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Abstract We study the boundary behaviour of the solutions of (E) —Apu+ |[Vu|? =0 in
a domain Q@ C RV, when N > p > ¢ > p — 1. We show the existence of a critical exponent
g« < p such that if p — 1 < ¢ < ¢, there exist positive solutions of (E) with an isolated
singularity on € and that these solutions belong to two different classes of singular solutions.
If g« < ¢ < p no such solution exists and actually any boundary isolated singularity of a
positive solution of (E) is removable. We prove that all the singular positive solutions are
classified according the two types of singular solutions that we have constructed.
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1 Introduction

Let N>p>1,¢g>p—1and Q C RY (N > 1) be a C? bounded domain such that
0 € 99Q. In this article we study boundary singularities of functions u € C(Q2\ {0})
which satisfy

~Apu A+ |Vuli=0 inQ (1.1)
where Ayju = div (Vu|p_2|Vu|). The two main questions we consider are as follows:
Q-1- Existence of positive solutions of (1.1).
Q-2- Description of positive solutions with an isolated boundary singularity at O.

When p = 2 a fairly complete description of positive solutions of
—Au+[Vu|?=0 (1.2)

in Q is provided by Nguyen-Phuoc and Véron [22]. In particular they prove the
following series of results in the range of values 1 < g < 2.

1- Any signed solution of (1.3) verifies

|Vu(z)] < ey q(dist (x)_qul Vo € Q, (1.3)

where d(x) = dist (z,0€). As a consequence, if u € C(Q\ {0}) is a solution which
vanishes on J€ \ {0} it satisfies

u(2)] < cqad(@)|z| 71 Vzeq. (1.4)

2-If L < ¢ < 2 any positive solution of (1.3) in © which vanishes on 9\ {0} is
identically 0. A point is a removable singularities.

-Ifl1<qg< % and k > 0 there exists a unique positive solution u := uy of (1.3)
in  which vanishes on 99 \ {0} and satisfies u(z) ~ cykP?(x,0) where P is the
Poisson kernel in Q x 0€).

4-Ifl<qg< % there exists a unique positive solution u of (1.3) in Rf under the

1
form u(x) = |z|” 7 Tw(|z|'x) which vanishes on ORY \ {0}. The function w is the
unique positive solution of

“ANu+((g— 12w+ |[Vw)E = Ay,w=0  inSY¥!

1.5
w=20 in BSiV_l (1.5)

where A’ is the Laplace-Beltrami operator on SN~! and AN,y > 0 is an explicit
constant.

51f1 < ¢ < & and u is a positive solution of (1.3) in © which vanishes on 9Q\ {0}
the following dichotomy holds:

(i) either u(z) ~ \x!qullw(]x\*lx) as x — 0,

(ii) or u(z) ~ ken P9 (x,0) as & — 0 for some k > 0.



In this article we extend to the quasilinear case 1 < p < N the above mentioned
results. The following pointwise gradient estimate valid for any signed solution u of
(1.1) is proved in [7]: if 0 < p — 1 < g there exists a constant ¢y, > 0 such that

IVu(z)| < enpg(dist () 77 Vo e Q. (1.6)

As a consequence, any solution u € C1(Q\ {0} satisfies

u(z)| < cpgad(z)|z| 77 Ve (1.7)

Concerning boundary singularities, the situation is more complicated than in the
case p = 2 and the threshold of critical exponent less explicit. We first consider the
problem in the half space RY := {z = (2/,zy) : 2/ € RV 2y > 0}. Assuming
p — 1 < ¢ < p, separable solutions of (1.1) in Rﬂ\r] and vanishing on Rﬂ\rf \ {0} can be
looked for in spherical coordinates (r,0) € Ry x SV~! under the form

pP—q

u(z) = u(r,o) =r oirw(o), r>0,0¢e Y= {SNTT RN} (1.8)

Then w is solution of the following problem

— -2
—div <(52w2 + |[V'w|? ) Vi ) — Byg, (BFw* + W/W‘Q)% w
+ (530}2 + \V/w\Q)% -0 in Si\’—l (1.9)

w=0 on &Sﬁv_l,

where 3, = +1 - and Ag, = B4(p—1)+p— N. The existence of positive solution to
this problem is conditioned to the existence of spherical p-harmonic functions which
have been studied by Krol [18], Tolksdorf [29], Kichenassamy and Véron [19] and
more recently by Porretta and Véron [25]. One of the main point is that there exists
a separable positive p-harmonic function ¢ under the form ¢ (r, o) = r~%4(c) which
is positive on Sivfl and negative on SV 71 = —Sivfl if and only if ¢ satisfies the
spherical p-harmonic eigenvalue problem

_div ((mﬂ V) ) Bk, (B202 1+ V)T =0 in SV
=0 on 855_1,
(1.10)

There exists a unique couple (¢, Bx) for which (1.10) has a solution with g, > 0
and ), > 0 (up to an homothety on 1,). The exponent [, which is larger than
maX{l = ~—}, is not known explicitely except in the cases p = 2, and it has the
value N — 1, p = N and it is 1, and N = 2 (see [18], [19]) and it is the root of an
algebraic equation of degree 2. In Appendix II we prove the following new estimate:

Theorem B Let 1 <p < N.



(i) If 2 < p < N, then B, < % with equality only if p = 2 or N.
(1) If 1 < p < 2, then B, > T=L.

To this exponent f3, is associated the critical value g, of g defined by 3, = 3, or
equivalently
Bip—D+p B
g+1 P et
The following result characterizes strong singularities.

Theorem C Let 0 < p—1< N, then
(i) If p— 1 < q < g, problem (1.9) admits a unique positive solution w.

G = (1.11)

(i) If q. < q < p problem (1.9) admits no positive solution.

This critical exponent corresponds to the threshold of criticality for boundary
singularities.

Theorem D Assume q¢. < q<p<N. Ifuec C(Q\ {0}) is a nonnegative solution
of (1.1) in Q which vanishes on 02\ {0}, it is identical zero.

As in the case p = 2 there exist positive solutions (1.1) in Q with weak boundary
singularities which are characterized by their blow-up near the singularity; their
existence, based upon the delicate construction of sub and super solutions is much
more difficult than in the case p = 2 (see [22]). Furthermore it is done only if € is
locally an hyperplane near 0. In the sequel we denote by Br(a) the open ball of
center a and radius R > 0 and Br = Bg(0). We also set Bj(a) := RY N Bg(a),
B} :=RY N Bg, By (a) :=RY N Bg(a) and By := RY N Bg.

Theorem E Assume 0 <p—1<q¢<qg.<p<N,R>0and Qg := QﬂBR:BE.
Then for any k > 0 there exists a unique u := up € C(Qg \ {0}), solution of (1.1)
in Qr, vanishing on 0Qg \ {0} and such that

_ug(r)
ili)% ) k. (1.12)
Furthermore limj,_ oo U = Uso and
lim || 1ue (2) = wa(|z]12). (1.13)
z—0

Whenp=Nand N-1<g< N-— % we prove that the previous result holds if €2
is any C? by using the conformal invariance of Ay. Finally, the isolated singularities
of positive solutions of (1.1) are completely described by the two types of singular
solutions obtained in the previous theorem and we prove:

Theorem F Assume 0 < p—1 < q¢ < ¢ <p§N,R>0andQR:BE. If
u € C(Q\ {0}) is a positive solution of (1.1) in Q which vanishes on O\ {0}, then

(i) either there exists k > 0 such that

@)
ig% @) k. (1.14)
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(ii) or
) (1.15)
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2 A priori estimates

2.1 The gradient estimates and its applications

We denote by d(x) the distance from z € Q to 99 and we recall the following
estimate proved in [7].

Proposition 2.1 Assume ¢ >p—1 and u is a C* solution of (1.1) in a domain €.
Then )
Vu@)| < npg(d@) 75 Vae Q. (2.1)

The first application is a pointwise upper bound for solutions with isolated sin-
gularities.

Corollary 2.2 Assume qg>p—1>0, R* >0 and Q is a domain containing 0 such
that d(0) > 2R*. Then for any v € Br+\ {0}, and 0 < R < R*, any u € C*(Q\ {0})
solution of (1.1) in Q \ {0}) satisfies

[u(@)] < expg |27 — RFT | 4 max{fu(z)| |2l = B}, (22)
if p#q, and
lu(z)] < enp (In R —Infz|) + max{|u(z)] : [2| = R}, (2.3)
ifp=q.
The second estimate corresponds to solutions with boundary blow-up.

Corollary 2.3 Assume ¢ >p—1> 0, Q is a bounded domain with a C? boundary.
Then there exists 91 > 0 such that if we denote Qs, = {z € Q : d(z) < d1}, any
u € CY(2) solution of (1.1) in ) satisfies

q—p

u(@)] < enp |(d@)TTF = 6777 | 4 max{lu(z)| - d(z) = 61} Vo€ Qs (2.4)
lu(z)] < enpq(Ind; —Ind(x)) + max{|u(z)| : d(z) =61} Vo e Q, (2.5)

if p=q.



Remark. As a consequence of (2.5) there holds for p > ¢ >p—1
uw(z) < (enpq+ Kmax{|u(z)| : d(z) > 61 }) (d(m))qi}fiﬁ Vr € Q (2.6)

where K = (diam(2)) qi;gﬂ, with the standard modification if p = q.

As a variant of Corollary 2.3 we have an upper estimate of solutions in an exterior
domain.

Corollary 2.4 Assume ¢ >p—1>0, R>0 and u € Cl(BIC%O) is any solution of
(1.1) in By, . Then for any R > Ry there holds

u(@)] < enpg |(|7] = Ro)#17 — (R — Ro)#1-7 | + max{|u(z)| : |2| = R} Va € Bf
(2.7)

if p#q and
u(2)] < enpg (2] — Ro) — In(R — Ro)) +max{|u(z)| : |2| = R} Vx € B (2.8)

ifp=q.

Proof. The proof is a consequence of the identity

1 1
u(z) = u(z) —|—/0 %u(tx + (1 —t)z)dt = /0 (Vu(te + (1 —t)z),z — z)dt

where z = |7R|x Since

Vu(tz + (1 - 1)2)| < Onpg(t]z| + (1~ )R — Rg) 77

by estimate (2.1), the result follows by integration. O

2.2 Boundary a priori estimates

The next result is the extension of a regularity estimate dealing with singularity in
a domain proved in [7].

Lemma 2.5 Assume p—1 < q < p, Q is a bounded C? domain such that 0 € OS).
Let u € CY(Q\ {0}) be a solutions of (1.1) in Q which vanishes on 0\ {0} and
satisfies

lu(@)| < ¢(lz]) Vo e, (2.9)

where ¢ : RY +— Ry is continuous, nonincreasing and satisfies ¢(rs) < vo(r)o(s)

and re ¢(r) < ¢ for some v,c > 0 and any r,s > 0. Then there exist o € (0,1)
and ca = c2(p,q,) > 0 such that

(i) V()| < cog(fa]) ] Vi e Q,

1 2.10
(i) [Vule)— Valy)| < () o]z —yl*  Veye ol <yl OO

Furthermore

d(x)

Vo € Q. 2.11
2] (2.11)

u(z) < c29(|z|)



Proof. For £ > 0, we set Qf := %Q. If ¢ € (0,1] is bounded the curvature of 9Q¢
remains uniformly bounded. As in [12, p 622], there exists 0 < Jp < 1 and an
involutive diffeomorphism 1 from By, N Q% into Bs, N (2%)¢ which is the identity
on Bg, N 00% and such that Di(€) is the symmetry with respect to the tangent

plane T¢0) for any £ € 902 N Bs,. We extend any function v defined in Bs, N Qv
and vanishing on Bs, N 90% into a function ¥ defined in Bs, by

- _ ) u(x) ifre F(SO n 550
o(z) = { —vo(z) if x € Bs, N (Q0)C, (2.12)

If v € CY(Bs, ﬂﬁ&)) is a solution of (1.1) in Bs, NQ% which vanishes on 9Q% N By,
U satisfies
—Z (x,V0)+ B(z,V0) =0 in Bs,. (2.13)

As in [12, (2.37)] the Aj satisfy the following estimates
() Aj(x, 0) =0

(i) Z an; (z,m&& > T [l ! |£|

(2.14)
0 p—2
(dii) ZZ; %Aj(w,n) <Taln"~,
as for B there holds
|B(x,m)| < Ts(1+ |n])P. (2.15)

These estimates are the ones needed to apply Tolksdorf’s result [30, Th 1,2]. There
exists a constant C, such that for any ball Bsr C Bs,, there holds

V3| ooy < C (2.16)

where C' depends on the constants I'y (k =1,2,3), N, p and |[0[| oo (p,,,)- We define

u = Lu ¢
Pfu)(y) = ) (ty)  VyeQ. (2.17)
Then ®yfu] := uy satisfies
i
il < “CH <a0lul) vy e o (218)
and
—Ayug 4 (Pap(0) 1P|V =0  in QL (2.19)

We extend uy by the formula (2.12) into a function @, which satisfies

o -
- Z a—ij(y, Viig) + ((P1¢(€)) 1P B(y, Viy) = 0 in By,. (2.20)
. J
J



For 0 < |z| < &y there exists £ € (0,2) such that % < |z| < §pl. Then y — ty(y)
with y = 7 satisfies (2.20) in Bs, and |t(y)| < 7.¢(|y|) since ¢ is a diffeomorphism
and Dy(€) € O(N) for any £ € 9Q N Bs,. The function 4, remains bounded on
any ball Bsg(z) C T := {y € RV : %0 < |y| < do}, therefore |Viuy(y)| < ¢ for any

y € Br(z), for some constant ¢ > 0. This implies
|Vu(z)| < c*y*éotﬁ(%)(b(\x])]x\*l Vz € QN Bs,. (2.21)

For proving 2.10)-(ii) there exists o € (0, 1) such that |Vi(y) — Vie(y')| < cly —y/|*
for all y and 3’ belonging to Br(z). This implies the claim.

Let 0 < 01 < dg such that at any boundary point z there exist two closed balls
of radius d; tangent to dQ at z and included in QU {z} and in Q°U {2z} respectively
(61 corresponds to the maximal radius of the interior and exterior sphere condition).
Let a € 09 and = € Q such that |z| = |a| = r < §; and let b = —rngy where ny is
the normal outward unit vector to 92 at 0. Let 6 € (0, 5) be the angle between 0d
and 0z. Consider the path « from a to x defined by ~(t) = cos(tf)a + sin(t6)b with
0 <t<1. Then z = cosfa + sin b and

1 1
u(z) = / %u ovy(t)dt = / 0(Vuo~(t),cos(th)b — sin(tb)a)dt
0 0
Thus, by Cauchy-Schwarz and using (2.9),
u(w) < 0|Vuor(t) < o || 7,

where ¢, = dy(p,q,Q). But there exists ¢§ > 0 depending only on §; and the
curvature of 9 such that ¢710 < d(z) < cf. This implies (2.11). O

Lemma 2.6 Assume p—1 < g < p, Q is a bounded C? domain such that 0 € OS)
and Ry = max{|z| : z € Q}. Ifu € C(Q\ {0})NCL(Q) is a positive solution of (1.1)
which vanishes on 9\ {0}, it satisfies

a—p A B
c1 <|:c| a+1-p — Rg“‘”) ifqg<p
u(z) < (2.22)
(- 1)n () ifg=p
for all z € Q, where ¢y = ¢1(p,q) > 0.
Proof. For ¢ > 0 we denote by P. : R — R, the function defined by
0 ifo<r<e
P(r)={ —i5 43 62 5 3¢ if € <7 <2 (2.23)
r — 3¢ if r > 2e,

and by u. the extension of P.(u) by zero outside Q. There exists Ry such that
Q C Bp, . Since 0 < P.(r) < |r| and P. is convex, u. € C(RN\ {0})nW,.2F (RV\ {0})

loc
and

—Apue + [Vul? <0 in RV,



Let R>Rp. If p—1<qg<p

Uen(lal) = 1 ((Jal = 315 = (R—)a517 ) in Bp\ B,, (2.24)

with e; = (p—q) g +p— 1)#2?. Then —A,Ue +|VU|? > 0. Since u, vanishes on
0Bpr and is finite on 0B, it follows u. < U.. Letting successively ¢ — 0 and R — oo
yields to (2.22). If ¢ = p we take

R—c¢

x| — e

Uer(lz]) =(p—1)In < > in Bg \ B, (2.25)

which turns out to be a super solution of (1.1); the end of the proof is similar.
O

As a consequence of Lemma 2.5 and Lemma 2.6, we have.

Corollary 2.7 Let p,q Q and u be as in Lemma 2.6. Then there exists a constant
c3 = c3(p,q, ) > 0 such that

|Vu(z)| < e ]ac]*ﬁifp Vz e (2.26)

and

u(z) < ezd(z) \x!fﬁ vz € Q\ {0}. (2.27)

Remark. If 2 is locally flat near 0 estimates (2.26) and (2.26) are valid without any
sign assumption on u. More precisely, if 92N Bs, = To02 N Bs, we can perform the
reflexion of u thrue the tangent plane Ty02 to 02 at 0 and the new function u is a
solution of (1.1) in Bs, \ {0}. By Proposition 2.1, it satisfies

IVa(z)] < enpglel 77 Va € Bs \ {0). (2.28)
2

Integrating this relation as in Corollary 2.2, we derive that for any x € Bs, N2,
2
there holds

enpa (Jo175 = (3)790) + max{lu(=)| 1 2| = %} ifp#£q

u(@)] < :
cNpln (%) + max{|u(2)| : |z| = %“} ifp=gq.

(2.29)

In the next result we authorize the boundary singular set be a compact set.

Proposition 2.8 Let p—1< q <p. There exist 0 < r* < 1 and ¢4 = c4(N,p,q) >
0 such that for any nonempty compact set K C 0Q, K # 0Q and any positive
solution u € C(Q\ K)NCYQ) of (1.1) which vanishes on O\ K, there holds

w(@) < ead(z)(dg (@) 77 Vo e dQ st d(z) <, (2.30)

where di (z) = dist (z, K).



Proof. Step 1: Tangential estimates. Let x € € such that d(z) < ;. We denote by
o(x) the projection of x onto 92, unique since d(x) < d;. Let 7,7’,7 > 0 such that
Sr<ir’ < %7“ and 0 < 7 < %l and put Wy, = 0(2) + Th,(,). Since I is C?, there
exists 0 < r* < §; depending on € such that dg(w-z) > Ir whenever d(z) < r*.
Let A > 0 and B > 0 to be specified later on; we define o(s) = A(r' — s)ﬁ - B
and v(y) = 9(ly — wrg|) in [0,7") and B, (w; ). Then

1|p—2 11q+2—p Wl N-1, Ap-1 p—gq r / Tt X
|v'] o] —(p—10" - v )= AP” (r' —s) =2 X (s)
5 qg+1—-p

where

B p—q \"P  p-1  (N-1('—9)
xo = (ats) -

For any 7 € (0,r') there exists A > 0 such that

_ q+1-p _ B ;o
4 P-4 . P 1 +(N D(r' —s)) Vr<s<i
q+1—p q+1—p s
This implies
—Apu +|[Vo[T>0  in By(wry) \ Br(wrg)- (2.31)

Next we take B = A(r' — 7) qiﬁﬂ, thus v = 0 on dB,(w, ). Clearly B, (w,,) C Q°
since 7 < 7. Therefore v > 0 = won IQNB,/ (wr ) and u < v = 0o on QNIB, (wWr ).
By the comparison principle, v > u in QN B,/(w; ). In particular

u(z) <v(z) <A@ —7 —d(x)) Ty A(r' =) 1op.

We take now 7 = % and d(x) < 7 and we get by the mean value theorem

u(w) < ! TTRd(x) = d(x) (d (x) T, (2.32)

with ¢, = d,(p,q) > 0 Letting ' — %r, we get (2.11).
Step 2: Global estimates. If d(x) > +dk (), there holds

q9—pP

d(z)(di (2))" 75 > 27717 (d()) 705,
We combine (2.11) with (2.6) and obtain (2.11). 0

Remark. Under the assumption of Proposition 2.8, it follows from the maximum
principle that u is upper bounded in the set Q. := {z € Q : d(z) > r*} = Q\ Q=
by the solution w of

—Apw+ [Vw|? =0 in Q.+

w = ead(w)(d () "T7 in 90, -, (2.33)

and w itself is bounded by d* = max{cd(a:)(d;((:c))_ﬁiw cd(z) =7r*}.

We prove here the boundary Harnack inequality. We recall that §; has already
been defined, and that the interior and exterior sphere conditions holds in the set

{z € RN : dist (x0Q) < §1}.

10



Proposition 2.9 Letq > p—1 and 0 € 0. Then there exists cs = c5(N,p,q,§2) >0
such that for any positive solution u € C(QU ((92\ {0}) N Bys, ) NCL(Q) of (1.1) in
Q, vanishing on 0Q \ {0}) N Bags, , there holds

u(y) _ u(x) u(y)
exd(y) = dx) = Cdly) (2.54)

forall z,y € B% NQ such that 3 |z| < |y| < 2|x|.

We also recall the following result [3].
Lemma 2.10 Assume thata € 02,0 < r < 61 and h > 1 is an integer. There exists
an integer No depending only on 61 such that for any points x and y in QN Ba: (a)
2
verifying min{d(z),d(y)} > r/2", there exists a connected chain of balls By, ..., B;
with 7 < Ngh such that

r€B,yeBj, BiNBij1#0for1<i<j—1

and 2B; C B2T(Q) NQ forl <i<j. (2'35)

The next result is a standard Harnack inequality.

Lemma 2.11 Assumea € (0Q\{0})NBas+ and 0 < r < |a| /4. Let u € C(QU((02\

{0}) N Bays,)) NCHQ) be a positive solutioan of (1.1) wanishing on (02 \ {0}) N By, .

Then there exists a positive constant cg > 1 depending on N, p, q and & such that
u(x) < luly), (2.36)

for every x,y € B%(a) N Q such that min{d(x),d(y)} > r/2" for some h € N.

Proof. We first notice that for any ¢ > 0, Ty[u] satisfies (1.1) in Q¢ := £71Q where
Ty is defined by

Ty[u)(z) = £a 1P u(lz). (2.37)

If we take in particular ¢ = |a|, we can assume |a| = 1 thus the curvature of the
domain 9% remains bounded. By Proposition 2.8

u(x) <c¢g Va € Bop(a)NQ (2.38)
where ¢ depends on N, ¢, 6;. Then we proceed as in [22], using Lemma 2.10 and
Harnack inequality as quoted in [31, Corollary 10]. O

Since the solutions are Holder continuous, there holds as in [31, Theorem 4.2]
Lemma 2.12 Assume the assumptions on a and u of Lemma 2.11 are fulfilled. If

b€ N B(a) and 0 < s < 2717, there ewist two positive constants § and cz
depending on N, p, q and €2 such that

@ = b|°
9

u(z) < e7 max{u(z) : z € B.(b) N Q} (2.39)

for every x € Bs(b) NS

11



As a consequence we derive the following Carleson type estimate.

Lemma 2.13 Assumea € (0Q\{0})NB2s, and0 < r < |a| /8. Letu € C(QU((9\
3

{0}) N Bays,)) NC%(Q) be a positive solution of (1.1) vanishing on (02\ {0}) N Bas, .
Then there exists a constant cg depending only on N, p, q and 01 such that

u(z) < cgu(a — gn,) V€ By(a)N Q. (2.40)

Proof. By Lemma 2.11 it is clear that for any integer h and x € B,(a) N2 such that
d(x) > 277, there holds

u(z) < cfula —5n,). (2.41)

Therefore u satisfies inequality (2.39) as any Holder continuous function does it. The
proof that the constant is independent of r and w is more delicate. It is done in [3,
Lemma 2.4] for linear equations, but it based only on Lemma 2.12 and a geometric
construction, thus it is also valid in our case. O

Lemma 2.14 Assumea € (0Q\{0})NB2s, and0 < r < |a| /8. Letu € C(QU((00\
3

{0}) N Bas,)) N C%(Q) be a positive solution of (1.1) vanishing on (02\ {0}) N Bag, .
Then there exist a € (0,1/2) and cg > 0 depending on N, p, q¢ and 61 such that
1t _ ufb—tn,) t

< —
cor — ula—3gn,) — = (242)

for any b € B.(a) N0 and 0 <t < §r.

Proof. 1t is similar to the one of [22, Lemma 3.15]. O

Proof of Proposition 2.9. Assume x € B2s, N} and set r = %.
3

Step 1: Tangential estimate: we suppose d(x) < §r. Let a € 952\ {0} such that
la| = |z| and x € B,(a). By Lemma 2.14,
Su(a—3n) ul@) . ula-3n)

(z)
R O

(2.43)

We can connect a — §n, with —2rn, by m; (depending only on N) connected balls

B;j = Bz (w;) with z; € Q and d(z;) > 5 for every 1 <4 < m;. It follows from (2.40)
that

cg tu(—2rn,) <u(a—5n,) < cg"u(—2rn,),

which, together with (2.43) leads to

1 u(=2rn,) _ u(z)
g

al = de) ’ 24)

. /o mi
with cg = 8cocy .
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Step 2: Internal estimate: we suppose d(x) > §r. We can connect —2rn, with
z by my (depending only on N) connected balls B; = Bar(z}) with 2} € @ and
d(x}) > §r for every 1 < i < my. By Harnack and Carleson inequalities (2.36) and

(2

(2.40) and since § |z| < d(z) < |z|, we get

a u(=2rn,) _ u(z) _ 4™ u(—2rn,)
Zlcgm2 || “dz) T o« ||

(2.45)

Step 3: End of proof. Suppose % < s < 2|x|, we can connect —2rn,, with —sn, by

mg (depending only on V) connected balls Bf = By (z}) with 27 € Q and d(z7) >

for every 1 < i < mg. This fact, jointly with (2.44) and (2.45), yields
1 u(—sn,) _ u(z) u(—sn,)

— < < ¢y

o ol S d) (2.46)

||

where ¢19 = ¢19(N, q,Q). Finally, if y € BQ% N € satisfies % < ly| < 2|xz|, then by
applying twice (2.46) we get (2.34) with c5 = c%,. O
As a consequence of Proposition 2.9, we have

Corollary 2.15 Assumeq > p—1 and 0 € 9. Then there exists c11 = c11(N,p,q,Q) >
0 such that for any positive solutions uy, ug € C(QLU ((92\ {0}) N Bas,) N CH(Q) of
(1.1) in Q, vanishing on 0L\ {0}) N Bys,, there holds

ap {1 <o {1 ,
sp{u2(y).y€Br\B§}§ " f{u2(y).yeBr\B§}. (2.47)

3 Boundary singularities

3.1 Strongly singular solutions

We next consider the equation (1.1) in RY = {z = (2/,zy) € RV"! x R{}. We
denote by (r,0) € Ry x SV~ the spherical coordinates in RY and

)}

P—q
5(1 ::m and Aﬁq:ﬁq(p_1)+p_N

If v(z) = r~Pw(0o) satisfies (1.1) in R} and vanishes on @ \ {0}, then g = 3, and
w is a solution of

S_]i_vfl = {(sin po’ cosp) o' € SN2 4 €0,

oS

Set

p—2

2
—div ((ﬂguﬂ + ]V’wP) 2 V/w> — ByAg, (ﬁ§w2 + ‘V/W‘Q)pT w
+ (Biw? + |V’w|2)% =0 inSY ! (3.1)

w=0 on BSiV_l.
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where V' denotes the covariant derivative on S™V~! identified with the tangential
derivative. There exists a unique 8, = B(IV,p) > 0 such that the function (r,0) —

r~P<)(o) is positive, p-harmonic in RY and vanishes on RY \ {0} (see [30], [25]).
The function @ is defined up to a multiplicative constant and it satisfies

ww@@ﬁ+wwwﬁ*m)—mmJ@W+W%W§w:oimﬂ*

=0 on BSf_l.

(3.2)
We denote by 1, the solution which maximal value 1. The coefficient (3, is unknown,

except when N = p, and it is 1, or p = 2 and it is N — 1. Because of uniqueness v
depends only on the azimuthal variable y_1 = cos™ (%) (see Appendix II). Our
first result is the following

Theorem 3.1 If B, < (. there exists no positive solution to problem (3.1).

Proof. Suppose such a solution w exists and put 6 = f,/8,. Then 0 < § < 1. Set
1 = 10, where 1) is a positive solution of (3.2) and define the operator T by

p=2 p—2
o) = —div (32 + 9'0) % 9'n) =y, (3202 < 1902) 50

G

+ (B2n* + [V'n|?)>
-2 —2
Since Vn = 99f~1Vey, (82 + \V/??\Q)pT = g~ 2p0-1p=2) (5292 4 sz)%’
-2 —2
(8202 + [V'p2) 2 V' = 60— Lyp@=D0=D (52422 4 |V/p[2) 2 V', therefore

T(n) = —67 Ly (0=1)=1) iy <(5*¢2+W/1/1\ ) 3 )
=771 = 1)(p — 1)y~ N=1= (mﬂﬂv v |y
— By, 0P~ 2p 0D (5292 4 |y ) ¢+9%p0 Da (822 + |V'y[? )

But ﬁqAﬁqﬁp_z = ﬁ*Aﬁqﬁp_ < Bulp, 0P~ since B, < B.. Using (3.2), we see that

T (n) > 0. Because Hopf lemma is valid, 9n9) < 0 on S ', Since w is C* in SY !
and v is defined up to an homothety, there exists a minimal 1 such that n > w, and

N—1 N-1

the graphs of  and w over are tangent, either at some « € , or only at

point « € 85571. We put w =n — w. Then
T(n) = T(w) =2(1) — 2(0), (3.4)

where ®(t) = T (wy) with wy = w + tw.
We use local coordinates (o1, ...,on—1) on SV~ near a. We denote by g = (g;;)
the metric tensor on SV~1 and by ¢7* its contravariant components. Then, for any

¢ e CH (SN,

5. 0p 0
2 _ Z ik 9P 9P _
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If X = (X',.. X% ¢ cY(TSN71) is a vector field, we lower indices by setting
= Z ¢"" X, and define the divergence of X by

0

ding:\/—l‘?’;%<\/m > Za_< |gghX>'

We write ®(t) = ®1(t) + Po(t) + P3(t) where

—2

1(t) = — P43, (ﬁQ + | Vwy|? ) 2wy,

q
2

o (t) = (Bgwi + [V'wrl?)

and
P3(t) = —div ((52 + |V wy ) = \VA wt>
Then
ow
P ( ) ‘1)1(0) _Zajao' — bw
J
where -
b= ,BqAﬁq <,8q2Wt2 —+ |th|2> 2 <(p o 1)5300? + |th|2)
and o e o
aj = (p - z)ﬂqAﬁq <,8q(AJt + ‘th’ > thg %’
k
ow
(1) = @2(0) = ) ¢j5— + duw
i J
where

q
31

= Q5q </82Wt + [V ) wy
G =4q (53%2 + ’VWtF) o Zk:gjk%:i;

$3(1) — P3(0) = —(p — 2)div (( 2+ |V'wy ) e (B2wiw + (V'wy, V'w),) V’wt>

—div <( +|V’wt| ) > V'w >
Therefore we have

(1) — ®(0) = —div(AV'w) + (B, V'w), + Cw := Lw (3.5)
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where

(AX, X)g = (822 + [V'rf2) T (p— 2)(V'ewr, X)2 + [V 2| X 2)

pod (3.6)
> (B2w? +[V'ay?) 7 min{l,p — 1}|V'w]?| X |2

and B and C can be computed from the previous expressions. It is important to
notice that ﬁgwf + |V'wi|? is bounded between two positive constants ¢; and ¢y in
Siv ~L1. Thus the operator £ is uniformly elliptic with bounded coefficients. Since w
is nonnegative and vanishes at some point o where V'w(a) = 0 and w(a) > 0 or at
some boundary point @ where w(a) = 0 and dphw(a) < 0 it follows from the strong
maximum principle or Hopf boundary lemma (see [17]) that w = 0, contradiction.
O

Theorem 3.2 Assume 3; > (.. There exists a unique positive solution w, to prob-
lem (3.1).

Proof. Ezistence. It will follow from [10]. Indeed problem (3.1) can be written

A(w) := —diva(w, V'w) = B(w, V'w) in S_],Y*l 37
w=0 on 98y ! (37)

where -
( 5) (52T2 + |£|2)_ (3.8)

-2
B(r.§) = olka, (B2 +1EP) 7 r— (830 + [¢f)*
The operator A is a Leray-Lions operator which satisfies the assumptions (1.6)-
(1.8) of [10, Theorem 2.1], and the term B satisfies (1.9),(1.10) in the same article.
Therefore existence of a positive solution w € WO1 P (Siv Hn LOO(SiV ~1Y is ensured
whenever we can find a super solution @ € W'P(SY 1) NL>*(SY 1) and a nontrivial
subsolution w € WP(SY 1) of (3.7) such that

0<w<w in Sy L. (3.9)

First we note that n = 7y is a supersolution if the positive constant 7y is large
enough. In order to find a subsolution, we set n = ¢/ with 0 = Bq/B« and 9 as in
(3.2). Then 6 > 1, thus n € Wol’p(SiV_l). As above we have

T(n) = —6P~ Lyp0=D-1) iy ((ﬁ*wz—HV (0] ) )
— 0710 — 1)(p — 1)@ D=1 (B*WHV%/J\ ) vy
— By, 672000 (822 4 [V2) T 4 4 gap0-a (22 4 (i)
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Now B,Ap,0072 = B,Ag 0P' = Bu(Ag, — Ag,)0P ™" + BuAg, 0P L and Ag, — Ay, =
(Bg — B)(p — 1) = Bu(p — 1)(# — 1), hence
7o) =~ 000D (820 + V') = )
— 0710 — 1)(p — DO DE-D1 (8242 4 [Tp[2) T [y
— Bu(Ap, — Mg, )P~ 1p0DE=1) (242 4 |V’zz)|2)T
— BoA g, 07 1O DD (3202 4 [Vap[2) T g 4 gayp6-Da (5252 4 [rpf2) E
Using the equation satisfied by v yields
T(n) = —67"1(0 — 1)(p — D)@ DO-D-1 (5292 4 |7/ )*rv wP
— B2(p — 1)(6 — 1)gr1pO=DE-D1 (8242 4 i) T
+ 9001 (822 4 |V'p[2) 8

= —6P"1(0 — 1)(p — @~ DP-D=1 (8292 4 |V/y)[?)
+ 9agp(0—1)a (ﬁ$¢2 + [V'1] )

2
2

We will see that replacing ¥ with ma) in the above computation, the right choice of
m will give T(n) < 0: Indeed, we need

mfat1=p)y(O=Dia+1=-p)+1 < gr=1=a(p _ 1)(p — 1) (622 + ’V/WQ)%
which will hold true if we choose m to satisfy

min . gnor (8262 + |V'pf2) 2

0(g+1-p) « gO0=D(a+1-p)+1gp—1—qg _ —
m < B« 0 (@-1p-1) e, g O D(at1—p)+1

Therefore 0 < 1 < 19 and standard regularity implies that the solution w is C' in
—=N— . . .
Sy " Actulally since the operator is not degenerate, w is C°.

Uniqueness. We use the tangency method developed in the proof of Theorem 3.1.
Assume wy and wy are two positive solutions of (3.2), then they are positive in Siv -1
and Opw; < 0 on 8Siv ~1 Either the w; are ordered and w; < wy or their graphs

intersect. In any case we can define
T =inf{s > 1: sw; > wa}.

We set w* = Twy. Then either the graphs of we and w™* are tangent at some interior
point «, or they are not tangent in Siv_l, Opw™ < Opwa < 0 on 855_1 and there
exists o € ST ! such that dpw* () = dpwa(a) < 0. Furthermore 7 (w*) > 0. If we
set w = w* — wy, then, as in Theorem 3.1,

—div(A*V'w) + (B*,V'w), + C*w = L*w > 0
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where

p—4

(A" X, X)g = (Bjwi + [V'wil?) = (p— 2)(Viw, X)F + Vw2 X]?)

b4 (3.10)
> (Bwi + [ V'wr?) 2 min{l,p — 1} V'wy[?| X%,

in which w; = wy +t(w* —wq) and t € (0, 1) is obtained by applying the mean value
theorem and B* and C* are defined accordingly. Since £* is uniformly elliptic and
has bounded coefficient, it follows from the strong maximum principle that w = 0.
Thus w* = 7wy = wy and 7 = 1 from the equation. This ends the proof. O

3.2 Removable boundary singularities

The following is the basic result for removability of isolated singularities. It is valid
in the general case, but with a local geometric constraint.

Theorem 3.3 Assume ¢* < g <p <N, Qisa C_2 bounded domain with 0 € OS2,
such that QN Bs C RY for some § > 0. If u € C1(Q\ {0}) is a nonnegative solution
of (1.1) in Q which vanishes on 02\ {0}, it is identically 0.

Proof. Step 1: Assume  C RY. For € > 0, we set . = QN B¢ and H, = RY N B
For k,n € N, n > diam (), we denotes by v, (n € N,) the solution of the
problem
—Apu+ | Vo|T=0 in H.N B,
v = kXRﬁmaBe on d(H.N By). (3.11)
If k> 026% then v, > w in Q. Moreover there holds vy 5, ¢ < Vp 7 for n < n’
and k < k’. Furthermore the function

Uenle) = e1 (2] = 777 — (0 — 74757

is a super solution in B,, \ B, for a suitable ¢; = ¢1(N,p,q) > 0 (see Lemma 2.6),
and there holds vy, c < Uc,,. By monotonicity and standard a priori estimate, we

obtain that v, . — ve when n, k — oo and that the function v = v, is solution of

—Apu + [Vt =0 in H,
lim|, . v(x) = 00 (3.12)
v=>0 on ORY N BE.
Furthermore .
u(x) < wve(r) < ei(|z] — e)ati—r  in QL. (3.13)

The function v, may not be unique, however it is the minimal solution of the above
problem since the vy, . is unique, and monotonicity in n and % holds. Actually,
ve < ve if 0 < e < €. For £ > 0, we recall that the transformation T, defined by
p—q
To[v)(z) = La+i=pv(lx), (3.14)
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leaves equation (1.1) invariant. As a consequence of the uniqueness of the approxi-

mations we have Tp[vg ne] =V _p-q , which yields
B LaFT=P kf—1n 0—1e

Tylve](z) = vp-1. (3.15)

Letting € — 0, we derive from the monotonicity with respect to € and standard C1®
estimates,
Tg[vo] = o Ve > 0. (316)

The function vy is a positive and separable solution of (1.1) in Rf which vanishes
on 002\ {0}. It follows from Theorem 3.1 that vy = 0, and so is u.

Step 2: The general case. We assume that 2N Bs C Rf and we denote by M the
maximum of u on dBs N . Then the function (v — M )4 is a subsolution of (1.1) in
Q N Bs which vanishes on 92 N By \ {0}. By Step 1, it is dominated by vy, which
ends the proof. O

Remark. The previous result is valid if u is a subsolution with the same regularity
as u. If u is no longer assumed to be nonnegative, only u® vanishes. Furthermore,
the regularity of the boundary has not been used, but only the fact that €2 is locally
contained into a half space to the boundary of which 0 belongs.

Remark. If no geometric assumption is made on 0f2, we can prove that u(x) =
o(|z| ™) near 0. The next result shows that the removability holds if g > .

Theorem 3.4 Assume ¢* < ¢ < p < N and Q is a C? bounded domain with
0 € 9Q. If u is a nonnegative solution of (1.1) in Q which belongs to C*(Q\ {0})
which vanishes on 9\ {0}, it is identically 0.

Proof. In [25] is proved that for any smooth subdomain S ¢ SNV~!, there exists a
unique 85 > 0 and b, > 0, up to an homothety, such that z s |z| =% ¢ (|z| ' ) is
p harmonic in the cone Cg = {z € RN \ {0} : ||z € S} and ), satisfies

P p=2
2

_div ((ﬁ§¢§ ) vws) B, (8202 + VD) T =0 S
s =0  on 085,

(3.17)
By construction S — [, is decreasing. If, for ¢ > 0, we denote by S := S. the
spherical shell with vertex the north pole N and latitude angle Ox_; € [0, 5 + €]- we
use here the spherical coordinates system defined in (6.5 ). Because of uniqueness
of Bs, Bs. T B« as € — 0. Therefore, if ¢ > g«, or equivalently 5, < B, there exists
0, > 0 such that QN Bs C Cs, N Bs and 3; < B,.. Since Theorem 3.1 is valid
if Sﬁrv ~1 is replaced by S, and By < Bs. it follows that u = 0 as in the proof of
Theorem 3.3, Step 1 and 2. O

The next result, valid in the case p = N, is based upon the conformal invariance
of the N-Laplacian. In this case the exponent 3, corresponding to the first spherical
N-harmonic eigenvalue is equal to 1 and the corresponding spherical N-harmonic
eigenfunction in SY ' = SN n{x = (2/,2n),zn > 0} is xn/ |z
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Theorem 3.5 Assume N — % < q < N, Q is a bounded domain and 0 € 9N is such
that there exists a ball in Q€ to the boundary of which a belongs. If u is a nonnegative
solution of

—Anu+ |Vul? =0 in Q, (3.18)

which belongs to C(Q\ {0}) N Wol’N(Q \ Bc(a)) for any € > 0, it is identically 0.

Proof. We assume that the inward normal unit vector to 992 at 0 is ey = (0,0, ...,1)
and that the ball B = B%(a) of center a = —}ey and radius 3 touches 00 at 0
and is exterior to € (this can be assumed up to a rotation and a dilation). This
is the consequence of the exterior sphere condition at the point 0. It is always
valid if 99 is C2. We denote by T, the inversion of center w and power 1, i.e.
Zo(z) =w+ ‘ ;3::"2. Under this transformation, the complement of the ball B, which
contains () is transformed into the half space {z = (2/,zy) : 2§ < 0} which contains

the image Q of Q. Since u satisfies (3.18), & = u o Z,, satisfies

—Ayii+ |z —w TV Ve =0  in Q. (3.19)

Furthermore since 0 = Z,,(0) and Z,, is a diffeomorphism, @ € C (6\ {0}) N CY(Q)
and it vanishes on 9Q \ {0}. Since [z —w| < 1 and ¢ < N, @ is a subsolution for
(3.18) in G. By Theorem 3.5, & = 0. O

3.3 Weakly singular solutions

The main result of this section is the following existence and uniqueness result
concerning solutions of (1.1) with a boundary weak singularity. We recall that 1), is
unique positive solution of (1.10) such that sup v, = 1. Our first result is valid for
any 1 < p < N but it needs a geometric constraint on ).

Theorem 3.6 Let p—1 < ¢ < ¢, < p < N and Q be a bounded C?> domain such
that 0 € 0L). Assume that there exists § > 0 such that QN By = BgL. Then for any

k > 0 there exists a unique positive solution u := wuy of (1.1) in Q, which belongs to
CH(Q\ {0}), vanishes on 00\ {0} and satisfies

O
z—0 \If*(.%')

(3.20)

in the C'-topology of SY ', where W, (z) = 2|77 o, (2| ta).

Lemma 3.7 Let the assumptions on p, q and Q2 of Theorem 3.6 be satisfied. There
exists a unique positive p-harmonic function ®, in 2, which is continuous in Q\ {0},
vanishes on 002\ {0} and satisfies

. Pu(2)
I 5. @)

—1. (3.21)
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Proof. For 0 < ¢ < § let v, be the unique p-harmonic function in Q \ B which is
continuous in © \ B}, vanishes on 9 \ B, and achieves the value ¥, on 9B, N €.
By the maximum principle, and since U, (z) < D™ where D = max{|z| : z € Q},
there holds

(U, =D P), <v. <V, inQ\B (3.22)

If e < € <6, then v < v in \B—:,r By standard regularity result v, converges to
a function ®, continuous in Q\ {0}, p-harmonic in Q and satisfies (¥, — 6 %), <
¢, < U, in Q. Therefore (3.21) holds provided ﬁ remains in a compact subset of

Sf_l. If we define the function ¢, by ¢.(z) = |z|* @.(z), then bu(r,0) < (o)
where r = |z| and 0 = a1 € SY¥=1. By standard O estimates, ¢, (r,.) is relatively

compact in the C (Sf 71)—top010gy. Therefore the convergence of i:g; to 1 when z

to 0 holds not only when ﬁ remains in a compact subset of Siv ~1. but uniformly

on Sij ~! which implies (3.22). Uniqueness follows classically by (3.22) and the
maximum principle. O

Lemma 3.8 Let the assumptions on p, ¢ and 2 of Theorem 3.6 be satisfied. If for
some k > 0 there exists a solution uy of (1.1) in Q, which belongs to C1(2\ {0}),
vanishes on O\ {0} and satisfies (3.20), then for any k > 0 there exists such a
solution.

Proof. We notice that for any ¢ < 1 (resp ¢ > 1), cuy is a subsolution (resp. super-
solution) of (1.1) in . If ¢ < 1, the function ck®, is a supersolution of (1.1) which
vanishes on 9\ {0}. Furthermore

cup(r) . ck®.(v)

TS S R S S

Then there exists a solution ug; of (1.1) in Q which satisfies cuy < ue, < ck®,. If
¢ > 1, we consider u* := Tyo[uy] : © +— PeOup(c? x) with 6 = (8, — B«)~!. Then u* is

a solution of (1.1) in Q' = C%Q In particular, u* satisfies the equation in B¥ (0).
0

Since ¢ > 1, B} (0) C Bf (0). Put m = max{u* : x € 9B (0)}. The function
2 2

(u*—m), extended by 0 outside B (0), is a subsolution of (1.1) in . Furthermore

it satisfies
lim ——————- =
250 W, (z)
uniformly on any compact subset of Si_v ~L. Therefore there exists a solution u of
(1.1) in © which satisfies (u* —m); < uep < ck®,, and in particular it vanishes on
92\ {0} and belongs to CY(Q\ {0}). By [27], uc is positive in Q. Since u.; belongs
to CL(Bf(0) \ {0}) and satisfies

. . . Vuer(x) — Vues
21 Juen(@)] + 2 [Vues ()] + 2542 sup 1V Yekl®) = Viak(y)
iyl < Il [z =yl
T F#y

<M
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by (2.10), the set of functions {r*+t1Vu.(r,.)},~0 is uniformly relatively compact

in the topology of uniform convergence on S, . Since it converges to ckV'y,

uniformly on compact subsets of Siv ~!. this convergence holds in C (§]I—1). This

implies

. uck(x) _
il_)r% Vo(z) ck. (3.23)

O

Lemma 3.9 Under the assumptions of Theorem 3.6 there exists a real number Ry
such that 0 < Ry < 0 and a positive subsolution G of (1.1) in BEO which is Lipschitz

continuous in BEO \ {0}, vanishes on F;O N ORY \ {0}, is smaller than U, and
satisfies

lim i)

lim oy = 1. (3.24)

Proof. The construction of the function u is delicate and needs several intermediate
steps. We look for a solution under the form @ = ¥, — w for a suitable nonnegative
function w.

Step 1: reduction of the problem. We use spherical coordinates for a C! function

u:x = u(z)=ulro),r=|z,o= fa7- Then Vu = ure+7r1V'u where e = || 'z,
q

IVul?> = w2+ 2|V/ul® and |[Vul? = (uf + 72 ]V’u!2> *. The expression of the p-

Laplacian in spherical coordinates is
p—2 p—2
—Apu = — <<ug + 772 |V’u|2) ’ ur> - (uz + 72 |V’u|2> * o,
s
1 ’ 2 -2 7,12 pr2 l
— —div (ur—l—r |Vu|> Viu|.
,
Put v(t,0) = rP*u(r,o) with t = Inr € (—o0,1n §], then v satisfies

Qo] :

—_ <<(vt — Bwv)? + |V’v|2) = (v — 5*1;)) — div' (((vt — Byv)? + |V’v|2) = V’v>

t
p—2

+ Aﬁ* ((Ut - 5*7))2 + ’V”[)’Q) 2 (’Ut — ,8*’0) + el/t ((Ut . B*U)2 I ’vlf[)’2>% 0

in (—oo,Ind) x S¥ ! where v = 1 - (¢g+1-p)(B +1) = 1 — Bdl ~ 0 and
Ag, = B«(p — 1) + p — N. Notice that since v, satisfies

p—2 p—2
2

—ai (202 + 190 ) T V) - st (2024 [97) T v =0, (329
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it is a supersolution for (3.25). We look for a subsolution under the form

V(t,o) = s —a(t)g(¥)

where ¢ is a a continuous increasing function defined on R, vanishing at 0 and
smooth on R and a(t) = € with v > 0 is to be chosen. Thus a’ = ~ya, a”" = 7%a,

Vi = —vag(y), Vi — BV = =Bitbs + a(Bs — 7)9(¢4), V'V = (1 — ag’ (¥+))V'9, and
(Vi = BV)? + V'V = (=Butps + a(Be — 7)g(00))? + (1 — ag' (1:))? [V |

= (822 + 2aB.(y — B)g(W.)s) + (1 — 2ag () V¥ + O(a? lg(¥)]| o)

= 202 + [V + 20 (B (7 = BYeg() = () [Vl ) + O(a? llge) ).

Therefore
p—2
(Vi- 8V +9VP) ?

p—2

2 By = B)vug(ths) — g (0.) [V |
242 + |V, |?

+0(a® [lg(¥) ]l o),

14+ (p—2)a

= (8202 + V')

and
a
eVt <Vt _ ,B*V)Z + |V,V|2> 2

g By = BIeg(¥s) — g/ (V) [V
B2Y2 + |V, |
+O0(e"a? [lg(vs) || ),

= et (8202 + [V )

1+ qa

thus

(V= BvP +19VE) * (- 5.1)

p—

= . (B2 + 1V ?) Tt a(B— ) (822 + [V P) T ()
Be(r = B2)eg(¥s) — 9/ () [V’

_aﬁ*(p— 2) ( 31/1,% 4 ’V,w*‘2)47

Pu + O(a? [|g(1e) [ n)-

Finally,
- (((vt BV VVE) T (- B*V)>

t

Be(v? = Buay)eg(hs) — 74 (1) V|

=a|(y? = Buy) (822 + V'Y B g(¥s) + Bi(p — 2) —
[ < ) (B22 + |V'u|*) 2

+0(a® [lg(¥) | g2)-
(3.27)
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Since
p—2
((v; BV |V’V|2) S VT

p—2

<,831/13 + ’vlw*‘2> Tz (1 _ ag/(w*)) /8*(7 B ﬁ*)¢*g(¢*) — 9'(7/)*) |v¢*|2

V',
B2 + |V'ep, | v

1+alp-—2)

+0(a* gl en)

p—2

2

= (B2 + Vi) * v

22 L oy 2V | o Be(r = B)Pag () — g/ (1) |V
+a (8202 + V') [@ 2) P02+ [V

+0(a* gl en)

- 9’(7/)*)] Vi,

we get similarly

p—

—div! <<(Vt —BV)? + !V'VIQ) N V’V> = —div/ <<ﬁf¢f + !V’w*\2> - V'¢*>

p—< _ _ A 2
_adw,<<ﬁ3¢3 L) [(p_2)ﬁ*(7 Buwng(itn) = g (1) [V

202 + | Ve, |
+ 0(a? [lg(te) || c2)-

- 9’(7/)*)

W)

(3.28)
Noting that
_2 p—2
2

i/ ((ﬁm FvP) T v’m) bo = Bubs, (B2 +[902) T, (329)

we obtain

e 1Q[V]

p=2 2 _ o~ 2
=[(72—Bw) (6262 4 (V') ™ glih) + pulp - 220 P 0edlle) =150 ) [T 0 w*]
(3202 + [V P)

. 2\ Bely = Big(e) — g/ () [Vu]* ,
—div <(53¢’3+|W*|) [(p‘2) B2 + [V _gw*)] W*>

p=2 _ o 2
A (w =) (3802 19 ) T gty + 9 PRI g T w)
By = B)bug(thy) — ¢ () [Vibs |
B2Y2 + | V', |

el (8202 4 [V ) |1+ ga +OGallg@lic):

(3.30)
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In this expression we have in particular

y o\ Bely = BIeg() — g W) [Vu]? ,
—div <Qﬁ¢3+*v¢*f) kp‘2) B2 + [V _g(wQ]V”m>

— (o i g (6) (8202 4190 F) T 9

—4

— Budiv ((ﬁfwf - \V’w*!2> O (p = 2)Buthd (1) + (p — 2) (7 — Bu)g()] ¢*>
= (0 - Dg"() (8202 + V) * [Vl
o= Vg oy (3202 970.%) 7 9. )

— (p— 2)B.dit/ (('Y — Ba)g (i) + ﬁ*g'(w*)wf) Vb |

(8202 + vel?) *

(3.31)
Using equation (3.26) satisfied by 1)y, it follows

.y L2 B3 Bi(y = Be)vsg (i) — ' (1) |V¢*|2 /
—div <(53w3+ V1), ) [(p—?) 3202 1 [V —g'(¢x)

= (=) (B2 + V) T (@I Bl (0)0)

V’¢*>

— (p— 2)B.dif (('Y — Ba)g (s )b + 5*91(7/}*)1/}3) Vb, | .

(8202 +vr) ©

(3.32)
Plugging this identity into the expression (3.30), we obtain after some simplifications

QY] = (5202 + V0) 7 g()QiIV] + eI RIV] + Ofa 16 ).
(3.33)

where

RIV] = et (8202 + 19, P)* (14

B2Y2 + Vi, [

@W—@@mmmwwﬂmnwmj

(3.34)
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and
T 0 D
_ w*g/(d}*)>> 5*¢* + ( _ 1)9/ (1/}*) |v/w*|2

QuV] = (v — Ag)(y — B.) [1+ b2

+ﬂp—®&Am%—0A%4<w—&<l

9(W) ) B2 + [V 9(¥)
g @) o ) zg"w*)} V.

(3.35)
In this expression the difficult term to treat is [(p — 4) 5. Ag, ¥« — 2A'1),] because of
its lack of sign. However At = O(1),) by (6.20).

Step 2: The perturbation method and computation with g(1.) = .. With such a
choice of function ¢

B2y?2

B2y2 + rw*\z}
V', [

B2Y2 + |V, >

QV] = (7 — As )y — ) [1 fp-2)
(3.36)
— (= 2)[(v — Ag,) B +29]

Equivalently

Bz

A=+ -z

} (7 = (Ap. + B4))

V', |

— — (B, +2)—MMMM
[(p ot )ﬁ$¢$+lv’¢*l2

+Wﬁ4

and finally

Bs

QI[V] = |:1 + (p - 2)52w2 n |V/7;Z)*|2

] o T = (Mg + Bet (9 — 2)(B +2)) + 0(2)]

(3.37)
Usingthefactthatﬁ>%if1<p<2and1<ﬁ<%if2<p<N(see
Appendix II), we have

A*—l-ﬁ*(p—l) lprQ
Mg +B+ =D +2) 2 . (3.39)
N+3(p—-2)>N-3 ifl<p<2
When N = 2, we have explicitly 8, = 1-#237 V(ii_l;w (see [19, Th 3.3]). Therefore for
all N > 2 and p > 1, there holds
Ap, + Bu+ (p—2)(B. +2) > 0. (3.39)

We fix ¢y > 0 such that, whenever v, < ¢y, there holds
1
Mg, + B+ (0= 2(Be +2) +0W?) > 5 (Ag. + B+ (p— (B +2).  (340)
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If we fix 79 > 0 such that

’yo<min{%(A5*+ﬂ*+(p—2)(,3*+2))71/,5*}, (3.41)

we obtain
Q1[V] < —min{l,p —1}yB?> V0 <7y <1, (3.42)

whenever ¢, < ¢, for some B depending only on p, ¢ and N (through ¢, and v),
which yields, in the same range of value of 1),

p—2

(8262 + 1V'0.P) * gV < —cows VO <y <0, (3.43)

for some ¢y > 0 depending on N,p,q. This estimate is valid whatever is p, but
only in a neighborhood of 1, = 0. If we replace g(1.) = ¥x by gr(hs) = Yse ¥
for 0 < k < 1, and denote by Q [V] the corresponding expression of Q;[V] which
becomes now Qj o[V]. We define similarly Q[V], and Q[V] becomes Qy[V]. Since
9 (s) = e M — kgp(vs) and g} = —2ke ¥ + k2g;(1h.), we obtain

gmmzQwWHw@—nmwwwuw4W}%+#)wwﬁ

+ (2= p)Be (—2k + K) ¢ + O(¢3)

Because V'), vanishes only at the North pole ey, there exists kg € (0, 1] such that

(3.44)

(2-p)+ B (—2k + K*) ¥ VEk < ko

k(1=p)Belp, Put(p—1) (ﬁ - k2> V'] > %

(un

whenever 1, < ¢y which yields

p—2

(8202 + IV'l?) 7 k(@) QualVI < —etk Yk <k (349)
for some ¢; = ¢1(N,p,q, €o). There exists ca = ca(N, p,q) > 0 such that

vt Bu(y = Ba)agr (i) — 92(1&*) |V, |
B2 + [V, |

q 2
(8202 + V') |1+ e <er (3.46)

in Sffl X (—00,1nd]. Moreover
Ofallg(@)llcz) < ey (347
for some ¢, = cx(N,p,q) > 0. We derive from (3.45)-(3.48)
e 1QL[V] < —c1k 4 cpe Mt 4 ety Vk < ko (3.48)

Thus there exists Ty, < In ¢ such that Qx[V] < 0, for all ¢t < T}, and provided 1, < €.
This local estimate will be used in the construction of the sub-solution when p > 2.
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Step 3: The case 1 < p < 2. Since the function 9* depends only on the azimuthal
angle 0 € (0; 5] we will write ¢, () = 1, (0) and V'i),(0) = 149(0)n where n is the
downward unit vector tangent to SV~! in the hyperplane going through ¢ and the
poles. From (6.8),

(3.49)

(p - 4)/8*AB*¢—2A/1/}* = (p - 2) (5*/&5*1/1* + 2M> )

B2YZ + 92
since 92y = [V'1b,|* and thus

By«
—4) B, Y — 20"),) —————
B3 BRT + eggths >
P2 MG g, T
(3.50)
From Theorem 6.1-Step 4 we know that 321, + 1.9y > 0, thus the contribution
of this term to Q;[V] is nonpositive. We replace this expression in Q;[V] with

g(w*) = 1)y, then

2
0V = (= 8a)r = ) (14 0= D355 )~ Mo 1)
o= 29hg ot (= 2) (B 2 — A )
B2 + 42, T B242 4 42,

B2YZ + hupgts 5
(8242 + ¢25)2 "+

ﬁ*% ) (Bs 4 2))025 — Ag, B21)7
<~v(1+ —Ag, —B)—(p—2

N ) (A1) fe_Aﬁ*ﬁfl/ff))
S'Y(”(p Do+, ><’V <A5*+ﬁ*+(p 2 <p—1>/3zwz+(w$9) |
3.51

+28.(p - 2)

We can write

(B« + 2)tb5 — Ap, BE2
R N B TR =TT
_ Qe+ (0= 1)B) B+ (N + B0 —1) +2(p —2) ¥y (3.52)
(p — D)B2YZ + 92,
> co (Ap, + Bu(p—1) +2(p — 2)).

This expression Ag, + Bi(p — 1) + 2(p — 2) is always positive: obviously if N > 3
and by using the explicit expression of g, if N = 2. Thus there exists 79 and ¢; > 0
such that Q1[V] < —¢; for 0 < v < 79. The pertubation method of Step 2, is valid
in the whole range of values of ¢, and we derive from (3.42)-(3.43) that (3.48) holds
for all k& < ko and t < T. Therefore Qx[V] < 0.
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Step 4: The case p > 2. For ¢ > 0 to be fixed and ¥, > €y, v € (0,7], we take
g(y) = 01/1* . Then we derive from (3.35):

_ (0= D202 +]9".
QY] = (0 A )y~ s BB Tl s, (1- 1)

_ 11— ’
(- 1)%% R Vip|* — (p = 2) (B — ) (v — Aﬁ*)%
_ (1 _p) [7(5* _ ’Y) + %wzl_& 1][)*|2:| .

(3.53)

1—X .
For k < ko we fix ¢ such that ce P = gge 0 = ¢ = 663* e~*< and we define ¢ by

a Yo R if 0 <1, < e
g(1,) = min {w e ke ﬂ* ekeoq), }z

1—2L
) eikeow* fe it €0 < <1,
(3.54)
and we set V (t,0) = ¢*(0) — a(t)g(1«(0)) with (t,0) € (=00, Tj] x S ! and define
i(r,0) = r= % (¢* (o) — a(e!)g(¥«(c))) accordingly for (r,o) € (—oo,e’*] x SN 1.
Since v, is a decreasing function the coincidence set {0 € ST ! : 9. (o) = 60} is a
circular cone ¥y, with vertex 0, axis ey and angle 6y. We set Ry = ek

) = {x:(r,ﬁ) € B} 100 <0< g} :{(7",0) [0, Ro) x S¥1:0 < (o) <60},
Iy = {x:(r,ﬁ) € B}, :o<a<ao} :{(r,a) €0, Ro) x S¥ 11 ep < . (0) < 1},

and define
a(r,0) =P (Pu(0) = r7g(1(0)))
uy(r,0) = 1P (1 — e k= (@))y, () if (r,0) e I'y

ug(r,o) = r— P+ <1 — T“/egi*e_km(qb (o ))1> (o) if (r,0) € I's.

The function @ is a subsolution separately on I'y and I's and is Lipschitz continuous
in 2\ {0}. If we denote by g; and g the restriction of g to I'; and I'y respectively,
that is to Q1 and Qq, then ¢} (eo) > g5(eo) > 0. Let ¢ € C(}(BEO) which vanishes in
neighborhoods of 0 and 8BEO, ¢ >0, then

[ varEvavce s [ vt < [ [Duo,ucds. @)
i Qi oo
where n; is the normal unit vector on ¥4, outward from I';. Actually, np = —n; =n

thus
Vi = e+ 11— g (4.)) Vb = Gre + 71— 17g (1)) ibug n.
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and on Yy,,

B { Upe — 7“*5**1(1 —1r7g}(€0)) g1 in I’y
Va =

Upe + 7“*5**1(1 —1r7gh(€0)) g 1 in 'y

Therefore

p—2

Vg [P~ Oy uy = —r 71 (1-17g](e0)) <ﬁ72~ +r 22 (1 - 7”91(60))21/139) oy inTy

and
p=2
|Vus ’p—Z Onyun = riﬁ**l(l—r'ygé(eo)) (ﬁf + 7“726*72(1 — r“’gé(eo))%pf@) 2 1y in Do.

By adding the two inequalities (3.55)

/Q |ValP 2 Va.Vide + /Q |Vl ¢dr < /E <|vu1|p*2 Onyu1 + [Vug|P™? anqu> ¢ds.
6
’ (3.56)

o
2

By monotonicity of the function X (ﬂ% + X 2) and since

r PN L = 1gh(e0)) = P =17 (e0)) 2 0,

we derive

p—2

PO = ghlea) (3 + 7221 = g ()R
p=2
= (1 = g () (7 + 1221 = g () P02)

We derive that the right-hand side of (3.56) is nonpositive because ¥, < 0, and
therefore @ is a positive subsolution of (1.1) in BEO dominated by W, and satisfying
(3.24). O

Proof of Theorem 3.6. Let M = max{W,(z) : € OB}, }, then M = RJB*. The
function u* defined by

ey (a(z) = M) if z € Bj,
“(x)_{ 0 if 2€Q\ B,

is indeed a subsolution of (1.1) in whole © where it satisfies u* < W, and it vanishes
on 09\ {0}. Since @, is a positive p-harmonic function in € which vanishes on
00\ {0} and satisfies (3.21), it is supersolution of (1.1) and therefore it dominates
u*. Therefore there exists a solution u of (1.1) in € which vanishes on 99\ {0} and
satisfies u* < u < ®,. This implies that (3.20) holds with & = 1 and we conclude
with Lemma 3.8. O

When p = N the statement of Theorem 3.6 holds without the assumption on
0f).
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Theorem 3.10 Assume N —1 < g < N + % and Q0 be a bounded C?* domain such
that 0 € 0. Then for any k > 0 there exists a unique positive solution u = uy
of (3.18) in 2, which belongs to C1(2\ {0}), vanishes on 9\ {0} and satisfies
uniformly with respect to o € S_],Y*l

lim  |z]ug(z) = 0. (3.57)
z—0
xz/|z| = o

Since p = N, B, = 1 and ¢, (0) = % = cosfy_1 with the identification of o
and On_1 := 0. We recall that if w € RY and Z,, denotes the inversion of center w
and power 1, i.e. Z,(z) =w + ﬁ, then @ = u o Z,, satisfies (3.19).

Lemma 3.11 Assume Q be a bounded C? domain such that 0 € 9. Then there
exists a unique N-harmonic function ®, in Q, which vanishes on 9Q \ {0} and
satisfies

lim  |z]| Pu(z) = 0o, (3.58)

z—0
z/|z| — o

uniformly with respect to o € Siv_l.

Proof. Uniqueness is standard. Let w = —ey € Q°, with the notations of the proof

of Theorem 3.5, w' = —w, a = —iey and @ = —a. We can assume that the

balls Bi(a) and Bi(a’) are tangent to 9 at 0 and respectively subset of Q¢ and
2 2

Q. The function x — ¥(x) = —@—‘Ng which is N-harmonic in RY and vanishes on

ORY=1\ {0} is transformed by the inversion Z,, of center w’ and power 1 into the
function ¥, = ¥ o Z,, which is positive and N-harmonic in Bi(a’) and vanishes on
2

OB (') \ {0}. The function ¥ = —¥ which is N-harmonic in RY and vanishes on
2

ORf_l \ {0} is transformed by the inversion Z,, of center w and power 1 into the
function W, = ¥ o Z,, which is positive and N-harmonic in B¢ (a) and vanishes on
2

aB% (a) \ {0}. For e > 0 we denote by ®, the solution of

o, =0 in (B (a') NOB:) U (9Q N BY) (3.59)
2

(bE = \I/w/ in Bl (a/) m 835-
2

fo<ée <e s >V, in Bi(a')NIBe, thus o > & in QN BE. We also denote
2
by U, the solution of

—And. =0 in QN B¢
d.=0 in 9Q N B¢ (3.60)
o =10, in QN aBe.
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In the same way as above

0<é <e= b, <D, in QNIB°

Using the explicit form of ¥, 7, : © — w + ‘;::;"2 and Zy :x — ' + ﬁ we see
that 1+
€
Vor LB, (@ynoB. < T YulBy (@)noB.:

2 — € 2
thus 1+

e < 5 ‘b, inQnB.

—€

Letting € — 0 we conclude that ®, converges uniformly in Q \ {0} to ®, which
vanishes on J€2 \ {0} and satisfies (3.58). O

The proof of the next statement is similar to the one of Lemma 3.8 up to some

minor modifications.

Lemma 3.12 Let the assumptions on q and 2 of Theorem 3.10 be satisfied. If for
some k > 0 there exists a solution uy of (3.18) in , which belongs to C*(Q\ {0}),
vanishes on O\ {0} and satisfies (3.57), then for any k > 0 there exists such a
solution.

Lemma 3.13 Under the assumptions of Theorem 3.10 there exists a Lipschitz con-
tinuous nonnegative subsolution 4 of (3.18) in Q which vanishes on O\ {0}), is
smaller than ®, and satisfies

lim  |z|u(z) = o, (3.61)
z—0
z/|z] = o

uniformly with respect to o € S_],Y*l.
Proof. Let T > 0 to be fixed and let w be the solution of

~Ayw+|Vw|f=0  inB; (3.62)
which vanishes on 0B, \ {0} and satisfies

lim |z|w(z) =0 (3.63)
z—0
z/|lx| = o

in the C''-topology of S~ 1. Its existence follows from Theorem 3.6 and this function

is dominated by the N-harmonic function ®, corresponding to this domain obtain

in Lemma 3.11. By Z,/, the half-ball By is transform into the lunule G = Bi(d’) \
2

B%(gw’) and w = w o I, satisfies

—Ayw+ |z - PNVET=0  inG. (3.64)
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Since [z —w'| <1in G, —Ayw + |[Vw|? <0 in G. We extend w by 0 in Q\ G and
the resulting function @ is a subsolution of (3.18) in € which vanishes on 92\ {0}),
is smaller than the N-harmonic function ®, obtained in Lemma 3.11, and satisfies
(3.61). 0

The proof of Theorem 3.10 is similar to the one of Theorem 3.6.

4 Classification of boundary singularities

We assume that Q ¢ RY is a C? domain and 0 € 9. Furthermore, in order to
avoid extremely technical computations, we shall assume either that 02 is flat near
0 or p= N. We denote RY = {x = (2/,zy),zx > 0} and suppose that the tangent
plane to 9Q at 0 is ORY = {x = (2’,0) and the normal inward unit vector at 0 is ey,
therefore n = —ey in the sequel. We denote by wg the unique positive solution of
(3.1) in Sivfl and by Uy the corresponding singular solution of (3.1) in RY defined
by

x

Ug(z) = |z| 71 wy(—). (4.65)

|z
We denote by 1, a the unique positive solution of (3.2) with maximum 1 and by W,
the corresponding p-harmonic function

U,(z) = |a| > ¢*(£—’). (4.66)

Proposition 4.1 Assume N —1<qg< N — % and Q is a bounded C? domain with
0 € Q. Then for any k > 0 there exists a unique u € C(Q\ {0}) N CY(Q), u > 0
solution of (3.18) in Q which vanishes on O\ {0} and satisfies

lim dQ(m)ukT(x) ~ k. (4.67)
z— 0
z €

Next we can study the link between weak and strong singularities.

Proposition 4.2 Under the assumptions of Proposition 77 there exists limy o0 up =
Uoo which is the unique element of C(Q\{0})NCL(Q2) vanishes on OB; \{0}, satisfies
(1.1) in Bf and

lim oo ()

20 Ug(x)

= 1. (4.68)

Proof. Uniqueness follows from (4.68) and the maximum principle. For existence,
since the mapping k& — g is increasing and wui < Uy, there exists limy o up 1=
Us < Us and us € C(2\ {0}) N C(Q). It vanishes on dB; \ {0} and satisfies

(1.1) in B;r. In order to take into account the domain B;r in the notations, we set
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up = ug,s. Since the mapping 6 — uy, s is also increasing and uy s < kW, there also
exists lims_yo0 Uk 5 := Uk,0o < kW, Then, for all £ > 0,

Tolug 5](z) = PPauy 5(0x) = UpgBa p-15(T). (4.69)
Letting k£ — oo, we obtain

Tyt 5)() = P 5(0x) = ugg p-15(2), (4.70)
and letting  — oo, we obtain

To[thoo,00) (%) = €590 0 (£) = U o0 (). (4.71)

Thins implies that
Uso,00 (T, 0) = r_ﬁqw;(a), (4.72)

and w’, is a positive solution of problem (3.1). Therefore w’ = ws by Theorem 3.2.
If we let £ — 0 in (4.69) and take |x| =1, z = o, we derive

lim Py, 5(0,0) = lim ugg p-15(1,0) = too o (1,0) = w(0). (4.73)
=0 =0 ’

This convergence holds in Cl(Sivfl) because of Lemma ?7. This implies (4.68).
(]

Similarly we have

Proposition 4.3 Under the assumptions of Proposition 4.1 there exists limg oo ur =
Uso which is the unique element of C(Q\ {0})NC' () which vanishes on dB; \ {0},
satisfies (3.18) in Q0 and
lim Yo (x)
im

z—0 US(.%')

=1. (4.74)

Theorem 4.4 Assume 1 <p < N, B, > B« and QN Bs = {x = (2/,0) : |z|' < 6},
for some 6 > 0. If u € C(Q\ {0}) NCL(Q) is a positive solution of (1.1) in Q which
vanishes on 0Q\ {0}, then we have the following alternative

(i) either there exists k > 0 such that

_u(x)
lim 55 = (4.75)

(ii) or

u(r)
31:13%] U] 1. (4.76)
Proof. Step 1. Assume
e u(T)
ll;rl;nf 7. () < 00, (4.77)



then we claim that (?7) holds. We first note that if 4.77 holds, there also holds

lim inf u(z)
z—0 Uy (m)

< 00, (4.78)

where u; is the solution of (1.1) obtained in Proposition ?? with & = 1. If {x,} is
converging to 0 and such that

i inf 4E) _ g = iy )
x—0 ul(x) n—0 ul(xn)

)

there also holds by the boundary Harnack inequality (2.34)

u(@n) _ ulzn) d(za) o ul(@)
uy(xy) dxy) uy ()

Vo s.t. |z = |z,].

This implies in particular
u(z) < 2k + en)uy () Ve s.t. |z = |z,

where {€,} is converging to 0, and by comparison principle

u(z) < Kuy(x) Vo € RY sit. |o,] < |z| <

[\3|0'1

for some K > 0 and all n € N,. Therefore

lim sup u(z)
z—0 Ul (x)

< 0. (4.79)

We can assume that k # 0, otherwhile (4.75) holds with & = 0 and actually u
remains bounded near 0. As a consequence, there exists K > 0 such that

u(r) < KV,.(x) Vae BY. (4.80)

3
Let m = max{u(z) : |z| = 0}. For 0 < 7 < 0 we denote by k; the minimum of the
k > 0 such that u(x) < kW, (x) + m for 7 < |z| < 6. Then u(z) < kU, (z) + m,
and either the graphs of the mappings u(.) and k;¥,(.) + m are tangent at some

BJr \ BT7 or they are tangent on the boundary of the domain, and the only
p0881b1hty is that they are tangent on |z| = 7. Since

V@ () = | 70D (720 + V),
it never vanishes. If we set w = u — (k; V. (x) +m), then

—Lw + |[Vu|? =0 (4.81)

£=% 5 (o)

35

where the operator



is uniformly elliptic in a neighborhood of x, (see [16, Lemma 1.3]). Furthermore
w < 0 and w(z,) = 0 by the strong maximum principle Vu(z;) must vanishes,
which contradicts the fact that Vu(z,) = Vw(z,) by the tangency condition, and
Vw(x;) # 0. Therefore |z,| = 7 and 2, ¢ ORY. If 7/ < 7, k; < kv, and we
set k = lim,;_,0kr, which is finite because of (4.80). There exists {7,} such that

oy = 7-_1xTn — 9. Furthermore

rPu(r, o) < krpy(o) +mrP ifr <r <6 and 7%u(r,0.) = kb (0r) + mrPs.
(4.82)
Put
ur () = ™ u(rz) (4.83)
Then
—Au, + P70 gy 1T =0 in BY\ {0}

and, by (4.80),
0<u,(z)<Klz| P  inB%\ {0}
2T

By Lemma 7?7, there holds the set of functions {u,(.)} is relatively compact in
the C}. topology of RY \ {0}. Therefore, there exists a sequence {7} C {7}
converging to 0, and a positive p-harmonic function v in Rf , continuous in Rﬂ\_] \ {0}

and vanishing on ORY \ {0}, such that u,; — v, and v satisfies (4.80) in R \ {0}.
By Theorem 5.1 v is separable, therefore there exists k* such that v = £*W,. In
particular,

l/iglo urr (1,0) = k™ iy (o) (4.84)

in the C1(SY ') topology. Combining (4.82), (4.83)and (4.84) we conclude that
k* =k and
im 7% u, (1,0) = k(o) (4.85)

7/, —0

Using Proposition 77, it is equivalent to

=0 ug (7}, 0)

=1 (4.86)

uniformly on Siv ~1. For any € > 0, there exists n. > 0 such that n > n, implies
uk—e(TrIwO-) < U(Trlwo-) < uk:-l—e(T?/w U)

By comparison principle,

Up—e Su < upye+m  in B\ B, (4.87)

and finally
Uk—e < U< Upre +M in B;, (4.88)
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Since € is arbitrary and using again Proposition 77, it implies

u(r, o)

lim

=k 4.
r—0 Wy (r, o) ’ (489)

locally uniformly on S™~!. But since the convergence holds in C’l(Sf*l), (4.75)
follows.

Step 2. Assume

u()

@ = (4.90)
For any 0 < € < § and k£ > 0, there holds
ug(z) < u(z) < wve(zx) in B \ B (4.91)

where v, has been defined in (3.12), and letting € to 0 a,d k — oo, we derive
Uso () < u(z) < wvo(x) in B; \ {0}. (4.92)

We have seen in Theorem 3.3 that vy is a separable solution of (1.1) in RY which
vanishes on ORY \ {0}, therefore vy(z) = Ug(x). This implies

oo () < u(z) < |z| P ws(%) in B; \ {0}. (4.93)

We conclude using Proposition 4.2. O

When p = N, the assumption that 9€2 is an hyperplane near 0 can be removed
and the following result holds. Its proof is similar and based upon the use of Theo-
rem 3.10.

Theorem 4.5 Assume N —1<q< N —1 Ifue C(Q\{0})NCHR) is a positive
solution of (3.18) in Q which vanishes on 0\ {0}, then we have the following
alternative

(i) either there exists k > 0 such that (4.75) holds,
(i) or (4.76) holds.

5 Appendix I: Positive p-harmonic functions in a half
space

We recall that RY = {z = (2/,2n) : 25 > 0}. In this section we prove the following
rigidity result.

Theorem 5.1 Assume 1 <p < N and u € C*(RY)N C(@\ {0}) is a positive p-
harmonic function which vanishes on ORY \ {0} and such that |z Bew(z) is bounded.

Then there exists k > 0 such that

u(z) = k¥, () vz € RY. (5.1)



Proof. Since |z|? u(z) is bounded, |z|** ™! Vu(z) is also bounded and there exists
m > 0 such that u(z) < m¥,(z) in Bf. We denote by k the infimum of the ¢ > 0
such that u(z) < ¢¥g(z). Then

0 <u(x) <kVU.(x) vz € RY\ {0} (5.2)

and we assume that k > 0 otherwhile u = 0. Assume that the graphs over RY) of
the functions = — u(z) and z — kVUg(x) are tangent at some point zp € RY or
zo € ORY \ {0}. Since VWg never vanishes in Ef \ {0} it follows from the strong
maximum principle or Hopf boundary lemma that v = kW,. If the two graphs are
not tangent in @f \ {0}, either they are asymptotically tangent at 0, or at co.

(i) In the first case there exists two sequences {k;} increasing to k and {z,} C RY

converging to zero such that 552;‘3) = k. We set r, = |zp| and uy, (2) = r u(rpz).

Then u,,, is p-harmonic and positive and 0 < u,., (z) < k |z| =% ¢*(ﬁ), therefore

\Vu,, (z)] < Clz|™7! and |V, (z) = Vu,, (2')| < C - |z — 2| (5.3)

for 0 < |z| < |z|" and some constants C' > 0 and « € (0,1). Up to a subsequence,
topology of @f \ {0} and = = £ € Sivfl.
The function U is p-harmonic and positive in Rﬂ\rf and satisfies 0 < U < k¥, in Rf
and U (&) = kW,.(€) if € € SN or Uy (€) = ks, (€) if € € OSY L. Tt follows from
the strong maximum principle or Hopf boundary lemma that U = kWV,. Therefore
uy, — kW, and in particular

we can assume that u,, — U in the C}. |

lim T,ﬁl*u(rn, o)

rn—0 ¢*(O')

For any € > 0, there exists n. € N, such that for n > n., (k —¢€)V.(z) < u(x) <
(k+ €)W (x) if |z| = r,,. Which implies (k —€)U,(z) < u(z) < (k+¢€)¥, for x| > r,
and therefore in RV Since ¢ is arbitrary, we deduce that v = k,.

=k uniformly on S ! (5.4)

(ii) if the two graphs are tangent at infinity, there exist two sequences {k, } increasing
to k and {x,} such that r,, = |x,| — oo with u(z,) = k, V. (z,) and

B
. rpulr,, o) B . N_1
Tili)noo ) k  uniformly on S . (5.5)
Therefore we look at the supremum of the ¢ > 0 such that u > ¢W¥,. If the set of
such c is empty, it would means that

inf u(@)

=0.
$ER_']Y \I/*(I')

Clearly, if this infimum is achieved at some point, the strong maximum principle or
Hopf boundary lemma imply u = 0, contradicting (5.5), and this relation prevents
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also this infimum be achieved at infinity. We are left with the case where there exists
a sequence {z,} C Rf , converging to 0, such that

u(zn)

li = 5.6
o0 W (20) (5.6)

By boundary Harnack inequality [5, th 2.11], there exists ¢ > 0 such that
1) ule) B jY G 2 ) (5.7)

U (2) = Uulzn) = Uu(z)
Combining (5.6) and (5.7), we derive that

. u(z)
| =0 5.8

Denoting by ¢, the infimum in the above relation, we obtain that u < ¢,V, in
RY \ B, and finally u = 0, contradiction. Thus we are left with the case where
there exists k' € (0, k] which is the supremum of the ¢ > 0 such that u > ¢V,. In
particular v > k'¥,. Remembering that u < k¥,we obtain that k& = k' implies
u=kW,.

Next we assume that &’ < k. Clearly the graphs of v and &'W, cannot be tangent
in @f, because of strong maximum principle or Hopf boundary lemma. They cannot
be tangent at infinity because of (5.5). Therefore there exists two sequences {k/,}

increasing to k" and {z],} C Rf converging to 0 such that %ﬁ,)) = k!,. As in Case
(i) we obtain that
,ﬁ* /
lim rnulry, o) =K' uniformly on SY (5.9)
r,, —0 Py (0’)
where r], = |z}|, and finally derive that u = k'U,, a contradiction with (5.5).
Therefore k = £/, which ends the proof. O

Remark. Inthe case p = N the result holds under the weaker assumption lim|,|_,, u(x) =
0. This is due to the fact that this condition implies by regularity

u@

lim
ol 00 ws (f37)

and therefore

u(z) <mPy(x)Ve st. |z) > 1
u(z)

WS(\_%).

estimate u < mW¥, holds RY, and we conclude by Theorem 5.1.

where m = max|,—; Using the inversion z +— #, we obtain that the

Remark. We conjecture that the rigidity result holds under the mere condition

lim |$|7B* u(z) =0, (5.10)

|x]—o00
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were B* is the exponent (positive) corresponding to the regular spherical p-harmonic

function under the form ) o
V. = o] P (), (5.11)
x|
see [29], [25]. When p = N, B, = 1.

6 Appendix II: Estimates on [,

When N =2 and 1 < p <2, it is proved in [19] that
3 — 2/p% -5 7
_2TPYevp —op+ T (6.1)
3(p—1)

Up to now no estimate is known when N > 2 except in the cases p = 2 where
B« =N —1 and p = N where 3, = 1, besides the classical one

B

N —
By > — f7 (6.2)
valid when p < N. In this section we prove the following result
Theorem 6.1 Assume 1 < p < N. Then the following estimates hold
N -1
l<p<2= B> (6.3)
p—1
N — N -1
2<p< N = maxql, P < B < —— (6.4)
p—1 p—1
N—1

Remark. It is worth noticing that when p =2 or p = N, there holds S, = o1
Proof of Theorem 6.1. We consider the following set of spherical coordinates in Rf
with = (21, ...,zN)
1 =rsinfy_1sinfpn_o...sin 0y sin 64
r9 =rsinfy_1sinfy_s...sin b cos d;
: (6.5)
TN_1=7rsinfOn_1cosOn_o
TNy =rcosfy_1
with 61 € [0,27] and 6y € [0,7] for k = 2,..., N — 2 and Oy_1 € [0, F]. Under this
representation, a solution w of (3.2) verifies
1
sinV 20N

p—2
1 2
. N-2 2 2 2 2
sin On_1 W+ w + ——— |Vouw] Wo
[ ( * On_1 San 6N—1 N-1 .
N-1

p—2

1 2
divg |sin?V =260y 202 4+ W2 + — Vow|? YVorw
0 [ N—-1 ( * 91\/_1 Sin2 GN_l | % | 0

1
sin2 6N—1
1 =
sinV 20y < 2w? + ngil +— \Vg/w\2> w]

= *A
B, sin? O

(6.6)
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where Vg and divg: denotes respectively the spherical gradient the divergence in
variables 0/ = (01, ..., _2) parametrizing SV 2 and Ag, = Bu(p— 1) +p— N. Ifw
is the unique positive solution of (3.2) (up to homothety), it depends only on Ox_1
and is C*°. For simplicity we set Oy_1 = 6 € [0, 5] and w = w(0) satisfies

—2

1 p—2
— B.As, [smm 0 (B2? +u2) T w

—2
) 2 2 2\ 5=
—— sin 0 (Piw” +w;) 2 wy
SlIlNiQH ( * 9)

0
in (0, 5)

w(§) =0, wp(0) =0.
(6.7)
Step 1: The eigenvalue identity. Equation (6.7) can also be written under the form
,32(4} +wes o
—wpg — (N —2)cot Qwy — (p — Q)Mwe = Bil\gw (6.8)
Since

z . N—2 z )
—/ (wpg + (N —2) cot Qwy) cos @sin” = 0dh = (N — 1)/ wcosfsin” ~“0db,
0 0
we multiplying by cos #sin’¥=2 6 and integrate on (0, % ). Noticing that
N -1

5*A5*+1_N:(p_1) <B*_F> (/8*+1)

we derive

us
T a9
2 Biw + weg N
ﬁw%wces@sm]\[ 20dp
0 Biw?+ wj

=(p—1) (B*—

Step 2: Elliptic coordinates and reduction. Writting w(f) = w(0) + af? + o(6?),
wp(0) = 2ab 4 o(#) and wpp(P) = 2a+o(1), then —Na = ,Ag,. This implies that w
is decreasing near 0. It is immediate that it cannot have a local minimum in (0, %),
therefore it remains decreasing in the whole interval. We parametrize the ellipse

(2-p)
(6.9)

E) (B« + 1)/2u}cos«9sinN_2 0de.
p—1 0

Er={(z,y) 0 >0,y <0, 2% + 572" =%}
and set w = rcos ¢ and —wy = Brsin ¢, with ¢ = ¢(0) and r = r(#); r and ¢ are C*
functions. Hence rg cos ¢ — rsin ¢p¢g = —fr sin ¢, then g cos ¢ = (g — ¢)rsin ¢ and
rg = (g — B)rtan ¢. Plugging this into (6.9), we derive
- <(p - 1)%0 + ¢g cot ¢ + (N — 2) cot 9) + Ag, cot ¢ =0, (6.10)
and finally

(b — 1)(é6 — B) tan 6+ (69 — As. ) cot ¢ = (2 — N) cot 6. (6.11)
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Step 3: Estimates on ¢g. We can write (6.11) under the equivalent form

cos f sin ¢

(p—l)(qﬁg—ﬂ)taanﬁ—i—(bg—Ag* =(2—-N)

cos ¢ sinf’

Since 0 5
sin cos

li =i = 0

61—% sin 0 61—% cos 9¢9 96(0)

we derive ¢y(0) — Ag, = (2 — N)¢p(0) and thus

Ag,
N-1

¢6(0) =
Similarly, the expansion of ¢(f) near § = § yields to
P9(5) = B
Since p < N, Ag, /(N —1) < B.. We claim now that
da(0) < B VOE(0,5).
If Ag, < P, then

(6.12)

(6.13)

(6.14)

(6.15)

(2=N)cot 8 = (p—1)(¢g — ) tan ¢+ (¢g — Ap, ) cot ¢ > ((p—1) tan ¢+ cot ¢)(d — )

thus (6.15) holds.

Next we assume 5, < Ag,. It means 0 < (p — 2)f, — (N — p) and thus p > 2. We

(6.16)

(6.17)

claim that
N —2
B <
p—2
We proceed by contradiction and assume
N —2
B> "5
Then
N—p N —2 N —2
-2) (5 - Y — =(p—2 DB ———=]>0.
o-2 (8- 328 -T2 ) = -2 (8- 27 >
Equivalently
ﬂ*(Ag* — ,8*) >N — 2.
Since p " .
lim cot ftan ¢ = lim %Y _ tim & = —
0—2 0—TCosSp 0T ppsing [y
and
cos 0 sin ¢

(p—1)(¢o(0) — B.) tan® ¢ = Ag, — dp(0) + (2 — N)
1
" B

cos ¢ sin 0

(B+(Ag. = B+) +2—N) +0(1)
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if follows that (6.17) is equivalent to the fact that there exists € > 0 such that
¢(0) > 5 for any 0 € [§ — ¢, 5). Since ¢p(0) < S, there exists 6 € (0, 5) such that
b9(0) = ﬁ and ¢gg(6) > 0. We compute ¢gg and get

(p — 1)pa(0)(9(0) — B) sec® p(0) + (p — 1)dpg(0) tan ¢(6) + pea(6) cot ¢(6)
— ¢9(0)(09(0) — Ap.) csc? 4(0) = (N — 2) csc? 6

Hence, at § = 0

(0 — 1)éuo (@) (p — 1) tan $(8) + cot (B)) = B (Bs — As.) csc H(8) + (N —2) csc
From (6.11),

N — ~
cot ¢(f) = Ag 5 cot 0

Therefore
(p—1)¢a(0)

:<1
Bi(

p — 1) tan ¢(8) + cot ¢(6))

(¢
N —2 \?2 . o
+ <A5* 5*> cot 9) B (Be _AB*) + (N = 2)(1 + cot? )

_ (N —2)? _
- *ﬁ*_AB*)‘FN—Q—]\(fw—L—VQ—;V)C0t29
=—-(p-2)(B:+1) (ﬁ* - p—_2> - A5 :5* (Bo(N —1) — Ag,) cot?

<0,
(6.18)
using (6.17) and the fact that N > p. This is a contradiction, thus (6.16) holds and

there exists € > 0 such that ¢p < fi in [§ — €, F).

We claim now that ¢p < B, in [0,F). If it is not true, there exist 1 < 6y < §
such that ¢g(01) = ¢g(02) = Bs, dpa(01) > 0, ¢pp(61) < 0, since Cauchy-Lipschitz
theorem applies to equation (6.11) in (0,5). We put ¢(61) = ¢1 and ¢(62) = ¢o.
Using the equation satisfied by ¢gg, we obtain for ¢ = 1,2,

((p — 1) tan ¢; + cot ¢;) pgg(6;)

_ 6.19
:(2—p)(ﬁ*+1)<ﬂ*—]§_22>—1\;\i ﬁ*(ﬁ*( O WP P

Since cot is decreasing in (0, 5), cot? ; > cot? fy, hence

0< ((p — 1) tan ¢1 + cot (bl) ¢99(91) < ((p — 1) tan ¢9 + cot (bz) ¢99(02) <0

a contradiction. Therefore ¢y < B, in (0, ).
Step 4: End of the proof. Since r? = 2w? + wg, ro = r(¢pg — Ps) tan ¢, thus

rrg = (ﬁfw + wpg) wp = r(dg — Bs) tan ¢.
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Since wg < 0 on (0, ), it follows from Step 3 that 2w 4 wgg > 0 and finally
T a2
/2 %w%w cos 0 sinV =2 0df > 0.
0 5*"‘) + Wy
The conclusion follows from (6.9). O

Remark. Since wy(%) = —c* <0, it follows w(f) = —wp(8) cot 6 +O(% — 6) and from
the eigenfunction equation (6.8)

53&) + chgg 2 2
Bt 4wl (Biw + weg) (1 + o(1)).

Therefore

—(p— Dwgg = (Buhg, + (p—2)B2+2 — N)w(l +0(1)) as 6 — g

and since A'w := wgg + (N — 2) cot G wy

Al Be(Be(2p = 3) +pp—_N1) FP=2DWN=2) L o1) s g

Because w is C'*° we obtain finally
|A'w| < cw, (6.20)

for some ¢ > 0.
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