q,Ω) > 0 such that

|∇u(x)| ≤ c3 |x|−
1

q+1−p ∀x ∈ Ω (2.26)

and
u(x) ≤ c3d(x) |x|−

1
q+1−p ∀x ∈ Ω \ {0}. (2.27)

Remark. If Ω is locally flat near 0 estimates (2.26) and (2.26) are valid without any
sign assumption on u. More precisely, if ∂Ω∩Bδ0 = T0∂Ω∩Bδ0 we can perform the
reflexion of u thrue the tangent plane T0∂Ω to ∂Ω at 0 and the new function ũ is a
solution of (1.1) in Bδ0 \ {0}. By Proposition 2.1, it satisfies

|∇ũ(x)| ≤ cN,p,q |x|−
1

q+1−p ∀x ∈ B δ0
2

\ {0}. (2.28)

Integrating this relation as in Corollary 2.2, we derive that for any x ∈ B δ0
2

∩ Ω,

there holds

|u(x)| ≤







cN,p,q

(

|x|−βq − ( δ02 )
−βq
)

+max{|u(z)| : |z| = δ0
2 } if p 6= q

cN,p ln
(

δ0
2|x|

)

+max{|u(z)| : |z| = δ0
2 } if p = q.

(2.29)

In the next result we authorize the boundary singular set be a compact set.

Proposition 2.8 Let p− 1 < q < p. There exist 0 ≤ r∗ ≤ δ1 and c4 = c4(N, p, q) >
0 such that for any nonempty compact set K ⊂ ∂Ω, K 6= ∂Ω and any positive
solution u ∈ C(Ω \K) ∩ C1(Ω) of (1.1) which vanishes on ∂Ω \K, there holds

u(x) ≤ c4d(x)(dK(x))
− 1

q+1−p ∀x ∈ ∂Ω s.t. d(x) ≤ r∗, (2.30)

where dK(x) = dist (x,K).
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Proof. Step 1: Tangential estimates. Let x ∈ Ω such that d(x) ≤ δ1. We denote by
σ(x) the projection of x onto ∂Ω, unique since d(x) ≤ δ1. Let r , r

′, τ > 0 such that
3
4r < r′ < 7

8r and 0 < τ ≤ r′

2 and put ωτ,x = σ(x) + τnσ(x). Since ∂Ω is C2, there

exists 0 < r∗ ≤ δ1 depending on Ω such that dK(ωτ,x) >
7
8r whenever d(x) ≤ r∗.

Let A > 0 and B > 0 to be specified later on; we define ṽ(s) = A(r′ − s)
q−p

q+1−p − B
and v(y) = ṽ(|y − ωτ,x|) in [0, r′) and Br′(ωτ,x). Then

|ṽ′|p−2

(

|ṽ′|q+2−p − (p− 1)ṽ′′ − N − 1

s
ṽ′
)

= Ap−1

(

p− q

q + 1− p

)p−1

(r′ − s)−
q

q+1−pX(s)

where

X(s) =

(

A
p− q

q + 1− p

)q+1−p

− p− 1

q + 1− p
− (N − 1)(r′ − s))

s
.

For any τ ∈ (0, r′) there exists A > 0 such that
(

A
p− q

q + 1− p

)q+1−p

≥ p− 1

q + 1− p
+

(N − 1)(r′ − s))

s
∀τ ≤ s ≤ r′.

This implies
−∆pv + |∇v|q ≥ 0 in Br′(ωτ,x) \Bτ (ωτ,x). (2.31)

Next we take B = A(r′ − τ)
q−p

q+1−p , thus v = 0 on ∂Bτ (ωτ,x). Clearly Bτ (ωτ,x) ⊂ Ω
c

since τ < δ1. Therefore v ≥ 0 = u on ∂Ω∩Br′(ωτ,x) and u ≤ v = ∞ on Ω∩∂Br′(ωτ,x).
By the comparison principle, v ≥ u in Ω ∩Br′(ωτ,x). In particular

u(x) ≤ v(x) ≤ A(r′ − τ − d(x))
q−p

q+1−p −A(r′ − τ)
q−p

q+1−p .

We take now τ = r′

2 and d(x) ≤ r
4 and we get by the mean value theorem

u(x) ≤ c′4r
′− 1

q+1−pd(x) = c′4d(x)(d
′
K(x))

− 1
q+1−p , (2.32)

with c′4 = c′4(p, q) > 0 Letting r′ → 7
8r, we get (2.11).

Step 2: Global estimates. If d(x) ≥ 1
4dK(x), there holds

d(x)(dK(x))
− 1

q+1−p ≥ 2
2

q+1−p (d(x))
q−p

q+1−p .

We combine (2.11) with (2.6) and obtain (2.11). �

Remark. Under the assumption of Proposition 2.8, it follows from the maximum
principle that u is upper bounded in the set Ω′

r∗ := {x ∈ Ω : d(x) > r∗} = Ω \ Ωr∗
by the solution w of

−∆pw + |∇w|q = 0 in Ωr∗

w = c4d(x)(dK(x))
− 1

q+1−p in ∂Ωr∗ ,
(2.33)

and w itself is bounded by d∗ = max{cd(x)(dK (x))−
1

q+1−p : d(x) = r∗}.
We prove here the boundary Harnack inequality. We recall that δ1 has already

been defined, and that the interior and exterior sphere conditions holds in the set
{x ∈ R

N : dist (x∂Ω) ≤ δ1}.
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Proposition 2.9 Let q > p−1 and 0 ∈ ∂Ω. Then there exists c5 = c5(N, p, q,Ω) > 0
such that for any positive solution u ∈ C(Ω∪ ((∂Ω \ {0})∩B2δ1)∩C1(Ω) of (1.1) in
Ω, vanishing on ∂Ω \ {0}) ∩B2δ1 , there holds

u(y)

c5d(y)
≤ u(x)

d(x)
≤ c5

u(y)

d(y)
(2.34)

for all x, y ∈ B 2δ1
3

∩ Ω such that 1
2 |x| ≤ |y| ≤ 2 |x|.

We also recall the following result [3].

Lemma 2.10 Assume that a ∈ ∂Ω, 0 < r < δ1 and h > 1 is an integer. There exists
an integer N0 depending only on δ1 such that for any points x and y in Ω ∩B 3r

2
(a)

verifying min{d(x), d(y)} ≥ r/2h, there exists a connected chain of balls B1, ..., Bj
with j ≤ N0h such that

x ∈ B1, y ∈ Bj, Bi ∩Bi+1 6= ∅ for 1 ≤ i ≤ j − 1
and 2Bi ⊂ B2r(Q) ∩ Ω for 1 ≤ i ≤ j.

(2.35)

The next result is a standard Harnack inequality.

Lemma 2.11 Assume a ∈ (∂Ω\{0})∩B 2δ∗

3

and 0 < r ≤ |a| /4. Let u ∈ C(Ω∪((∂Ω\
{0}) ∩B2δ1)) ∩C1(Ω) be a positive solution of (1.1) vanishing on (∂Ω \ {0}) ∩B2δ1 .
Then there exists a positive constant c6 > 1 depending on N , p, q and δ1 such that

u(x) ≤ ch6u(y), (2.36)

for every x, y ∈ B 3r
2
(a) ∩ Ω such that min{d(x), d(y)} ≥ r/2h for some h ∈ N.

Proof. We first notice that for any ℓ > 0, Tℓ[u] satisfies (1.1) in Ωℓ := ℓ−1Ω where
Tℓ is defined by

Tℓ[u](x) = ℓ
p−q

q+1−pu(ℓx). (2.37)

If we take in particular ℓ = |a|, we can assume |a| = 1 thus the curvature of the
domain Ω|a| remains bounded. By Proposition 2.8

u(x) ≤ c′6 ∀x ∈ B2r(a) ∩Ω (2.38)

where c′6 depends on N , q, δ1. Then we proceed as in [22], using Lemma 2.10 and
Harnack inequality as quoted in [31, Corollary 10]. �

Since the solutions are Hölder continuous, there holds as in [31, Theorem 4.2]

Lemma 2.12 Assume the assumptions on a and u of Lemma 2.11 are fulfilled. If
b ∈ ∂Ω ∩ Br(a) and 0 < s ≤ 2−1r, there exist two positive constants δ and c7
depending on N , p, q and Ω such that

u(x) ≤ c7
|x− b|δ
sδ

max{u(z) : z ∈ Br(b) ∩Ω} (2.39)

for every x ∈ Bs(b) ∩ Ω.
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As a consequence we derive the following Carleson type estimate.

Lemma 2.13 Assume a ∈ (∂Ω\{0})∩B 2δ1
3

and 0 < r ≤ |a| /8. Let u ∈ C(Ω∪((∂Ω\
{0}) ∩B2δ1)) ∩C2(Ω) be a positive solution of (1.1) vanishing on (∂Ω \ {0}) ∩B2δ1 .
Then there exists a constant c8 depending only on N , p, q and δ1 such that

u(x) ≤ c8u(a− r
2na) ∀x ∈ Br(a) ∩ Ω. (2.40)

Proof. By Lemma 2.11 it is clear that for any integer h and x ∈ Br(a)∩Ω such that
d(x) ≥ 2−hr, there holds

u(x) ≤ ch6u(a− r
2na). (2.41)

Therefore u satisfies inequality (2.39) as any Hölder continuous function does it. The
proof that the constant is independent of r and u is more delicate. It is done in [3,
Lemma 2.4] for linear equations, but it based only on Lemma 2.12 and a geometric
construction, thus it is also valid in our case. �

Lemma 2.14 Assume a ∈ (∂Ω\{0})∩B 2δ1
3

and 0 < r ≤ |a| /8. Let u ∈ C(Ω∪((∂Ω\
{0}) ∩B2δ1)) ∩C2(Ω) be a positive solution of (1.1) vanishing on (∂Ω \ {0}) ∩B2δ1 .
Then there exist α ∈ (0, 1/2) and c9 > 0 depending on N , p, q and δ1 such that

1

c9

t

r
≤ u(b− tn

b
)

u(a− r
2na)

≤ c9
t

r
(2.42)

for any b ∈ Br(a) ∩ ∂Ω and 0 ≤ t < α
2 r.

Proof. It is similar to the one of [22, Lemma 3.15]. �

Proof of Proposition 2.9. Assume x ∈ B 2δ1
3

∩ Ω and set r = |x|
8 .

Step 1: Tangential estimate: we suppose d(x) < α
2 r. Let a ∈ ∂Ω \ {0} such that

|a| = |x| and x ∈ Br(a). By Lemma 2.14,

8

c9

u(a− r
2na)

|x| ≤ u(x)

d(x)
≤ 8c9

u(a− r
2na)

|x| . (2.43)

We can connect a− r
2na with −2rn

0
by m1 (depending only on N) connected balls

Bi = B r
4
(xi) with xi ∈ Ω and d(xi) ≥ r

2 for every 1 ≤ i ≤ m1. It follows from (2.40)
that

c−m1

6 u(−2rn
0
) ≤ u(a− r

2na) ≤ cm1

6 u(−2rn
0
),

which, together with (2.43) leads to

1

c′9

u(−2rn0)

|x| ≤ u(x)

d(x)
≤ c′9

u(−2rn0)

|x| , (2.44)

with c′9 = 8c9c
m1

6 .
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Step 2: Internal estimate: we suppose d(x) ≥ α
2 r. We can connect −2rn

0
with

x by m2 (depending only on N) connected balls B′
i = Bαr

4
(x′i) with x′i ∈ Ω and

d(x′i) ≥ α
2 r for every 1 ≤ i ≤ m2. By Harnack and Carleson inequalities (2.36) and

(2.40) and since α
4 |x| < d(x) ≤ |x|, we get

α

4c′m2

6

u(−2rn
0
)

|x| ≤ u(x)

d(x)
≤ 4c′m2

6

α

u(−2rn
0
)

|x| . (2.45)

Step 3: End of proof. Suppose |x|
2 ≤ s ≤ 2 |x|, we can connect −2rn

Q
with −sn

Q
by

m3 (depending only on N) connected balls B′′
i = B r

2
(x′′i ) with x

′′
i ∈ Ω and d(x′′i ) ≥ r

for every 1 ≤ i ≤ m3. This fact, jointly with (2.44) and (2.45), yields

1

c10

u(−sn
0
)

|x| ≤ u(x)

d(x)
≤ c10

u(−sn
0
)

|x| (2.46)

where c10 = c10(N, q,Ω). Finally, if y ∈ B 2r0
3

∩ Ω satisfies |x|
2 ≤ |y| ≤ 2 |x|, then by

applying twice (2.46) we get (2.34) with c5 = c210. �

As a consequence of Proposition 2.9, we have

Corollary 2.15 Assume q > p−1 and 0 ∈ ∂Ω. Then there exists c11 = c11(N, p, q,Ω) >
0 such that for any positive solutions u1, u2 ∈ C(Ω∪ ((∂Ω \ {0}) ∩B2δ1)∩C1(Ω) of
(1.1) in Ω, vanishing on ∂Ω \ {0}) ∩B2δ1 , there holds

sup

{

u1(y)

u2(y)
: y ∈ Br \B r

2

}

≤ c11 inf

{

u1(y)

u2(y)
: y ∈ Br \B r

2

}

. (2.47)

3 Boundary singularities

3.1 Strongly singular solutions

We next consider the equation (1.1) in R
N
+ = {x = (x′, xN ) ∈ R

N−1 × R
∗
+}. We

denote by (r, σ) ∈ R+ × SN−1 the spherical coordinates in R
N and

SN−1
+ =

{

(sinφσ′, cosφ) : σ′ ∈ SN−2, φ ∈ [0,
π

2
)
}

.

Set

βq :=
p− q

q + 1− p
and Λβq = βq(p− 1) + p−N

If v(x) = r−βω(σ) satisfies (1.1) in R
N
+ and vanishes on RN+ \ {0}, then β = βq and

ω is a solution of

−div
(

(

β2qω
2 + |∇′ω|2

)
p−2

2 ∇′ω

)

− βqΛβq
(

β2qω
2 + |∇′ω|2

)
p−2

2 ω

+
(

β2qω
2 + |∇′ω|2

)
q
2 = 0 in SN−1

+

ω = 0 on ∂SN−1
+ .

(3.1)
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where ∇′ denotes the covariant derivative on SN−1 identified with the tangential
derivative. There exists a unique β∗ = β∗(N, p) > 0 such that the function (r, σ) 7→
r−β∗ψ(σ) is positive, p-harmonic in R

N
+ and vanishes on RN+ \ {0} (see [30], [25]).

The function ψ is defined up to a multiplicative constant and it satisfies

−div
(

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ∇′ψ

)

− β∗Λβ∗
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ψ = 0 in SN−1
+

ψ = 0 on ∂SN−1
+ .

(3.2)
We denote by ψ∗ the solution which maximal value 1. The coefficient β∗ is unknown,
except when N = p, and it is 1, or p = 2 and it is N − 1. Because of uniqueness ψ
depends only on the azimuthal variable θN−1 = cos−1(xN|x| ) (see Appendix II). Our
first result is the following

Theorem 3.1 If βq ≤ β∗ there exists no positive solution to problem (3.1).

Proof. Suppose such a solution ω exists and put θ = βq/β∗. Then 0 < θ ≤ 1. Set
η = ψθ, where ψ is a positive solution of (3.2) and define the operator T by

T (η) = −div
(

(

β2qη
2 + |∇′η|2

)
p−2

2 ∇′η

)

− βqΛβq
(

β2qη
2 + |∇′η|2

)
p−2

2 η

+
(

β2qη
2 + |∇′η|2

)
q
2 .

(3.3)

Since ∇η = θψθ−1∇ψ,
(

β2qη
2 + |∇′η|2

)
p−2

2 = θp−2ψ(θ−1)(p−2)
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ,
(

β2qη
2 + |∇′η|2

)
p−2

2 ∇′η = θp−1ψ(θ−1)(p−1)
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ∇′ψ, therefore

T (η) = −θp−1ψ(θ−1)(p−1)div

(

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ∇′ψ

)

− θp−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 |∇′ψ|2

− βqΛβqθ
p−2ψ(θ−1)(p−1)

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ψ + θqψ(θ−1)q
(

β2∗ψ
2 + |∇′ψ|2

)
q
2

But βqΛβqθ
p−2 = β∗Λβqθ

p−1 ≤ β∗Λβ∗θ
p−1 since βq ≤ β∗. Using (3.2), we see that

T (η) ≥ 0. Because Hopf lemma is valid, ∂nψ < 0 on ∂SN−1
+ . Since ω is C1 in SN−1

+

and ψ is defined up to an homothety, there exists a minimal ψ such that η ≥ ω, and

the graphs of η and ω over SN−1
+ are tangent, either at some α ∈ SN−1

+ , or only at

point α ∈ ∂SN−1
+ . We put w = η − ω. Then

T (η)− T (ω) = Φ(1)− Φ(0), (3.4)

where Φ(t) = T (ωt) with ωt = ω + tw.
We use local coordinates (σ1, ..., σN−1) on S

N−1 near α. We denote by g = (gij)
the metric tensor on SN−1 and by gjk its contravariant components. Then, for any
ϕ ∈ C1(SN−1),

|∇ϕ|2 =
∑

j,k

gjk
∂ϕ

∂σj

∂ϕ

∂σk
= 〈∇ϕ,∇ϕ〉g .
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If X = (X1, ...Xd) ∈ C1(TSN−1) is a vector field, we lower indices by setting

Xℓ =
∑

i

gℓiXi and define the divergence of X by

divgX =
1

√

|g|
∑

ℓ

∂

∂σℓ

(

√

|g|Xℓ
)

=
1

√

|g|
∑

ℓ,i

∂

∂σℓ

(

√

|g|gℓiXi

)

.

We write Φ(t) = Φ1(t) + Φ2(t) + Φ3(t) where

Φ1(t) = −βqΛβq
(

β2qω
2
t + |∇′ωt|2

)

p−2

2 ωt,

Φ2(t) =
(

β2qω
2
t + |∇′ωt|2

)

q
2

and

Φ3(t) = −div

(

(

β2qω
2
t + |∇′ωt|2

)

p−2

2 ∇′ωt

)

.

Then

Φ1(1) −Φ1(0) = −
∑

j

aj
∂w

∂σj
− bw

where

b = βqΛβq

(

β2qωt
2 + |∇ωt|2

)
p
2
−2 (

(p − 1)β2qω
2
t + |∇ωt|2

)

and

aj = (p− 2)βqΛβq

(

β2qωt
2 + |∇ωt|2

)
p
2
−2
ωt
∑

k

gjk
∂ωt
∂σk

;

Φ2(1) − Φ2(0) =
∑

j

cj
∂w

∂σj
+ dw

where

d = qβ2q

(

β2ωt
2 + |∇ωt|2

)
q
2
−1
ωt

cj = q
(

β2qωt
2 + |∇ωt|2

)
q
2
−1∑

k

gjk
∂ωt
∂σk

;

Φ3(1)− Φ3(0) = −(p− 2)div

(

(

β2qω
2
t + |∇′ωt|2

)
p−4

2
(

β2qωtw + 〈∇′ωt,∇′w〉g
)

∇′ωt

)

− div

(

(

β2qω
2
t + |∇′ωt|2

)
p−2

2 ∇′w

)

.

Therefore we have

Φ(1)− Φ(0) = −div(A∇′w) + 〈B,∇′w〉g + Cw := Lw (3.5)
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where

〈AX,X〉g =
(

β2qω
2
t + |∇′ωt|2

)
p−4

2
(

p− 2)〈∇′ωt,X〉2g + |∇′ωt|2|X|2
)

≥
(

β2qω
2
t + |∇′ωt|2

)
p−4

2 min{1, p − 1}|∇′ωt|2|X|2.
(3.6)

and B and C can be computed from the previous expressions. It is important to
notice that β2qω

2
t + |∇′ωt|2 is bounded between two positive constants c1 and c2 in

SN−1
+ . Thus the operator L is uniformly elliptic with bounded coefficients. Since w

is nonnegative and vanishes at some point α where ∇′w(α) = 0 and w(α) > 0 or at
some boundary point α where w(α) = 0 and ∂nw(α) < 0 it follows from the strong
maximum principle or Hopf boundary lemma (see [17]) that w = 0, contradiction.
�

Theorem 3.2 Assume βq > β∗. There exists a unique positive solution ω∗ to prob-
lem (3.1).

Proof. Existence. It will follow from [10]. Indeed problem (3.1) can be written

A(ω) := −div a(ω,∇′ω) = B(ω,∇′ω) in SN−1
+

ω = 0 on ∂SN−1
+

(3.7)

where

a(r, ξ) =
(

β2q r
2 + |ξ|2

)
p−2

2 ξ

B(r, ξ) = βqΛβq
(

β2q r
2 + |ξ|2

)
p−2

2 r −
(

β2q r
2 + |ξ|2

)
q
2

(3.8)

The operator A is a Leray-Lions operator which satisfies the assumptions (1.6)-
(1.8) of [10, Theorem 2.1], and the term B satisfies (1.9),(1.10) in the same article.
Therefore existence of a positive solution ω ∈ W 1,p

0 (SN−1
+ ) ∩ L∞(SN−1

+ ) is ensured

whenever we can find a super solution ω ∈W 1,p(SN−1
+ )∩L∞(SN−1

+ ) and a nontrivial

subsolution ω ∈W 1,p(SN−1
+ ) of (3.7) such that

0 ≤ ω ≤ ω in SN−1
+ . (3.9)

First we note that η = η0 is a supersolution if the positive constant η0 is large
enough. In order to find a subsolution, we set η = ψθ with θ = βq/β∗ and ψ as in

(3.2). Then θ > 1, thus η ∈W 1,p
0 (SN−1

+ ). As above we have

T (η) = −θp−1ψ(θ−1)(p−1)div

(

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ∇′ψ

)

− θp−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 |∇′ψ|2

− βqΛβqθ
p−2ψ(θ−1)(p−1)

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ψ + θqψ(θ−1)q
(

β2∗ψ
2 + |∇′ψ|2

)
q
2 .
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Now βqΛβqθ
p−2 = β∗Λβqθ

p−1 = β∗(Λβq − Λβ∗)θ
p−1 + β∗Λβ∗θ

p−1 and Λβq − Λβ∗ =
(βq − β∗)(p − 1) = β∗(p − 1)(θ − 1), hence

T (η) = −θp−1ψ(θ−1)(p−1)div

(

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ∇′ψ

)

− θp−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 |∇′ψ|2

− β∗(Λβq − Λβ∗)θ
p−1ψ(θ−1)(p−1)

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ψ

− β∗Λβ∗θ
p−1ψ(θ−1)(p−1)

(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ψ + θqψ(θ−1)q
(

β2∗ψ
2 + |∇′ψ|2

)
q
2 .

Using the equation satisfied by ψ yields

T (η) = −θp−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 |∇′ψ|2

− β2∗(p − 1)(θ − 1)θp−1ψ(θ−1)(p−1)−1
(

β2∗ψ
2 + |∇′ψ|2

)
p−2

2 ψ2

+ θqψ(θ−1)q
(

β2∗ψ
2 + |∇′ψ|2

)
q
2

= −θp−1(θ − 1)(p − 1)ψ(θ−1)(p−1)−1
(

β2∗ψ
2 + |∇′ψ|2

)
p
2

+ θqψ(θ−1)q
(

β2∗ψ
2 + |∇′ψ|2

)
q
2 .

We will see that replacing ψ with mψ in the above computation, the right choice of
m will give T (η) ≤ 0: Indeed, we need

mθ(q+1−p)ψ(θ−1)(q+1−p)+1 ≤ θp−1−q(θ − 1)(p − 1)
(

β2∗ψ
2 + |∇′ψ|2

)

p−q
2

which will hold true if we choose m to satisfy

mθ(q+1−p) ≤ β
(θ−1)(q+1−p)+1
∗ θp−1−q(θ − 1)(p − 1)

minx∈SN−1
+

(

β2∗ψ
2 + |∇′ψ|2

)
p−q
2

maxx∈SN−1
+

ψ(θ−1)(q+1−p)+1
.

Therefore 0 < η ≤ η0 and standard regularity implies that the solution ω is C1 in

S
N−1
+ . Actulally since the operator is not degenerate, ω is C∞.

Uniqueness. We use the tangency method developed in the proof of Theorem 3.1.
Assume ω1 and ω2 are two positive solutions of (3.2), then they are positive in SN−1

+

and ∂nωi < 0 on ∂SN−1
+ . Either the ωi are ordered and ω1 ≤ ω2 or their graphs

intersect. In any case we can define

τ = inf{s > 1 : sω1 ≥ ω2}.

We set ω∗ = τω1. Then either the graphs of ω2 and ω∗ are tangent at some interior
point α, or they are not tangent in SN−1

+ , ∂nω
∗ ≤ ∂nω2 < 0 on ∂SN−1

+ and there

exists α ∈ ∂SN−1
+ such that ∂nω

∗(α) = ∂nω2(α) < 0. Furthermore T (ω∗) ≥ 0. If we
set w = ω∗ − ω2, then, as in Theorem 3.1,

−div(A∗∇′w) + 〈B∗,∇′w〉g +C∗w = L∗w ≥ 0
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where

〈A∗X,X〉g =
(

β2qω
2
t + |∇′ωt|2

)
p−4

2
(

p− 2)〈∇′ωt,X〉2g + |∇′ωt|2|X|2
)

≥
(

β2qω
2
t + |∇′ωt|2

)
p−4

2 min{1, p − 1}|∇′ωt|2|X|2,
(3.10)

in which ωt = ω2 + t(ω∗ −ω2) and t ∈ (0, 1) is obtained by applying the mean value
theorem and B∗ and C∗ are defined accordingly. Since L∗ is uniformly elliptic and
has bounded coefficient, it follows from the strong maximum principle that w = 0.
Thus ω∗ = τω1 = ω2 and τ = 1 from the equation. This ends the proof. �

3.2 Removable boundary singularities

The following is the basic result for removability of isolated singularities. It is valid
in the general case, but with a local geometric constraint.

Theorem 3.3 Assume q∗ ≤ q < p ≤ N , Ω is a C2 bounded domain with 0 ∈ ∂Ω,
such that Ω∩Bδ ⊂ R

N
+ for some δ > 0. If u ∈ C1(Ω \{0}) is a nonnegative solution

of (1.1) in Ω which vanishes on ∂Ω \ {0}, it is identically 0.

Proof. Step 1: Assume Ω ⊂ R
N
+ . For ǫ > 0, we set Ω′

ǫ = Ω∩Bc
ǫ and Hǫ = R

N
+ ∩Bc

ǫ .
For k, n ∈ N∗, n ≥ diam (Ω), we denotes by vk,n,ǫ (n ∈ N∗) the solution of the
problem

−∆pv + |∇v|q = 0 in Hǫ ∩Bn
v = kχ

R
N
+

∩∂Bǫ
on ∂(Hǫ ∩Bn). (3.11)

If k > c2ǫ
q−p

q+1−p then vk,n,ǫ ≥ u in Ω′
ǫ. Moreover there holds vk,n,ǫ ≤ vk′,n′,ǫ for n ≤ n′

and k ≤ k′. Furthermore the function

Uǫ,n(x) = c1

(

(|x| − ǫ)
q−p

q+1−p − (n− ǫ)
q−p

q+1−p

)

is a super solution in Bn \ Bǫ for a suitable c1 = c1(N, p, q) > 0 (see Lemma 2.6),
and there holds vk,n,ǫ ≤ Uǫ,n. By monotonicity and standard a priori estimate, we
obtain that vk,n,ǫ → vǫ when n, k → ∞ and that the function v = vǫ is solution of

−∆pv + |∇v|q = 0 in Hǫ

lim|x|→ǫ v(x) = ∞
v = 0 on ∂RN+ ∩Bc

ǫ .

(3.12)

Furthermore
u(x) ≤ vǫ(x) ≤ c1(|x| − ǫ)

q−p
q+1−p in Ω′

ǫ. (3.13)

The function vǫ may not be unique, however it is the minimal solution of the above
problem since the vk,n,ǫ is unique, and monotonicity in n and k holds. Actually,
vǫ ≤ vǫ′ if 0 ≤ ǫ ≤ ǫ′. For ℓ > 0, we recall that the transformation Tℓ defined by

Tℓ[v](x) = ℓ
p−q

q+1−p v(ℓx), (3.14)

18



leaves equation (1.1) invariant. As a consequence of the uniqueness of the approxi-
mations we have Tℓ[vk,n,ǫ] = v

ℓ
p−q

q+1−p k,ℓ−1n,ℓ−1ǫ
, which yields

Tℓ[vǫ](x) = vℓ−1ǫ. (3.15)

Letting ǫ→ 0, we derive from the monotonicity with respect to ǫ and standard C1,α

estimates,
Tℓ[v0] = v0 ∀ℓ > 0. (3.16)

The function v0 is a positive and separable solution of (1.1) in R
N
+ which vanishes

on ∂Ω \ {0}. It follows from Theorem 3.1 that v0 = 0, and so is u.

Step 2: The general case. We assume that Ω ∩ Bδ ⊂ R
N
+ and we denote by M the

maximum of u on ∂Bδ ∩Ω. Then the function (u−M)+ is a subsolution of (1.1) in
Ω ∩ Bδ which vanishes on ∂Ω ∩ Bδ \ {0}. By Step 1, it is dominated by v0, which
ends the proof. �

Remark. The previous result is valid if u is a subsolution with the same regularity
as u. If u is no longer assumed to be nonnegative, only u+ vanishes. Furthermore,
the regularity of the boundary has not been used, but only the fact that Ω is locally
contained into a half space to the boundary of which 0 belongs.

Remark. If no geometric assumption is made on ∂Ω, we can prove that u(x) =
◦(|x|−βq) near 0. The next result shows that the removability holds if q > q∗.

Theorem 3.4 Assume q∗ < q < p ≤ N and Ω is a C2 bounded domain with
0 ∈ ∂Ω. If u is a nonnegative solution of (1.1) in Ω which belongs to C1(Ω \ {0})
which vanishes on ∂Ω \ {0}, it is identically 0.

Proof. In [25] is proved that for any smooth subdomain S ⊂ SN−1, there exists a
unique βs > 0 and ψs > 0, up to an homothety, such that x 7→ |x|−βs ψs(|x|−1 x) is
p harmonic in the cone CS = {x ∈ R

N \ {0} : |x|−1 x ∈ S} and ψs satisfies

−div
(

(

β2sψ
2
s + |∇′ψs|2

)
p−2

2 ∇′ψs

)

− βsΛβs
(

β2sψ
2
s + |∇′ψs|2

)
p−2

2 ψs = 0 in S

ψs = 0 on ∂S,

(3.17)
By construction S 7→ βs is decreasing. If, for ǫ > 0, we denote by S := Sǫ the
spherical shell with vertex the north pole N and latitude angle θN−1 ∈ [0, π2 + ǫ]- we
use here the spherical coordinates system defined in (6.5 ). Because of uniqueness
of βs, βsǫ ↑ β∗ as ǫ → 0. Therefore, if q > q∗, or equivalently βq < β∗, there exists
δ, ǫ > 0 such that Ω ∩ Bδ ⊂ CSǫ ∩ Bδ and βq < βsǫ . Since Theorem 3.1 is valid
if SN−1

+ is replaced by Sǫ and βq < βsǫ it follows that u = 0 as in the proof of
Theorem 3.3, Step 1 and 2. �

The next result, valid in the case p = N , is based upon the conformal invariance
of the N-Laplacian. In this case the exponent β∗ corresponding to the first spherical
N-harmonic eigenvalue is equal to 1 and the corresponding spherical N-harmonic
eigenfunction in SN−1

+ = SN−1 ∩ {x = (x′, xN ), xN > 0} is xN/ |x|2.
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Theorem 3.5 Assume N − 1
2 ≤ q < N , Ω is a bounded domain and 0 ∈ ∂Ω is such

that there exists a ball in Ωc to the boundary of which a belongs. If u is a nonnegative
solution of

−∆Nu+ |∇u|q = 0 in Ω, (3.18)

which belongs to C(Ω \ {0}) ∩W 1,N
0 (Ω \Bǫ(a)) for any ǫ > 0, it is identically 0.

Proof. We assume that the inward normal unit vector to ∂Ω at 0 is eN = (0, 0, ..., 1)
and that the ball B = B 1

2
(a) of center a = −1

2eN and radius 1
2 touches ∂Ω at 0

and is exterior to Ω (this can be assumed up to a rotation and a dilation). This
is the consequence of the exterior sphere condition at the point 0. It is always
valid if ∂Ω is C2. We denote by Iω the inversion of center ω and power 1, i.e.
Iω(x) = ω+ x−ω

|x−ω|2
. Under this transformation, the complement of the ball B, which

contains Ω is transformed into the half space {x = (x′, xN ) : xN < 0} which contains
the image Ω̃ of Ω. Since u satisfies (3.18), ũ = u ◦ Iω satisfies

−∆N ũ+ |x− ω|2(q−N) |∇ũ|q = 0 in Ω̃. (3.19)

Furthermore since 0 = Iω(0) and Iω is a diffeomorphism, ũ ∈ C(Ω̃ \ {0}) ∩ C1(Ω̃)
and it vanishes on ∂Ω̃ \ {0}. Since |x− ω| ≤ 1 and q < N , ũ is a subsolution for
(3.18) in G̃. By Theorem 3.5, ũ = 0. �

3.3 Weakly singular solutions

The main result of this section is the following existence and uniqueness result
concerning solutions of (1.1) with a boundary weak singularity. We recall that ψ∗ is
unique positive solution of (1.10) such that supψ∗ = 1. Our first result is valid for
any 1 < p ≤ N but it needs a geometric constraint on Ω.

Theorem 3.6 Let p − 1 < q < q∗ < p ≤ N and Ω be a bounded C2 domain such
that 0 ∈ ∂Ω. Assume that there exists δ > 0 such that Ω ∩Bδ = B+

δ . Then for any
k > 0 there exists a unique positive solution u := uk of (1.1) in Ω, which belongs to
C1(Ω \ {0}), vanishes on ∂Ω \ {0} and satisfies

lim
x→0

uk(x)

Ψ∗(x)
= k (3.20)

in the C1-topology of SN−1
+ , where Ψ∗(x) = |x|−β∗ ψ∗(|x|−1x).

Lemma 3.7 Let the assumptions on p, q and Ω of Theorem 3.6 be satisfied. There
exists a unique positive p-harmonic function Φ∗ in Ω, which is continuous in Ω\{0},
vanishes on ∂Ω \ {0} and satisfies

lim
x→0

Φ∗(x)

Ψ∗(x)
= 1. (3.21)

20



Proof. For 0 < ǫ < δ let vǫ be the unique p-harmonic function in Ω \ B+
ǫ which is

continuous in Ω \ B+
ǫ , vanishes on ∂Ω \ Bǫ and achieves the value Ψ∗ on ∂Bǫ ∩ Ω.

By the maximum principle, and since Ψ∗(x) ≤ D−β∗ where D = max{|z| : z ∈ Ω},
there holds

(Ψ∗ −D−β∗)+ ≤ vǫ ≤ Ψ∗ in Ω \B+
ǫ . (3.22)

If ǫ < ǫ′ < δ, then vǫ ≤ vǫ′ in Ω \B+
ǫ′ . By standard regularity result vǫ converges to

a function Φ∗ continuous in Ω \ {0}, p-harmonic in Ω and satisfies (Ψ∗ − δ−β∗)+ ≤
Φ∗ ≤ Ψ∗ in Ω. Therefore (3.21) holds provided x

|x| remains in a compact subset of

SN−1
+ . If we define the function φ̃∗ by φ̃∗(x) = |x|β∗ Φ∗(x), then φ̃∗(r, σ) ≤ ψ∗(σ)

where r = |x| and σ = x
|x| ∈ SN−1

+ . By standard C1,α estimates, φ̃∗(r, .) is relatively

compact in the C(SN−1
+ )-topology. Therefore the convergence of Φ∗(x)

Ψ∗(x)
to 1 when x

to 0 holds not only when x
|x| remains in a compact subset of SN−1

+ , but uniformly

on SN−1
+ , which implies (3.22). Uniqueness follows classically by (3.22) and the

maximum principle. �

Lemma 3.8 Let the assumptions on p, q and Ω of Theorem 3.6 be satisfied. If for
some k > 0 there exists a solution uk of (1.1) in Ω, which belongs to C1(Ω \ {0}),
vanishes on ∂Ω \ {0} and satisfies (3.20), then for any k > 0 there exists such a
solution.

Proof. We notice that for any c < 1 (resp c > 1), cuk is a subsolution (resp. super-
solution) of (1.1) in Ω. If c < 1, the function ckΦ∗ is a supersolution of (1.1) which
vanishes on ∂Ω \ {0}. Furthermore

lim
x→0

cuk(x)

Ψ∗(x)
= lim

x→0

ckΦ∗(x)

Ψ∗(x)
= ck.

Then there exists a solution uck of (1.1) in Ω which satisfies cuk ≤ uck ≤ ckΦ∗. If
c > 1, we consider u∗ := Tcθ [uk] : x 7→ cβqθuk(c

θ x) with θ = (βq −β∗)
−1. Then u∗ is

a solution of (1.1) in Ωc
θ
= 1

cθ
Ω. In particular, u∗ satisfies the equation in B+

δ

cθ

(0).

Since cθ > 1, B+
δ

cθ

(0) ⊂ B+
δ (0). Put m = max{u∗ : x ∈ ∂B+

δ

cθ

(0)}. The function

(u∗−m)+, extended by 0 outside B+
δ

cθ

(0), is a subsolution of (1.1) in Ω. Furthermore

it satisfies

lim
x→0

(u∗ −m)+(x)

Ψ∗(x)
= ck,

uniformly on any compact subset of SN−1
+ . Therefore there exists a solution uck of

(1.1) in Ω which satisfies (u∗ −m)+ ≤ uck ≤ ckΦ∗, and in particular it vanishes on
∂Ω \{0} and belongs to C1(Ω \{0}). By [27], uck is positive in Ω. Since uck belongs

to C1,α(B+
δ (0) \ {0}) and satisfies

|x|β∗ |uck(x)|+ |x|1+β∗ |∇uck(x)|+ |x|1+β∗+α sup
|y| ≤ |x|
x 6= y

|∇uck(x)−∇uck(y)|
|x− y|α ≤M
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by (2.10), the set of functions {rβ∗+1∇uck(r, .)}r>0 is uniformly relatively compact

in the topology of uniform convergence on S
N−1
+ . Since it converges to ck∇′ψ∗

uniformly on compact subsets of SN−1
+ , this convergence holds in C(S

N−1
+ ). This

implies

lim
x→0

uck(x)

Ψ∗(x)
= ck. (3.23)

�

Lemma 3.9 Under the assumptions of Theorem 3.6 there exists a real number R0

such that 0 < R0 ≤ δ and a positive subsolution ũ of (1.1) in B+
R0

which is Lipschitz

continuous in B+
R0

\ {0}, vanishes on B
+
R0

∩ ∂RN+ \ {0}, is smaller than Ψ∗ and
satisfies

lim
x→0

ũ(x)

Ψ∗(x)
= 1. (3.24)

Proof. The construction of the function ũ is delicate and needs several intermediate
steps. We look for a solution under the form ũ = Ψ∗ −w for a suitable nonnegative
function w.

Step 1: reduction of the problem. We use spherical coordinates for a C1 function
u : x 7→ u(x) = u(r, σ), r = |x|, σ = x

|x| . Then∇u = ure+r
−1∇′u where e = |x|−1 x,

|∇u|2 = u2r + r−2 |∇′u|2 and |∇u|q =
(

u2r + r−2 |∇′u|2
)

q
2
. The expression of the p-

Laplacian in spherical coordinates is

−∆pu = −
(

(

u2r + r−2 |∇′u|2
)

p−2

2
ur

)

r

− N − 1

r

(

u2r + r−2 |∇′u|2
)

p−2

2
ur

− 1

r2
div′

(

(

u2r + r−2 |∇′u|2
)

p−2

2 ∇′u

)

.

Put v(t, σ) = rβ∗u(r, σ) with t = ln r ∈ (−∞, ln δ], then v satisfies

Q[v] :

= −
(

(

(vt − β∗v)
2 + |∇′v|2

)
p−2

2
(vt − β∗v)

)

t

− div′
(

(

(vt − β∗v)
2 + |∇′v|2

)
p−2

2 ∇′v

)

+ Λβ∗

(

(vt − β∗v)
2 + |∇′v|2

)
p−2

2
(vt − β∗v) + eνt

(

(vt − β∗v)
2 + |∇′v|2

)
q
2
= 0

(3.25)
in (−∞, ln δ) × SN−1

+ where ν = 1 − (q + 1 − p)(β∗ + 1) = 1 − β∗+1
βq+1 > 0 and

Λβ∗ = β∗(p− 1) + p−N . Notice that since ψ∗ satisfies

−div′
(

(

β2∗ψ
2
∗ +

∣

∣∇′ψ∗

∣

∣

2
)

p−2

2 ∇′ψ∗

)

− β∗Λβ∗

(

β2∗ψ
2
∗ +

∣

∣∇′ψ∗

∣

∣

2
)

p−2

2
ψ∗ = 0, (3.26)
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it is a supersolution for (3.25). We look for a subsolution under the form

V (t, σ) = ψ∗ − a(t)g(ψ∗)

where g is a a continuous increasing function defined on R+, vanishing at 0 and
smooth on R

∗
+ and a(t) = eγt with γ > 0 is to be chosen. Thus a′ = γa, a′′ = γ2a,

Vt = −γag(ψ∗), Vt − β∗V = −β∗ψ∗ + a(β∗ − γ)g(ψ∗), ∇′V = (1− ag′(ψ∗))∇′ψ∗ and

(Vt − β∗V )2 + |∇′V |2 = (−β∗ψ∗ + a(β∗ − γ)g(ψ∗))
2 + (1− ag′(ψ∗))

2 |∇′ψ∗|2

=
(

β2∗ψ
2
∗ + 2aβ∗(γ − β∗)g(ψ∗)ψ∗

)

+ (1− 2ag′(ψ∗)) |∇′ψ∗|2 +O(a2 ‖g(ψ)‖C1)

= β2∗ψ
2
∗ + |∇′ψ∗|2 + 2a

(

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2
)

+O(a2 ‖g(ψ∗)‖C1).

Therefore
(

Vt − β∗V )2 + |∇′V |2
)

p−2

2

=
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2

[

1 + (p− 2)a
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

]

+O(a2 ‖g(ψ)‖C1),

and

eνt
(

Vt − β∗V )2 + |∇′V |2
)

q
2

= eνt
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
q
2

[

1 + qa
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

]

+O(eνta2 ‖g(ψ∗)‖C1),

thus
(

(Vt − β∗V )2 + |∇′V |2
)

p−2

2
(Vt − β∗V )

= −β∗
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
ψ∗ + a(β∗ − γ)

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
g(ψ∗)

− aβ∗(p− 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

(β2∗ψ
2
∗ + |∇′ψ∗|2)

4−p
2

ψ∗ +O(a2 ‖g(ψ∗)‖C1).

Finally,

−
(

(

(Vt − β∗V )2 + |∇′V |2
)

p−2

2
(Vt − β∗V )

)

t

= a

[

(γ2 − β∗γ)
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
g(ψ∗) + β∗(p− 2)

β∗(γ
2 − β∗γ)ψ∗g(ψ∗)− γg′(ψ∗) |∇ψ∗|2

(β2∗ψ
2
∗ + |∇′ψ∗|2)

4−p
2

ψ∗

]

+O(a2 ‖g(ψ∗)‖C2).

(3.27)
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Since
(

(Vt − β∗V )2 + |∇′V |2
)

p−2

2 ∇′V =

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
(1− ag′(ψ∗))

[

1 + a(p− 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

]

∇′ψ∗

+O(a2 ‖g(ψ∗)‖C1)

=
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2 ∇′ψ∗

+ a
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2

[

(p− 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

− g′(ψ∗)

]

∇′ψ∗

+O(a2 ‖g(ψ∗)‖C1)

we get similarly

−div′
(

(

(Vt − β∗V )2 + |∇′V |2
)

p−2

2 ∇′V

)

= −div′
(

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2 ∇′ψ∗

)

−a div′
(

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2

[

(p − 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

− g′(ψ∗)

]

∇′ψ∗

)

+O(a2 ‖g(ψ∗)‖C2).

(3.28)
Noting that

−div′
(

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2 ∇′ψ∗

)

ψ∗ = β∗Λβ∗

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
ψ∗, (3.29)

we obtain

e−γtQ[V ]

=

[

(γ2 − β∗γ)
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
g(ψ∗) + β∗(p− 2)

β∗(γ
2 − β∗γ)ψ∗g(ψ∗)− γg′(ψ∗) |∇ψ∗|2

(β2∗ψ
2
∗ + |∇′ψ∗|2)

4−p
2

ψ∗

]

−div′
(

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2

[

(p − 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

− g′(ψ∗)

]

∇′ψ∗

)

−Λβ∗

(

(γ − β∗)
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
g(ψ∗) + β∗(p− 2)

β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

(β2∗ψ
2
∗ + |∇′ψ∗|2)

4−p
2

ψ∗

)

+e(ν−γ)t
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
q
2

[

1 + qa
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

]

+O(a ‖g(ψ∗)‖C2).

(3.30)
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In this expression we have in particular

−div′
(

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2

[

(p − 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

− g′(ψ∗)

]

∇′ψ∗

)

= (p− 1)div′
[

g′(ψ∗)
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2 ∇ψ∗

]

− β∗div
′

(

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−4

2
[(p− 2)β∗ψ∗g

′(ψ∗) + (p− 2)(γ − β∗)g(ψ∗)]ψ∗

)

= (p− 1)g′′(ψ∗)
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2 |∇ψ∗|2

+ (p− 1)g′(ψ∗)div
′

(

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2 ∇ψ∗

)

− (p− 2)β∗div
′









(

(γ − β∗)g(ψ∗)ψ∗ + β∗g
′(ψ∗)ψ

2
∗

)

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
4−p
2

∇′ψ∗









.

(3.31)
Using equation (3.26) satisfied by ψ∗, it follows

−div′
(

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2

[

(p − 2)
β∗(γ − β∗)ψ∗g(ψ∗)− g′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

− g′(ψ∗)

]

∇′ψ∗

)

= (p− 1)
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2 (

g′′(ψ∗)|∇′ψ∗|2 − β∗Λβ∗g
′(ψ∗)ψ∗

)

− (p− 2)β∗div
′









(

(γ − β∗)g(ψ∗)ψ∗ + β∗g
′(ψ∗)ψ

2
∗

)

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
4−p
2

∇′ψ∗









.

(3.32)
Plugging this identity into the expression (3.30), we obtain after some simplifications

e−γtQ[V ] =
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
g(ψ∗)Q1[V ] + e(ν−γ)tR[V ] +O(a ‖g(ψ∗)‖C2),

(3.33)
where

R[V ] = eνt
(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
q
2

[

1 + q
β∗(a

′ − β∗a)ψ∗g(ψ∗)− ag′(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

]

,

(3.34)
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and

Q1[V ] = (γ − Λβ∗)(γ − β∗)

[

1 + (p− 2)
β2∗ψ

2
∗

β2∗ψ
2
∗ + |∇′ψ∗|2

]

− (p− 1)β∗Λβ∗
ψ∗g

′(ψ∗)

g(ψ∗)

+ [(p− 4)β∗Λβ∗ψ∗ − 2∆′ψ∗]

(

γ − β∗

(

1− ψ∗g
′(ψ∗)

g(ψ∗)

))

β∗ψ∗

β2∗ψ
2
∗ + |∇′ψ∗|2

+ (p− 1)
g′′(ψ∗)

g(ψ∗)
|∇′ψ∗|2

− (p− 2)

[

ψ∗g
′(ψ∗)

g(ψ∗)
((β∗ + 1)γ − β∗Λβ∗ + β∗) + γ − β∗ + β∗

ψ2
∗g

′′(ψ∗)

g(ψ∗)

] |∇′ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

.

(3.35)
In this expression the difficult term to treat is [(p− 4)β∗Λβ∗ψ∗ − 2∆′ψ∗] because of
its lack of sign. However ∆′ψ∗ = O(ψ∗) by (6.20).

Step 2: The perturbation method and computation with g(ψ∗) = ψ∗. With such a
choice of function g

Q1[V ] = (γ − Λβ∗)(γ − β∗)

[

1 + (p − 2)
β2∗ψ

2
∗

β2∗ψ
2
∗ + |∇′ψ∗|2

]

− (p− 2) [(γ − Λβ∗)β∗ + 2γ]
|∇′ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

.

(3.36)

Equivalently

Q1[V ] =

[

1 + (p − 2)
β2∗ψ

2
∗

β2∗ψ
2
∗ + |∇′ψ∗|2

]

(

γ2 − (Λβ∗ + β∗)γ
)

−
[

(p − 2)(β∗ + 2)
|∇′ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

+ 0(ψ2
∗)

]

and finally

Q1[V ] =

[

1 + (p− 2)
β2∗ψ

2
∗

β2∗ψ
2
∗ + |∇′ψ∗|2

]

γ
[

γ − (Λβ∗ + β∗ + (p− 2)(β∗ + 2)) + 0(ψ2
∗)
]

.

(3.37)
Using the fact that β > N−1

p−1 if 1 < p < 2 and 1 < β < N−1
p−1 if 2 < p < N (see

Appendix II), we have

Λβ∗ + β∗ + (p− 2)(β∗ + 2) ≥
{

Λβ∗ + β∗(p− 1) if p ≥ 2

N + 3(p − 2) > N − 3 if 1 < p < 2.
(3.38)

When N = 2, we have explicitly β∗ =
1+2

√
p2−3p+3

3(p−1) (see [19, Th 3.3]). Therefore for
all N ≥ 2 and p > 1, there holds

Λβ∗ + β∗ + (p− 2)(β∗ + 2) > 0. (3.39)

We fix ǫ0 > 0 such that, whenever ψ∗ ≤ ǫ0, there holds

Λβ∗ + β∗ + (p − 2)(β∗ + 2) + 0(ψ2
∗) >

1

2
(Λβ∗ + β∗ + (p− 2)(β∗ + 2)) . (3.40)
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If we fix γ0 > 0 such that

γ0 < min

{

1

2
(Λβ∗ + β∗ + (p− 2)(β∗ + 2)) , ν, β∗

}

, (3.41)

we obtain
Q1[V ] ≤ −min{1, p − 1}γB2 ∀ 0 < γ ≤ γ0, (3.42)

whenever ψ∗ ≤ ǫ0, for some B depending only on p, q and N (through ψ∗ and ν),
which yields, in the same range of value of ψ∗,

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
g(ψ∗)Q1[V ] ≤ −c0ψ∗ ∀ 0 < γ ≤ γ0, (3.43)

for some c0 > 0 depending on N, p, q. This estimate is valid whatever is p, but
only in a neighborhood of ψ∗ = 0. If we replace g(ψ∗) = ψ∗ by gk(ψ∗) = ψ∗e

−kψ∗

for 0 < k < 1, and denote by Q1,k[V ] the corresponding expression of Q1[V ] which
becomes now Q1,0[V ]. We define similarly Qk[V ], and Q[V ] becomes Q0[V ]. Since
g′k(ψ∗) = e−kψ∗ − kgk(ψ∗) and g

′′
k = −2ke−kψ∗ + k2gk(ψ∗), we obtain

Q1,k[V ] = Q1,0[V ] + k(p− 1)β∗Λβ∗ψ∗ + (p − 1)

(

−2k

ψ∗
+ k2

)

|∇′ψ∗|2

+ (2− p)β∗
(

−2k + k2
)

ψ∗ +O(ψ2
∗)

(3.44)

Because ∇′ψ∗ vanishes only at the North pole eN , there exists k0 ∈ (0, 1] such that

k(1−p)β∗Λβ∗ψ∗+(p−1)

(

2k

ψ∗
− k2

)

∣

∣∇′ψ∗

∣

∣

2 ≥ 1

2
(2−p)+β∗

(

−2k + k2
)

ψ∗ ∀k ≤ k0

whenever ψ∗ ≤ ǫ0 which yields

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
p−2

2
gk(ψ∗)Q1,k[V ] ≤ −c1k ∀k ≤ k0 (3.45)

for some c1 = c1(N, p, q, ǫ0). There exists c2 = c2(N, p, q) > 0 such that

(

β2∗ψ
2
∗ + |∇′ψ∗|2

)
q
2

[

1 + qeγt
β∗(γ − β∗)ψ∗gk(ψ∗)− g′k(ψ∗) |∇ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

]

≤ c2 (3.46)

in SN−1
+ × (−∞, ln δ]. Moreover

O(a ‖g(ψ∗)‖C2) ≤ eγtck (3.47)

for some ck = ck(N, p, q) > 0. We derive from (3.45)-(3.48)

e−γtQk[V ] ≤ −c1k + c2e
(ν−γ)t + eγtck ∀k ≤ k0 (3.48)

Thus there exists Tk ≤ ln δ such that Qk[V ] ≤ 0, for all t ≤ Tk and provided ψ∗ ≤ ǫ0.
This local estimate will be used in the construction of the sub-solution when p ≥ 2.
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Step 3: The case 1 < p < 2. Since the function ψ∗ depends only on the azimuthal
angle θ ∈ (0; π2 ] we will write ψ∗(θ) = ψ∗(θ) and ∇′ψ∗(σ) = ψ∗θ(θ)n where n is the
downward unit vector tangent to SN−1 in the hyperplane going through σ and the
poles. From (6.8),

(p− 4)β∗Λβ∗ψ−2∆
′ψ∗ = (p− 2)

(

β∗Λβ∗ψ∗ + 2
β2∗ψ∗ + ψ∗θθ

β2∗ψ
2
∗ + ψ2

∗θ

)

, (3.49)

since ψ2
∗θ = |∇′ψ∗|2 and thus

((p − 4)β∗Λβ∗ψ∗ − 2∆′ψ∗)
β∗γψ∗

β2∗ψ
2
∗ + ψ2

∗θ

= (p− 2)γ

(

Λβ∗
β2∗ψ

2
∗

β2∗ψ
2
∗ + ψ2

∗θ

+ 2β∗
β2∗ψ

2
∗ + ψ∗θθψ∗

(β2∗ψ
2
∗ + ψ2

∗θ)
2
ψ2
∗θ

)

.

(3.50)
From Theorem 6.1-Step 4 we know that β2∗ψ∗ + ψ∗θθ ≥ 0, thus the contribution
of this term to Q1[V ] is nonpositive. We replace this expression in Q1[V ] with
g(ψ∗) = ψ∗, then

Q1[V ] = (γ − Λβ∗)(γ − β∗)

(

1 + (p − 2)
β2∗ψ

2
∗

β2∗ψ
2
∗ + ψ2

∗θ

)

− Λβ∗β∗(p − 1)

+ (p− 2)γΛβ∗
β2∗ψ

2
∗

β2∗ψ
2
∗ + ψ2

∗θ

− (p − 2) ((β∗ + 2)γ − Λβ∗β∗)
ψ2
∗θ

β2∗ψ
2
∗ + ψ2

∗θ

+ 2β∗(p − 2)
β2∗ψ

2
∗ + ψ∗θθψ∗

(β2∗ψ
2
∗ + ψ2

∗θ)
2
ψ2
∗θ

≤ γ

(

1 + (p − 2)
β2∗ψ

2
∗

β2∗ψ
2
∗ + ψ2

∗θ

)

(γ − Λβ∗ − β∗)− (p − 2)γ
(β∗ + 2))ψ2

∗θ − Λβ∗β
2
∗ψ

2
∗

β2∗ψ
2
∗ + ψ2

∗θ

≤ γ

(

1 + (p − 2)
β2∗ψ

2
∗

β2∗ψ
2
∗ + ψ2

∗θ

)(

γ −
(

Λβ∗ + β∗ + (p − 2)
(β∗ + 2)ψ2

∗θ − Λβ∗β
2
∗ψ

2
∗

(p − 1)β2∗ψ
2
∗ + ψ2

∗θ

))

.

(3.51)
We can write

Λβ∗ + β∗ + (p− 2)
(β∗ + 2)ψ2

∗θ − Λβ∗β
2
∗ψ

2
∗

(p− 1)β2∗ψ
2
∗ + ψ2

∗θ

=
(Λβ∗ + (p − 1)β∗) β

2
∗ψ

2
∗ + (Λβ∗ + β∗(p− 1) + 2(p − 2))ψ2

∗θ

(p− 1)β2∗ψ
2
∗ + ψ2

∗θ

≥ c0 (Λβ∗ + β∗(p − 1) + 2(p − 2)) .

(3.52)

This expression Λβ∗ + β∗(p − 1) + 2(p − 2) is always positive: obviously if N ≥ 3
and by using the explicit expression of β∗ if N = 2. Thus there exists γ0 and c1 > 0
such that Q1[V ] < −c1 for 0 < γ ≤ γ0. The pertubation method of Step 2, is valid
in the whole range of values of ψ∗ and we derive from (3.42)-(3.43) that (3.48) holds
for all k ≤ k0 and t ≤ Tk. Therefore Qk[V ] ≤ 0.
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Step 4: The case p ≥ 2. For c > 0 to be fixed and ψ∗ ≥ ǫ0, γ ∈ (0, γ0], we take

g(ψ∗) = cψ
1− γ

β∗
∗ . Then we derive from (3.35):

Q1[V ] = (γ − Λβ∗)(γ − β∗)
(p − 1)β2∗ψ

2
∗ + |∇′ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

− (p− 1)β∗Λβ∗

(

1− γ

β∗

)

− (p− 1)
γ(β∗ − γ)

β2∗
ψ
−1− γ

β∗
∗ |∇′ψ∗|2 − (p − 2)(β∗ − γ)(γ − Λβ∗)

|∇′ψ∗|2

β2∗ψ
2
∗ + |∇′ψ∗|2

= (1− p)

[

γ(β∗ − γ) +
γ(β∗ − γ)

β2∗
ψ
−1− γ

β∗
∗ |∇′ψ∗|2

]

.

(3.53)

For k ≤ k0 we fix c such that cǫ
1− γ

β∗

0 = ǫ0e
−kǫ0 ⇐⇒ c = ǫ

γ
β∗

0 e−kǫ0 and we define g by

g(ψ∗) = min

{

ψ∗e
−kψ∗ , ǫ

γ
β∗

0 e−kǫ0ψ
1− γ

β∗
∗

}

=







ψ∗e
−kψ∗ if 0 ≤ ψ∗ ≤ ǫ0

ǫ
γ
β∗

0 e−kǫ0ψ
1− γ

β∗
∗ if ǫ0 ≤ ψ∗ ≤ 1,

(3.54)
and we set V (t, σ) = ψ∗(σ)−a(t)g(ψ∗(σ)) with (t, σ) ∈ (−∞, Tk]×SN−1

+ and define

ũ(r, σ) = r−β∗(ψ∗(σ) − a(et)g(ψ∗(σ))) accordingly for (r, σ) ∈ (−∞, eTk ] × SN−1
+ .

Since ψ∗ is a decreasing function the coincidence set {σ ∈ SN−1
+ : ψ∗(σ) = ǫ0} is a

circular cone Σθ0 with vertex 0, axis eN and angle θ0. We set R0 = eTk

Γ1 =
{

x = (r, θ) ∈ B+
R0

: θ0 < θ < π
2

}

=
{

(r, σ) ∈ [0, R0)× SN−1
+ : 0 < ψ∗(σ) < ǫ0

}

,

Γ2 =
{

x = (r, θ) ∈ B+
R0

: 0 < θ < θ0

}

=
{

(r, σ) ∈ [0, R0)× SN−1
+ : ǫ0 < ψ∗(σ) < 1

}

,

and define

ũ(r, σ) = r−β∗ (ψ∗(σ)− rγg(ψ∗(σ)))

=











u1(r, σ) = r−β∗(1− rγe−kψ∗(σ))ψ∗(σ) if (r, θ) ∈ Γ1

u2(r, σ) = r−β∗
(

1− rγǫ
γ
β∗

0 e−kǫ0(ψ∗(σ))
1− γ

β∗

)

ψ∗(σ) if (r, θ) ∈ Γ2.

The function ũ is a subsolution separately on Γ1 and Γ2 and is Lipschitz continuous
in Ω \ {0}. If we denote by g1 and g2 the restriction of g to Γ1 and Γ2 respectively,
that is to Ω1 and Ω2, then g

′
1(ǫ0) > g′2(ǫ0) > 0. Let ζ ∈ C1

c (B
+
R0

) which vanishes in

neighborhoods of 0 and ∂B+
R0

, ζ ≥ 0, then

∫

Γi

|∇ũ|p−2∇ũ.∇ζdx+

∫

Ωi

|∇ũ|q ζdx ≤
∫

Σθ0

|∇ui|p−2 ∂ni
uiζdS, (3.55)

where ni is the normal unit vector on Σθ0 outward from Γi. Actually, n2 = −n1 = n

thus

∇ũ = ũre+ r−β∗−1(1− rγg′(ψ∗))∇′ψ∗ = ũre+ r−β∗−1(1− rγg′(ψ∗))ψ∗θ n.
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and on Σθ0 ,

∇ũ =

{

ũre− r−β∗−1(1− rγg′1(ǫ0))ψ∗θ n in Γ1

ũre+ r−β∗−1(1− rγg′2(ǫ0))ψ∗θ n in Γ2

Therefore

|∇u1|p−2 ∂n1
u1 = −r−β∗−1(1−rγg′1(ǫ0))

(

ũ2r + r−2β∗−2(1− rγg′1(ǫ0))
2ψ2

∗θ

)
p−2

2
ψ∗θ in Γ1

and

|∇u2|p−2 ∂n2
u2 = r−β∗−1(1−rγg′2(ǫ0))

(

ũ2r + r−2β∗−2(1− rγg′2(ǫ0))
2ψ2

∗θ

)
p−2

2
ψ∗θ in Γ2.

By adding the two inequalities (3.55)

∫

Ω
|∇ũ|p−2∇ũ.∇ζdx+

∫

Ω
|∇ũ|q ζdx ≤

∫

Σθ0

(

|∇u1|p−2 ∂n1
u1 + |∇u2|p−2 ∂n2

u2

)

ζdS.

(3.56)

By monotonicity of the function X 7→
(

ũ2r +X2
)

p
2 and since

r−β∗−1(1− rγg′2(ǫ0)) ≥ r−β∗−1(1− rγg′1(ǫ0)) ≥ 0,

we derive

r−β∗−1(1− rγg′2(ǫ0))
(

ũ2r + r−2β∗−2(1− rγg′2(ǫ0))
2ψ2

∗θ

)

p−2

2

≥ r−β∗−1(1− rγg′1(ǫ0))
(

ũ2r + r−2β∗−2(1− rγg′1(ǫ0))
2ψ2

∗θ

)

p−2

2

We derive that the right-hand side of (3.56) is nonpositive because ψ∗θ ≤ 0, and
therefore ũ is a positive subsolution of (1.1) in B+

R0
dominated by Ψ∗ and satisfying

(3.24). �

Proof of Theorem 3.6. Let M = max{Ψ∗(x) : x ∈ ∂B+
R0

}, then M = R−β∗
0 . The

function u∗ defined by

u∗(x) =

{

(ũ(x)−M)+ if x ∈ B+
R0

0 if x ∈ Ω \B+
R0
,

is indeed a subsolution of (1.1) in whole Ω where it satisfies u∗ ≤ Ψ∗ and it vanishes
on ∂Ω \ {0}. Since Φ∗ is a positive p-harmonic function in Ω which vanishes on
∂Ω \ {0} and satisfies (3.21), it is supersolution of (1.1) and therefore it dominates
u∗. Therefore there exists a solution u of (1.1) in Ω which vanishes on ∂Ω \ {0} and
satisfies u∗ ≤ u ≤ Φ∗. This implies that (3.20) holds with k = 1 and we conclude
with Lemma 3.8. �

When p = N the statement of Theorem 3.6 holds without the assumption on
∂Ω.
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Theorem 3.10 Assume N − 1 < q < N + N
2 and Ω be a bounded C2 domain such

that 0 ∈ ∂Ω. Then for any k > 0 there exists a unique positive solution u := uk
of (3.18) in Ω, which belongs to C1(Ω \ {0}), vanishes on ∂Ω \ {0} and satisfies
uniformly with respect to σ ∈ SN−1

+

lim
x→ 0

x/ |x| → σ

|x| uk(x) = σ. (3.57)

Since p = N , β∗ = 1 and ψ∗(σ) = xN
|x| = cos θN−1 with the identification of σ

and θN−1 := θ. We recall that if ω ∈ R
N and Iω denotes the inversion of center ω

and power 1, i.e. Iω(x) = ω + x−ω
|x−ω|2 , then ũ = u ◦ Iω satisfies (3.19).

Lemma 3.11 Assume Ω be a bounded C2 domain such that 0 ∈ ∂Ω. Then there
exists a unique N-harmonic function Φ∗ in Ω, which vanishes on ∂Ω \ {0} and
satisfies

lim
x→ 0

x/ |x| → σ

|x|Φ∗(x) = σ, (3.58)

uniformly with respect to σ ∈ SN−1
+ .

Proof. Uniqueness is standard. Let ω = −eN ∈ Ω
c
, with the notations of the proof

of Theorem 3.5, ω′ = −ω, a = −1
2eN and a′ = −a. We can assume that the

balls B 1
2
(a) and B 1

2
(a′) are tangent to ∂Ω at 0 and respectively subset of Ωc and

Ω. The function x 7→ Ψ(x) = − xN
|x|2

which is N -harmonic in R
N
− and vanishes on

∂RN−1
− \ {0} is transformed by the inversion Iω′ of center ω′ and power 1 into the

function Ψω′ = Ψ ◦ Iω which is positive and N -harmonic in B 1
2
(a′) and vanishes on

∂B 1
2
(a′) \ {0}. The function Ψ̂ = −Ψ which is N -harmonic in R

N
+ and vanishes on

∂RN−1
+ \ {0} is transformed by the inversion Iω of center ω and power 1 into the

function Ψω = Ψ̂ ◦ Iω which is positive and N -harmonic in Bc
1
2

(a) and vanishes on

∂B 1
2
(a) \ {0}. For ǫ > 0 we denote by Φǫ the solution of

−∆NΦǫ = 0 in Ω ∩Bc
ǫ

Φǫ = 0 in (Bc
1
2

(a′) ∩ ∂Bǫ) ∪ (∂Ω ∩Bc
ǫ)

Φǫ = Ψω′ in B 1
2
(a′) ∩ ∂Bǫ.

(3.59)

If 0 < ǫ′ < ǫ, Φǫ′ ≥ Ψω′ in B 1
2
(a′) ∩ ∂Bǫ, thus Φǫ′ ≥ Φǫ′ in Ω ∩ Bc

ǫ . We also denote

by Ûǫ the solution of

−∆N Φ̂ǫ = 0 in Ω ∩Bc
ǫ

Φ̂ǫ = 0 in ∂Ω ∩Bc
ǫ

Φ̂ǫ = Ψω in Ω ∩ ∂Bc
ǫ .

(3.60)
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In the same way as above

0 < ǫ′ < ǫ =⇒ Φ̂ǫ′ ≤ Φ̂ǫ in Ω ∩ ∂Bc
ǫ

Using the explicit form of Ψ, Iω : x 7→ ω + x−ω
|x−ω|2

and Iω′ : x 7→ ω′ + x−ω′

|x−ω′|2
we see

that

Ψω′⌊B 1
2
(a′)∩∂Bǫ

≤ 1 + ǫ

1− ǫ
Ψω⌊B 1

2
(a′)∩∂Bǫ

,

thus

Φǫ ≤
1 + ǫ

1− ǫ
Φ̂ǫ in Ω ∩Bc

ǫ .

Letting ǫ → 0 we conclude that Φǫ converges uniformly in Ω \ {0} to Φ∗ which
vanishes on ∂Ω \ {0} and satisfies (3.58). �

The proof of the next statement is similar to the one of Lemma 3.8 up to some
minor modifications.

Lemma 3.12 Let the assumptions on q and Ω of Theorem 3.10 be satisfied. If for
some k > 0 there exists a solution uk of (3.18) in Ω, which belongs to C1(Ω \ {0}),
vanishes on ∂Ω \ {0} and satisfies (3.57), then for any k > 0 there exists such a
solution.

Lemma 3.13 Under the assumptions of Theorem 3.10 there exists a Lipschitz con-
tinuous nonnegative subsolution ũ of (3.18) in Ω which vanishes on ∂Ω \ {0}), is
smaller than Φ∗ and satisfies

lim
x → 0

x/ |x| → σ

|x| ũ(x) = σ, (3.61)

uniformly with respect to σ ∈ SN−1
+ .

Proof. Let τ > 0 to be fixed and let w be the solution of

−∆Nw + |∇w|q = 0 in B−
2 (3.62)

which vanishes on ∂B−
2 \ {0} and satisfies

lim
x→ 0

x/|x| → σ

|x|w(x) = σ (3.63)

in the C1-topology of SN−1
− . Its existence follows from Theorem 3.6 and this function

is dominated by the N-harmonic function Φ∗ corresponding to this domain obtain
in Lemma 3.11. By Iω′ , the half-ball B−

2 is transform into the lunule G = B 1
2
(a′) \

B 2
3
(43ω

′) and w̃ = w ◦ Iω′ satisfies

−∆N w̃ + |x− ω′|2(q−N)|∇w̃|q = 0 in G. (3.64)
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Since |x− ω′| ≤ 1 in G, −∆N w̃ + |∇w̃|q ≤ 0 in G. We extend w̃ by 0 in Ω \G and
the resulting function ũ is a subsolution of (3.18) in Ω which vanishes on ∂Ω \ {0}),
is smaller than the N-harmonic function Φ∗ obtained in Lemma 3.11, and satisfies
(3.61). �

The proof of Theorem 3.10 is similar to the one of Theorem 3.6.

4 Classification of boundary singularities

We assume that Ω ⊂ R
N is a C2 domain and 0 ∈ ∂Ω. Furthermore, in order to

avoid extremely technical computations, we shall assume either that ∂Ω is flat near
0 or p = N . We denote R

N
+ = {x = (x′, xN ), xN > 0} and suppose that the tangent

plane to ∂Ω at 0 is ∂RN+ = {x = (x′, 0) and the normal inward unit vector at 0 is eN ,
therefore n = −eN in the sequel. We denote by ωs the unique positive solution of
(3.1) in SN−1

+ and by Us the corresponding singular solution of (3.1) in R
N
+ defined

by

Us(x) = |x|−βq ωs(
x

|x| ). (4.65)

We denote by ψ∗ a the unique positive solution of (3.2) with maximum 1 and by Ψ∗

the corresponding p-harmonic function

Ψ∗(x) = |x|−β∗ ψ∗(
x

|x| ). (4.66)

Proposition 4.1 Assume N − 1 < q < N − 1
2 and Ω is a bounded C2 domain with

0 ∈ ∂Ω. Then for any k > 0 there exists a unique u ∈ C(Ω \ {0}) ∩ C1(Ω), u > 0
solution of (3.18) in Ω which vanishes on ∂Ω \ {0} and satisfies

lim
x → 0

x ∈ Ω

d2(x)
uk(x)

x
= k. (4.67)

Next we can study the link between weak and strong singularities.

Proposition 4.2 Under the assumptions of Proposition ?? there exists limk→∞ uk =
u∞ which is the unique element of C(Ω\{0})∩C1(Ω) vanishes on ∂B+

δ \{0}, satisfies
(1.1) in B+

δ and

lim
x→0

u∞(x)

Us(x)
= 1. (4.68)

Proof. Uniqueness follows from (4.68) and the maximum principle. For existence,
since the mapping k 7→ uk is increasing and uk ≤ Us, there exists limk→∞ uk :=
u∞ ≤ Us and u∞ ∈ C(Ω \ {0}) ∩ C1(Ω). It vanishes on ∂B+

δ \ {0} and satisfies
(1.1) in B+

δ . In order to take into account the domain B+
δ in the notations, we set
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uk = uk,δ. Since the mapping δ 7→ uk,δ is also increasing and uk,δ ≤ kΨ∗, there also
exists limδ→∞ uk,δ := uk,∞ ≤ kΨ∗ Then, for all ℓ > 0,

Tℓ[uk,δ](x) = ℓβquk,δ(ℓx) = ukℓβq ,ℓ−1δ(x). (4.69)

Letting k → ∞, we obtain

Tℓ[u∞,δ](x) = ℓβqu∞,δ(ℓx) = u∞,ℓ−1δ(x), (4.70)

and letting δ → ∞, we obtain

Tℓ[u∞,∞](x) = ℓβqu∞,∞(ℓx) = u∞,∞(x). (4.71)

Thins implies that
u∞,∞(r, σ) = r−βqω′

s(σ), (4.72)

and ω′
s is a positive solution of problem (3.1). Therefore ω′

s = ωs by Theorem 3.2.
If we let ℓ→ 0 in (4.69) and take |x| = 1, x = σ, we derive

lim
ℓ→0

ℓβqu∞,δ(ℓ, σ) = lim
ℓ→0

u∞,ℓ−1δ(1, σ) = u∞,∞(1, σ) = ωs(σ). (4.73)

This convergence holds in C1(SN−1
+ ) because of Lemma ??. This implies (4.68).

�

Similarly we have

Proposition 4.3 Under the assumptions of Proposition 4.1 there exists limk→∞ uk =
u∞ which is the unique element of C(Ω\{0})∩C1(Ω) which vanishes on ∂B+

δ \{0},
satisfies (3.18) in Ω and

lim
x→0

u∞(x)

Us(x)
= 1. (4.74)

Theorem 4.4 Assume 1 < p < N , βq > β∗ and ∂Ω ∩Bδ = {x = (x′, 0) : |x|′ < δ},
for some δ > 0. If u ∈ C(Ω \ {0}) ∩C1(Ω) is a positive solution of (1.1) in Ω which
vanishes on ∂Ω \ {0}, then we have the following alternative

(i) either there exists k ≥ 0 such that

lim
x→0

u(x)

Ψ∗(x)
= k, (4.75)

(ii) or

lim
x→0

u(x)

Us(x)
= 1. (4.76)

Proof. Step 1. Assume

lim inf
x→0

u(x)

Ψ∗(x)
<∞, (4.77)
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then we claim that (??) holds. We first note that if 4.77 holds, there also holds

lim inf
x→0

u(x)

u1(x)
<∞, (4.78)

where u1 is the solution of (1.1) obtained in Proposition ?? with k = 1. If {xn} is
converging to 0 and such that

lim inf
x→0

u(x)

u1(x)
= k = lim

n→0

u(xn)

u1(xn)
,

there also holds by the boundary Harnack inequality (2.34)

u(xn)

u1(xn)
=
u(xn)

dxn)

d(xn)

u1(xn)
≥ c−2

5

u(x)

u1(x)
∀x s.t. |x| = |xn| .

This implies in particular

u(x) ≤ c25(k + ǫn)u1(x) ∀x s.t. |x| = |xn|

where {ǫn} is converging to 0+, and by comparison principle

u(x) ≤ Ku1(x) ∀x ∈ R
N
+ s.t. |xn| ≤ |x| ≤ δ

2
,

for some K > 0 and all n ∈ N∗. Therefore

lim sup
x→0

u(x)

u1(x)
<∞. (4.79)

We can assume that k 6= 0, otherwhile (4.75) holds with k = 0 and actually u
remains bounded near 0. As a consequence, there exists K > 0 such that

u(x) ≤ KΨ∗(x) ∀x ∈ B+
δ
2

. (4.80)

Let m = max{u(x) : |x| = δ}. For 0 < τ < δ we denote by kτ the minimum of the
κ > 0 such that u(x) ≤ κΨ∗(x) +m for τ ≤ |x| ≤ δ. Then u(x) ≤ kτΨ∗(x) +m,
and either the graphs of the mappings u(.) and kτΨ∗(.) + m are tangent at some

xτ ∈ B+
δ \ B+

τ , or they are tangent on the boundary of the domain, and the only
possibility is that they are tangent on |x| = τ . Since

|∇Ψ∗(x)|2 = |x|−2(τ+1) (τ2ψ2 + |∇η|2),

it never vanishes. If we set w = u− (kτΨ∗(x) +m), then

−Lw + |∇u|q = 0 (4.81)

where the operator

L =
∑

i,j

∂

∂xi

(

aij
∂x

∂xj

)
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is uniformly elliptic in a neighborhood of xτ (see [16, Lemma 1.3]). Furthermore
w ≤ 0 and w(xτ ) = 0 by the strong maximum principle ∇u(xτ ) must vanishes,
which contradicts the fact that ∇u(xτ ) = ∇w(xτ ) by the tangency condition, and
∇w(xτ ) 6= 0. Therefore |xτ | = τ and xτ /∈ ∂RN+ . If τ ′ < τ , kτ ≤ kτ ′ , and we
set k = limτ→0 kτ , which is finite because of (4.80). There exists {τn} such that
σn := τ−1xτn → σ0. Furthermore

rβ∗u(r, σ) ≤ kτψ∗(σ) +mrβ∗ if τ ≤ r ≤ δ and τβ∗u(τ, στ ) = kτψ∗(στ ) +mrβ∗.
(4.82)

Put
uτ (x) = τβ∗u(τx) (4.83)

Then
−∆uτ + τp−q−β∗(q+1−q) |∇uτ |q = 0 in B+

δ
τ

\ {0}

and, by (4.80),
0 ≤ uτ (x) ≤ K |x|−β∗ in B+

δ
2τ

\ {0}.

By Lemma ??, there holds the set of functions {uτ (.)} is relatively compact in

the C1
loc topology of RN+ \ {0}. Therefore, there exists a sequence {τ ′n} ⊂ {τn}

converging to 0, and a positive p-harmonic function v in R
N
+ , continuous in RN+ \{0}

and vanishing on ∂RN+ \ {0}, such that uτ ′n → v, and v satisfies (4.80) in RN+ \ {0}.
By Theorem 5.1 v is separable, therefore there exists k∗ such that v = k∗Ψ∗. In
particular,

lim
τ ′n→0

uτ ′n(1, σ) = k∗ψ∗(σ) (4.84)

in the C1(SN−1
+ ) topology. Combining (4.82), (4.83)and (4.84) we conclude that

k∗ = k and
lim
τ ′n→0

τ ′β∗n uτ ′n(1, σ) = kψ∗(σ) (4.85)

Using Proposition ??, it is equivalent to

lim
τ ′n→0

u(τ ′n, σ)

uk(τ ′n, σ)
= 1 (4.86)

uniformly on SN−1
+ . For any ǫ > 0, there exists nǫ > 0 such that n ≥ nǫ implies

uk−ǫ(τ
′
n, σ) ≤ u(τ ′n, σ) ≤ uk+ǫ(τ

′
n, σ)

By comparison principle,

uk−ǫ ≤ u ≤ uk+ǫ +m in B+
δ \B+

τ ′n
, (4.87)

and finally
uk−ǫ ≤ u ≤ uk+ǫ +m in B+

δ , (4.88)
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Since ǫ is arbitrary and using again Proposition ??, it implies

lim
r→0

u(r, σ)

Ψ∗(r, σ)
= k, (4.89)

locally uniformly on SN−1. But since the convergence holds in C1(SN−1
+ ), (4.75)

follows.

Step 2. Assume

lim
x→0

u(x)

Ψ∗(x)
= ∞. (4.90)

For any 0 < ǫ < δ and k > 0, there holds

uk(x) ≤ u(x) ≤ vǫ(x) in B+
δ \B+

ǫ (4.91)

where vǫ has been defined in (3.12), and letting ǫ to 0 a,d k → ∞, we derive

u∞(x) ≤ u(x) ≤ v0(x) in B+
δ \ {0}. (4.92)

We have seen in Theorem 3.3 that v0 is a separable solution of (1.1) in R
N
+ which

vanishes on ∂RN+ \ {0}, therefore v0(x) = Us(x). This implies

u∞(x) ≤ u(x) ≤ |x|−βq ωs(
x

|x|) in B+
δ \ {0}. (4.93)

We conclude using Proposition 4.2. �

When p = N , the assumption that ∂Ω is an hyperplane near 0 can be removed
and the following result holds. Its proof is similar and based upon the use of Theo-
rem 3.10.

Theorem 4.5 Assume N − 1 < q < N − 1
2 If u ∈ C(Ω \ {0}) ∩C1(Ω) is a positive

solution of (3.18) in Ω which vanishes on ∂Ω \ {0}, then we have the following
alternative

(i) either there exists k ≥ 0 such that (4.75) holds,

(ii) or (4.76) holds.

5 Appendix I: Positive p-harmonic functions in a half

space

We recall that RN+ = {x = (x′, xN ) : xN > 0}. In this section we prove the following
rigidity result.

Theorem 5.1 Assume 1 < p ≤ N and u ∈ C1(RN+ ) ∩ C(RN+ \ {0}) is a positive p-

harmonic function which vanishes on ∂RN+ \{0} and such that |x|β∗ u(x) is bounded.
Then there exists k ≥ 0 such that

u(x) = kΨ∗(x) ∀x ∈ R
N
+ . (5.1)
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Proof. Since |x|β∗ u(x) is bounded, |x|β∗+1∇u(x) is also bounded and there exists
m > 0 such that u(x) ≤ mΨ∗(x) in B

+
δ . We denote by k the infimum of the c > 0

such that u(x) ≤ cΨS(x). Then

0 ≤ u(x) ≤ kΨ∗(x) ∀x ∈ R
N
+ \ {0} (5.2)

and we assume that k > 0 otherwhile u = 0. Assume that the graphs over R
N
+ ) of

the functions x 7→ u(x) and x 7→ kΨS(x) are tangent at some point x0 ∈ R
N
+ or

x0 ∈ ∂RN+ \ {0}. Since ∇ΨS never vanishes in R
N
+ \ {0} it follows from the strong

maximum principle or Hopf boundary lemma that u = kΨ∗. If the two graphs are

not tangent in R
N
+ \ {0}, either they are asymptotically tangent at 0, or at ∞.

(i) In the first case there exists two sequences {kn} increasing to k and {xn} ⊂ R
N
+

converging to zero such that u(xn)
Ψ∗(xn)

= kn. We set rn = |xn| and urn(x) = rβ∗n u(rnx).

Then urn is p-harmonic and positive and 0 < urn(x) ≤ k |x|−β∗ ψ∗(
x
|x|); therefore

|∇urn(x)| ≤ C |x|−β∗−1 and
∣

∣∇urn(x)−∇urn(x′)
∣

∣ ≤ C |x|−β∗−1−α
∣

∣x− x′
∣

∣

α
(5.3)

for 0 < |x| ≤ |x|′ and some constants C > 0 and α ∈ (0, 1). Up to a subsequence,

we can assume that urn → U in the C1
loc topology of R

N
+ \ {0} and xn

rn
→ ξ ∈ SN−1

+ .

The function U is p-harmonic and positive in R
N
+ and satisfies 0 ≤ U ≤ kΨ∗ in R

N
+

and U(ξ) = kΨ∗(ξ) if ξ ∈ SN−1
+ or UxN (ξ) = kΨs xN (ξ) if ξ ∈ ∂SN−1

+ . It follows from
the strong maximum principle or Hopf boundary lemma that U = kΨ∗. Therefore
urn → kΨ∗ and in particular

lim
rn→0

rβ∗n u(rn, σ)

ψ∗(σ)
= k uniformly on SN−1

+ (5.4)

For any ǫ > 0, there exists nǫ ∈ N∗ such that for n ≥ nǫ, (k − ǫ)Ψ∗(x) ≤ u(x) ≤
(k+ ǫ)Ψ∗(x) if |x| = rn. Which implies (k− ǫ)Ψ∗(x) ≤ u(x) ≤ (k+ ǫ)Ψ∗ for |x| ≥ rn
and therefore in R

N Since ǫ is arbitrary, we deduce that u = kΨ∗.

(ii) if the two graphs are tangent at infinity, there exist two sequences {kn} increasing
to k and {xn} such that rn = |xn| → ∞ with u(xn) = knΨ∗(xn) and

lim
rn→∞

rβ∗n u(rn, σ)

ψ∗(σ)
= k uniformly on SN−1

+ . (5.5)

Therefore we look at the supremum of the c > 0 such that u ≥ cΨ∗. If the set of
such c is empty, it would means that

inf
x∈RN

+

u(x)

Ψ∗(x)
= 0.

Clearly, if this infimum is achieved at some point, the strong maximum principle or
Hopf boundary lemma imply u ≡ 0, contradicting (5.5), and this relation prevents
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also this infimum be achieved at infinity. We are left with the case where there exists
a sequence {zn} ⊂ R

N
+ , converging to 0, such that

lim
n→∞

u(zn)

Ψ∗(zn)
= 0. (5.6)

By boundary Harnack inequality [5, th 2.11], there exists c > 0 such that

c−1 u(z)

Ψ∗(z)
≤ u(zn)

Ψ∗(zn)
≤ c

u(z)

Ψ∗(z)
∀z ∈ R

N
+ s.t. |z| = |zn| (5.7)

Combining (5.6) and (5.7), we derive that

lim
n→∞

sup
|z|=|zn|

u(z)

Ψ∗(z)
= 0, (5.8)

Denoting by ǫn the infimum in the above relation, we obtain that u ≤ ǫnΨ∗ in
R
N
+ \ Bǫn and finally u = 0, contradiction. Thus we are left with the case where

there exists k′ ∈ (0, k] which is the supremum of the c > 0 such that u ≥ cΨ∗. In
particular u ≥ k′Ψ∗. Remembering that u ≤ kΨ∗we obtain that k = k′ implies
u = kΨ∗.

Next we assume that k′ < k. Clearly the graphs of u and k′Ψ∗ cannot be tangent

in R
N
+ , because of strong maximum principle or Hopf boundary lemma. They cannot

be tangent at infinity because of (5.5). Therefore there exists two sequences {k′n}
increasing to k′ and {x′n} ⊂ R

N
+ converging to 0 such that u(x′n)

Ψ∗(x′n)
= k′n. As in Case

(i) we obtain that

lim
r′n→0

r′β∗n u(r′n, σ)

ψ∗(σ)
= k′ uniformly on SN−1

+ (5.9)

where r′n = |x′n|, and finally derive that u = k′Ψ∗, a contradiction with (5.5).
Therefore k = k′, which ends the proof. �

Remark. In the case p = N the result holds under the weaker assumption lim|x|→∞ u(x) =
0. This is due to the fact that this condition implies by regularity

lim
|x|→∞

u(x)

ωs(
x
|x|)

= 0

and therefore
u(x) ≤ mΨ∗(x)∀x s.t. |x| ≥ 1

where m = max|x|=1
u(x)

ωs(
x
|x|)

. Using the inversion x 7→ x
|x|2

, we obtain that the

estimate u ≤ mΨ∗ holds RN , and we conclude by Theorem 5.1.

Remark. We conjecture that the rigidity result holds under the mere condition

lim
|x|→∞

|x|−β̃∗ u(x) = 0, (5.10)
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were β̃∗ is the exponent (positive) corresponding to the regular spherical p-harmonic
function under the form

Ψ̃∗ = |x|β̃∗ ψ̃∗(
x

|x|
), (5.11)

see [29], [25]. When p = N , β̃∗ = 1.

6 Appendix II: Estimates on β∗

When N = 2 and 1 < p ≤ 2, it is proved in [19] that

β∗ =
3− p+ 2

√

p2 − 5p + 7

3(p − 1)
. (6.1)

Up to now no estimate is known when N > 2 except in the cases p = 2 where
β∗ = N − 1 and p = N where β∗ = 1, besides the classical one

β∗ >
N − p

p− 1
, (6.2)

valid when p < N . In this section we prove the following result

Theorem 6.1 Assume 1 < p < N . Then the following estimates hold

1 < p < 2 =⇒ β∗ >
N − 1

p− 1
(6.3)

2 < p < N =⇒ max

{

1,
N − p

p− 1

}

< β∗ <
N − 1

p− 1
(6.4)

Remark. It is worth noticing that when p = 2 or p = N , there holds β∗ =
N−1
p−1 .

Proof of Theorem 6.1. We consider the following set of spherical coordinates in R
N
+

with x = (x1, ..., xN )

x1 = r sin θN−1 sin θN−2... sin θ2 sin θ1
x2 = r sin θN−1 sin θN−2... sin θ2 cos θ1
...
xN−1= r sin θN−1 cos θN−2

xN = r cos θN−1

(6.5)

with θ1 ∈ [0, 2π] and θk ∈ [0, π] for k = 2, ..., N − 2 and θN−1 ∈ [0, π2 ]. Under this
representation, a solution ω of (3.2) verifies

− 1

sinN−2 θN−1

[

sinN−2 θN−1

(

β2∗ω
2 + ω2

θN−1
+

1

sin2 θN−1
|∇θ′ω|2

)
p−2

2

ωθN−1

]

θN−1

− 1

sin2 θN−1
divθ′

[

sinN−2 θN−1

(

β2∗ω
2 + ω2

θN−1
+

1

sin2 θN−1
|∇θ′ω|2

)
p−2

2

∇θ′ω

]

= β∗Λβ∗

[

sinN−2 θN−1

(

β2∗ω
2 + ω2

θN−1
+

1

sin2 θN−1
|∇θ′ω|2

)
p−2

2

ω

]

(6.6)
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where ∇θ′ and divθ′ denotes respectively the spherical gradient the divergence in
variables θ′ = (θ1, ..., θN−2) parametrizing SN−2 and Λβ∗ = β∗(p− 1) + p−N . If ω
is the unique positive solution of (3.2) (up to homothety), it depends only on θN−1

and is C∞. For simplicity we set θN−1 = θ ∈ [0, π2 ] and ω = ω(θ) satisfies

− 1

sinN−2 θ

[

sinN−2 θ
(

β2∗ω
2 + ω2

θ

)
p−2

2 ωθ

]

θ

= β∗Λβ∗

[

sinN−2 θ
(

β2∗ω
2 + ω2

θ

)
p−2

2 ω

]

in (0, π2 )

ω(π2 ) = 0 , ωθ(0) = 0.
(6.7)

Step 1: The eigenvalue identity. Equation (6.7) can also be written under the form

−ωθθ − (N − 2) cot θ ωθ − (p− 2)
β2∗ω + ωθθ
β2∗ω

2 + ω2
θ

ω2
θ = β∗Λβ∗ω (6.8)

Since

−
∫ π

2

0
(ωθθ + (N − 2) cot θ ωθ) cos θ sin

N−2 θdθ = (N − 1)

∫ π
2

0
ω cos θ sinN−2 θdθ,

we multiplying by cos θ sinN−2 θ and integrate on (0, π2 ). Noticing that

β∗Λβ∗ + 1−N = (p− 1)

(

β∗ −
N − 1

p− 1

)

(β∗ + 1)

we derive

(2− p)

∫ π
2

0

β2∗ω + ωθθ
β2∗ω

2 + ω2
θ

ω2
θω cos θ sinN−2 θdθ

= (p− 1)

(

β∗ −
N − 1

p− 1

)

(β∗ + 1)

∫ π
2

0
ω cos θ sinN−2 θdθ.

(6.9)

Step 2: Elliptic coordinates and reduction. Writting ω(θ) = ω(0) + aθ2 + o(θ2),
ωθ(θ) = 2aθ+ o(θ) and ωθθ(θ) = 2a+ o(1), then −Na = β∗Λβ∗ . This implies that ω
is decreasing near 0. It is immediate that it cannot have a local minimum in (0, π2 ),
therefore it remains decreasing in the whole interval. We parametrize the ellipse

Er = {(x, y) :, x > 0, y < 0, x2 + β−2y2 = r2}

and set ω = r cosφ and −ωθ = βr sinφ, with φ = φ(θ) and r = r(θ); r and φ are C2

functions. Hence rθ cosφ− r sinφφθ = −βr sinφ, then rθ cosφ = (φθ − φ)r sinφ and
rθ = (φθ − β)r tan φ. Plugging this into (6.9), we derive

−
(

(p − 1)
rθ
r

+ φθ cotφ+ (N − 2) cot θ
)

+ Λβ∗ cotφ = 0, (6.10)

and finally

(p− 1)(φθ − β) tan φ+ (φθ − Λβ∗) cot φ = (2−N) cot θ. (6.11)
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Step 3: Estimates on φθ. We can write (6.11) under the equivalent form

(p− 1)(φθ − β) tan2 φ+ φθ − Λβ∗ = (2−N)
cos θ

cos φ

sinφ

sin θ
. (6.12)

Since

lim
θ→0

sinφ

sin θ
= lim

θ→0

cosφ

cos θ
φθ = φθ(0)

we derive φθ(0)− Λβ∗ = (2−N)φθ(0) and thus

φθ(0) =
Λβ∗
N − 1

. (6.13)

Similarly, the expansion of φ(θ) near θ = π
2 yields to

φθ(
π
2 ) = β∗. (6.14)

Since p < N , Λβ∗/(N − 1) < β∗. We claim now that

φθ(θ) < β∗ ∀θ ∈ (0, π2 ). (6.15)

If Λβ∗ ≤ β∗, then

(2−N) cot θ = (p−1)(φθ−β) tan φ+(φθ−Λβ∗) cotφ ≥ ((p−1) tan φ+cot φ)(φθ−β)

thus (6.15) holds.

Next we assume β∗ < Λβ∗. It means 0 < (p − 2)β∗ − (N − p) and thus p > 2. We
claim that

β∗ ≤
N − 2

p− 2
. (6.16)

We proceed by contradiction and assume

β∗ >
N − 2

p− 2
. (6.17)

Then

(p− 2)

(

β2∗ −
N − p

p− 2
β∗ −

N − 2

p− 2

)

= (p− 2) (β∗ + 1)

(

β∗ −
N − 2

p− 2

)

> 0.

Equivalently
β∗(Λβ∗ − β∗) > N − 2.

Since

lim
θ→π

2

cot θ tan φ = lim
θ→π

2

cos θ

cosφ
= lim

θ→π
2

sin θ

φθ sinφ
=

1

β∗

and

(p− 1)(φθ(θ)− β∗) tan
2 φ = Λβ∗ − φθ(θ) + (2−N)

cos θ

cosφ

sinφ

sin θ

=
1

β∗
(β∗(Λβ∗ − β∗) + 2−N) + o(1)
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if follows that (6.17) is equivalent to the fact that there exists ǫ > 0 such that
φθ(θ) >

π
2 for any θ ∈ [π2 − ǫ, π2 ). Since φθ(0) < β∗, there exists θ̄ ∈ (0, π2 ) such that

φθ(θ̄) = β and φθθ(θ̄) ≥ 0. We compute φθθ and get

(p − 1)φθ(θ)(φθ(θ)− β∗) sec
2 φ(θ) + (p− 1)φθθ(θ) tanφ(θ) + φθθ(θ) cotφ(θ)

− φθ(θ)(φθ(θ)− Λβ∗) csc
2 φ(θ) = (N − 2) csc2 θ

Hence, at θ = θ̄

(p − 1)φθθ(θ̄)
(

(p− 1) tan φ(θ̄) + cotφ(θ̄)
)

= β∗(β∗ − Λβ∗) csc
2 φ(θ) + (N − 2) csc2 θ̄

From (6.11),

cotφ(θ̄) =
N − 2

Λβ∗ − β∗
cot θ̄

Therefore

(p− 1)φθθ(θ̄)
(

(p− 1) tan φ(θ̄) + cotφ(θ̄)
)

=

(

1 +

(

N − 2

Λβ∗ − β∗

)2

cot2 θ̄

)

β∗(β∗ − Λβ∗) + (N − 2)(1 + cot2 θ̄)

= β∗(β∗ − Λβ∗) +N − 2−
(

(N − 2)2

Λβ∗ − β∗
+ 2−N

)

cot2 θ̄

= −(p− 2)(β∗ + 1)

(

β∗ −
N − 2

p− 2

)

− N − 2

Λβ∗ − β∗
(β∗(N − 1)− Λβ∗) cot

2 θ̄

< 0,
(6.18)

using (6.17) and the fact that N > p. This is a contradiction, thus (6.16) holds and
there exists ǫ > 0 such that φθ < β∗ in [π2 − ǫ, π2 ).

We claim now that φθ < β∗ in [0, π2 ). If it is not true, there exist θ1 < θ2 <
π
2

such that φθ(θ1) = φθ(θ2) = β∗, φθθ(θ1) > 0, φθθ(θ1) < 0, since Cauchy-Lipschitz
theorem applies to equation (6.11) in (0, π2 ). We put φ(θ1) = φ1 and φ(θ2) = φ2.
Using the equation satisfied by φθθ, we obtain for i = 1, 2,

((p − 1) tan φi + cot φi)φθθ(θi)

= (2− p)(β∗ + 1)

(

β∗ −
N − 2

p− 2

)

− N − 2

Λβ∗ − β∗
(β∗(N − 1)− Λβ∗) cot

2 θi.
(6.19)

Since cot is decreasing in (0, π2 ), cot
2 θ1 > cot2 θ2, hence

0 < ((p− 1) tan φ1 + cotφ1)φθθ(θ1) < ((p− 1) tan φ2 + cot φ2)φθθ(θ2) < 0,

a contradiction. Therefore φθ < β∗ in (0, π2 ).

Step 4: End of the proof. Since r2 = β2∗ω
2 + ω2

θ , rθ = r(φθ − β∗) tan φ, thus

rrθ =
(

β2∗ω + ωθθ
)

ωθ = r(φθ − β∗) tan φ.
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Since ωθ < 0 on (0, π2 ), it follows from Step 3 that β2∗ω + ωθθ > 0 and finally

∫ π
2

0

β2∗ω + ωθθ
β2∗ω

2 + ω2
θ

ω2
θω cos θ sinN−2 θdθ > 0.

The conclusion follows from (6.9). �

Remark. Since ωθ(
π
2 ) = −c2 < 0, it follows ω(θ) = −ωθ(θ) cot θ+O(π2 −θ) and from

the eigenfunction equation (6.8)

β2∗ω + ωθθ
β2∗ω

2 + ω2
θ

ω2
θ = (β2∗ω + ωθθ)(1 + o(1)).

Therefore

−(p− 1)ωθθ = (β∗Λβ∗ + (p − 2)β2∗ + 2−N)ω(1 + o(1)) as θ → π

2

and since ∆′ω := ωθθ + (N − 2) cot θ ωθ

−∆′ω =
β∗(β∗(2p− 3) + p−N) + (p− 2)(N − 2)

p− 1
ω(1 + o(1)) as θ → π

2
.

Because ω is C∞ we obtain finally

∣

∣∆′ω
∣

∣ ≤ cω, (6.20)

for some c > 0.
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[1] Abdel Hamid H., Bidaut-Véron M.F., On the connection between two quasilin-
ear elliptic problems with lower terms of order 0 or 1, Comm. Contemp. Math.,
to appear.

[2] Alvino A., Ferone V., Trombetti G., Estimates for the gradient of solutions of
nonlinear elliptic equations with L1 data, Ann. Mat. Pura Appl. 178, 129-142
(2000).

[3] Bauman P., Positive solutions of elliptic equations in nondivergence form and
their adjoints Ark. Mat. 22, 153-173 (1984).
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