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ABSTRACT

Automatic timbre characterization of audio signals can

help to measure similarities between sounds and is of in-

terest for automatic or semi-automatic databases indexing.

The most effective methods use machine learning approa-

ches which require qualitative and diversified training data-

bases to obtain accurate results. In this paper, we intro-

duce a diversified database composed of worldwide non-

western instruments audio recordings on which is evalu-

ated an effective timbre classification method. A compar-

ative evaluation based on the well studied Iowa musical

instruments database shows results comparable with those

of state-of-the-art methods. Thus, the proposed method

offers a practical solution for automatic ethnomusicologi-

cal indexing of a database composed of diversified sounds

with various quality. The relevance of audio features for

the timbre characterization is also discussed in the context

of non-western instruments analysis.

1. INTRODUCTION

Characterizing musical timbre perception remains a chal-

lenging task related to the human auditory mechanism and

to the physics of musical instruments [4]. This task is full

of interest for many applications like automatic database

indexing, measuring similarities between sounds or for au-

tomatic sound recognition. Existing psychoacoustical stud-

ies model the timbre as a multidimensional phenomenon

independent from musical parameters (e.g. pitch, dura-

tion or loudness) [7, 8]. A quantitative interpretation of

instrument’s timbre based on acoustic features computed

from audio signals was first proposed in [9] and pursued

in more recent studies [12] which aim at organizing au-

dio timbre descriptors efficiently. Nowadays, effective au-

tomatic timbre classification methods [13] use supervised

statistical learning approaches based on audio signals fea-

tures computed from analyzed data. Thus, the performance

obtained with such systems depends on the taxonomy, the

size and the diversity of training databases. However, most
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of existing research databases (e.g. RWC [6], Iowa [5])

are only composed of common western instruments an-

notated with specific taxonomies. In this work, we re-

visit the automatic instrument classification problem from

an ethnomusicological point of view by introducing a di-

versified and manually annotated research database pro-

vided by the Centre de Recherche en Ethno-Musicologie

(CREM). This database is daily supplied by researchers

and has the particularity of being composed of uncommon

non-western musical instrument recordings from around

the world. This work is motivated by practical applications

to automatic indexing of online audio recordings database

which have to be computationally efficient while providing

accurate results. Thus, we aim at validating the efficiency

and the robustness of the statistical learning approach us-

ing a constrained standard taxonomy, applied to recordings

of various quality. In this study, we expect to show the

database influence, the relevance of timbre audio features

and the choice of taxonomy for the automatic instrument

classification process. A result comparison and a cross-

database evaluation is performed using the well-studied

university of Iowa musical instrument database. This pa-

per is organized as follows. The CREM database is in-

troduced in Section 2. The timbre quantization principle

based on mathematical functions describing audio features

is presented in Section 3. An efficient timbre classification

method is described in Section 4. Experiments and results

based on the proposed method are detailed in Section 5.

Conclusion and future works are finally discussed in Sec-

tion 6.

2. THE CREM ETHNOMUSICOLOGICAL

DATABASE

The CREM research database 1 is composed of diversified

sound samples directly recorded by ethnomusicologists in

various conditions (i.e. no recording studio) and from di-

versified places all around the world. It contains more than

7000 hours of audio data recorded since 1932 to nowadays

using different supports like magnetic tapes or vinyl discs.

The vintage audio recordings of the database were care-

fully digitized to preserve the authenticity of the originals

and contain various environment noise. The more recent

audio recordings can be directly digital recorded with a

high-quality. Most of the musical instruments which com-

1 CREM audio archives freely available online at:
http://archives.crem-cnrs.fr/



pose this database are non-western and can be uncommon

while covering a large range of musical instrument families

(see Figure 1(a)). Among uncommon instruments, one can

find the lute or the Ngbaka harp as cordophones. More un-

common instruments like Oscillating bamboo, struck ma-

chete and struck girder were classified by ethnomusicolo-

gists as idiophones. In this paper, we restricted our study

to the solo excerpts (where only one monophonic or poly-

phonic instrument is active) to reduce the interference prob-

lems which may occur during audio analysis. A descrip-

tion of the selected CREM sub-database is presented in

Table 1. According to this table, one can observe that

this database is actually inhomogeneous. The aerophones

are overrepresented while membranophones are underrep-

resented. Due to its diversity and the various quality of

the composing sounds, the automatic ethnomusicological

classification of this database may appear as challenging.

Class name Duration (s) #

aerophones-blowed 1,383 146

cordophones-struck 357
1,229

37
128cordophones-plucked 715 75

cordophones-bowed 157 16

idiophones-struck 522
753

58
82idiophones-plucked 137 14

idiophones-clinked 94 10

membranophones-struck 170 19

Total 3,535 375

Table 1. Content of the CREM sub-database with duration

and number of 10-seconds segmented excerpts.

3. TIMBRE QUANTIZATION AND

CLASSIFICATION

3.1 Timbre quantization

Since preliminaries works on the timbre description of per-

ceived sounds, Peeters et al. proposed in [12] a large set of

audio features descriptors which can be computed from au-

dio signals. The audio descriptors define numerical func-

tions which aim at providing cues about specific acoustic

features (e.g. brightness is often associated with the spec-

tral centroid according to [14]). Thus, the audio descriptors

can be organized as follows:

• Temporal descriptors convey information about the

time evolution of a signal (e.g. log attack time, tem-

poral increase, zero-crossing rate, etc.).

• Harmonic descriptors are computed from the detected

pitch events associated with a fundamental frequency

(F0). Thus, one can use a prior waveform model of

quasi-harmonic sounds which have an equally spaced

Dirac comb shape in the magnitude spectrum. The

tonal part of sounds can be isolated from signal mix-

ture and be described (e.g. noisiness, inharmonicity,

etc.).

• Spectral descriptors are computed from signal time-

frequency representation (e.g. Short-Term Fourier

Transform) without prior waveform model (e.g. spec-

tral centroid, spectral decrease, etc.)

• Perceptual descriptors are computed from auditory-

filtered bandwidth versions of signals which aim at

approximating the human perception of sounds. This

can be efficiently computed using Equivalent Rect-

angular Bandwidth (ERB) scale [10] which can be

combined with gammatone filter-bank [3] (e.g. loud-

ness, ERB spectral centroid, etc.)

In this study, we focus on the sound descriptors listed in

table 2 which can be estimated using the timbre toolbox 2

and detailed in [12]. All descriptors are computed for each

analyzed sound excerpt and may return null values. The

harmonic descriptors of polyphonic sounds are computed

using the prominent detected F0 candidate (single F0 es-

timation). To normalize the duration of analyzed sound,

we separated each excerpt in 10-seconds length segments

without distinction of silence or pitch events. Thus, each

segment is represented by a real vector where the corre-

sponding time series of each descriptor is summarized by

a statistic. The median and the Inter Quartile Range (IQR)

statistics were chosen for their robustness to outliers.

Acronym Descriptor name #

Att Attack duration (see ADSR model [15]) 1

AttSlp Attack slope (ADSR) 1

Dec Decay duration (ADSR) 1

DecSlp Decay slope (ADSR) 1

Rel Release duration (ADSR) 1

LAT Log Attack Time 1

Tcent Temporal centroid 1

Edur Effective duration 1

FreqMod, AmpMod Total energy modulation (frequency,amplitude) 2

RMSenv RMS envelope 2

ACor Signal Auto-Correlation function (12 first coef.) 24

ZCR Zero-Crossing Rate 2

HCent Harmonic spectral centroid 2

HSprd Harmonic spectral spread 2

HSkew Harmonic skewness 2

HKurt Harmonic kurtosis 2

HSlp Harmonic slope 2

HDec Harmonic decrease 2

HRoff Harmonic rolloff 2

HVar Harmonic variation 2

HErg, HNErg, HFErg, Harmonic energy, noise energy and frame energy 6

HNois Noisiness 2

HF0 Fundamental frequency F0 2

HinH Inharmonicity 2

HTris Harmonic tristimulus 6

HodevR Harmonic odd to even partials ratio 2

Hdev Harmonic deviation 2

SCent, ECent Spectral centroid of the magnitude and energy spectrum 4

SSprd, ESprd Spectral spread of the magnitude and energy spectrum 4

SSkew, ESkew Spectral skewness of the magnitude and energy spectrum 4

SKurt, EKurt Spectral kurtosis of the magnitude and energy spectrum 4

SSlp, ESlp Spectral slope of the magnitude and energy spectrum 4

SDec, EDec Spectral decrease of the magnitude and energy spectrum 4

SRoff, ERoff Spectral rolloff of the magnitude and energy spectrum 4

SVar, EVar Spectral variation of the magnitude and energy spectrum 4

SFErg, EFErg Spectral frame energy of the magnitude and energy spectrum 4

Sflat, ESflat Spectral flatness of the magnitude and energy spectrum 4

Scre, EScre Spectral crest of the magnitude and energy spectrum 4

ErbCent, ErbGCent ERB scale magnitude spectrogram / gammatone centroid 4

ErbSprd, ErbGSprd ERB scale magnitude spectrogram / gammatone spread 4

ErbSkew, ErbGSkew ERB scale magnitude spectrogram / gammatone skewness 4

ErbKurt, ErbGKurt ERB scale magnitude spectrogram / gammatone kurtosis 4

ErbSlp, ErbGSlp ERB scale magnitude spectrogram / gammatone slope 4

ErbDec, ErbGDec ERB scale magnitude spectrogram / gammatone decrease 4

ErbRoff, ErbGRoff ERB scale magnitude spectrogram / gammatone rolloff 4

ErbVar, ErbGVar ERB scale magnitude spectrogram / gammatone variation 4

ErbFErg, ErbGFErg ERB scale magnitude spectrogram / gammatone frame energy 4

ErbSflat, ErbGSflat ERB scale magnitude spectrogram / gammatone flatness 4

ErbScre, ErbGScre ERB scale magnitude spectrogram / gammatone crest 4

Total 164

Table 2. Acronym, name and number of the used timbre

descriptors.

2 MATLAB code available at http://www.cirmmt.org/research/tools



instrument

bowed plucked struck plucked struck

membranophonesidiophones

clinked struckblowed

cordophonesaerophones

(a) Hornbostel and Sachs taxonomy (T1)

instrument

pizzicato sustained

struck strings plucked strings bowed strings flute/reeds brass

piano violin

viola
cello

doublebass

violin

viola
cello

doublebass

flute

clarinet
oboe

saxophone
bassoon

trumpet

trombone
tuba

(b) Musician’s instrument taxonomy (T2)

Figure 1. Taxonomies used for the automatic classifica-

tion of musical instruments as proposed by Hornbostel and

Sachs taxonomy in [16] (a) and Peeters in [13] (b).

3.2 Classification taxonomy

In this study, we use two databases which can be anno-

tated using different taxonomies. Due to its diversity, the

CREM database was only annotated using the Hornbostel

and Sachs taxonomy [16] (T1) illustrated in Figure 1(a)

which is widely used in ethnomusicology. This hierarchi-

cal taxonomy is general enough to classify uncommon in-

struments (e.g. struck bamboo) and conveys information

about sound production materials and playing styles. From

an another hand, the Iowa musical instruments database [5]

used in our experiments was initially annotated using a mu-

sician’s instrument taxonomy (T2) as proposed in [13] and

illustrated in Figure 1(b). This database is composed of

common western pitched instruments which can easily be

annotated using T1 as described in Table 3. One can notice

that the Iowa database is only composed of aerophones and

cordophones instruments. If we consider the playing style,

only 4 classes are represented if we apply T1 taxonomy to

the Iowa database.

T1 class name T2 equivalence Duration (s) #

aero-blowed reed/flute and brass 5,951 668
cordo-struck struck strings 5,564 646
cordo-plucked plucked strings 5,229 583
cordo-bowed bowed strings 7,853 838

Total 24,597 2,735

Table 3. Content of the Iowa database using musician’s

instrument taxonomy (T2) and equivalence with the Horn-

bostel and Sachs taxonomy (T1).

4. AUTOMATIC INSTRUMENT TIMBRE

CLASSIFICATION METHOD

The described method aims at estimating the correspond-

ing taxonomy class name of a given input sound.

4.1 Method overview

Here, each sound segment (cf. Section 3.1) is represented

by vector of length p = 164 where each value corresponds

to a descriptor (see Table 2). The training step of this

method (illustrated in Figure 2) aims at modeling each tim-

bre class using the best projection space for classification.

A features selection algorithm is first applied to efficiently

reduce the number of descriptors to avoid statistical over-

learning. The classification space is computed using dis-

criminant analysis which consists in estimating optimal

weights over the descriptors allowing the best discrimina-

tion between timbre classes. Thus, the classification task

consists in projecting an input sound into the best classifi-

cation space and to select the most probable timbre class

using the learned model.

features
computation

features selection

(LDA, MI, IRMFSP)

classification space
computation

(LDA)

class affectation
(annotated)

input sound

class modeling

Figure 2. Training step of the proposed method.

4.2 Linear discriminant analysis

The goal of Linear Discriminant Analysis (LDA) [1] is to

find the best projection or linear combination of all descrip-

tors which maximizes the average distance between classes

(inter-class distance) while minimizing distance between

individuals from the same class (intra-class distance). This

method assumes that the class affectation of each individ-

ual is a priori known. Its principle can be described as

follows. First consider the n×p real matrix M where each

row is a vector of descriptors associated to a sound (indi-

vidual). We assume that each individual is a member of a

unique class k ∈ [1,K]. Now we define W as the intra-

class variance-covariance matrix which can be estimated

by:

W =
1

n

K
∑

k=1

nkWk, (1)

where Wk is the variance-covariance matrix computed from

the nk × p sub-matrix of M composed of the nk individ-

uals included into the class k.

We also define B the inter-class variance-covariance ma-

trix expressed as follows:

B =
1

n

K
∑

k=1

nk(µk − µ)(µk − µ)T , (2)



where µk corresponds to the mean vector of class k and µ
is the mean vector of the entire dataset. According to [1],

it can be shown that the eigenvectors of matrix D = (B +
W )−1B solve this optimization problem. When the matrix

A = (B + W ) is not invertible, a computational solution

consists in using pseudoinverse of matrix A which can be

calculated using AT (AAT )−1.

4.3 Features selection algorithms

Features selection aims at computing the optimal relevance

of each descriptor which can be measured with a weight or

a rank. The resulting descriptors subset has to be the most

discriminant as possible with the minimal redundancy. In

this study, we investigate the three approaches described

below.

4.3.1 LDA features selection

The LDA method detailed in Section 4.2 can also be used

for selecting the most relevant features. In fact, the com-

puted eigenvectors which correspond to linear combination

of descriptors convey a relative weight applied to each de-

scriptor. Thus, the significance (or weight) Sd of a descrip-

tor d can be computed using a summation over a defined

range [1, R] of the eigenvectors of matrix D as follows:

Sd =

R
∑

r=1

|vr,d|, (3)

where vr,d is the d-th coefficient of the r-th eigenvector as-

sociated to the eigenvalues sorted by descending order (i.e.

r = 1 corresponds to the maximal eigenvalue of matrix

D). In our implementation, we fixed R = 8.

4.3.2 Mutual information

Features selection algorithms aim at computing a subset of

descriptors that conveys the maximal amount of informa-

tion to model classes. From a statistical point of view, if

we consider classes and feature descriptors as realizations

of random variables C and F . The relevance can be mea-

sured with the mutual information defined by:

I(C,F ) =
∑

c

∑

f

P (c, f)
P (c, f)

P (c)P (f)
, (4)

where P (c) denotes the probability of C = c which can

be estimated from the approximated probability density

functions (pdf) using a computed histogram. According

to Bayes theorem one can compute P (c, f) = P (f |c)P (c)
where P (f |c) is the pdf of the feature descriptor value f
into class c. This method can be improved using [2] by re-

ducing simultaneously the redundancy by considering the

mutual information between previously selected descrip-

tors.

4.3.3 Inertia Ratio Maximisation using features space

projection (IRMFSP)

This algorithm was first proposed in [11] to reduce the

number of descriptors used by timbre classification meth-

ods. It consists in maximizing the relevance of the de-

scriptors subset for the classification task while minimiz-

ing the redundancy between the selected ones. This itera-

tive method (ι ≤ p) is composed of two steps. The first one

selects at iteration ι the non-previously selected descriptor

which maximizes the ratio between inter-class inertia and

the total inertia expressed as follow:

d̂(ι) = argmax
d

K
∑

k=1

nk(µd,k − µd)(µd,k − µd)
T

n
∑

i=1

(f
(ι)
d,i − µd)(f

(ι)
d,i − µd)

T

, (5)

where f
(ι)
d,i denotes the value of descriptor d ∈ [1, p] af-

fected to the individual i. µd,k and µd respectively denote

the average value of descriptor d into the class k and for

the total dataset. The second step of this algorithm aims at

orthogonalizing the remaining data for the next iteration as

follows:

f
(ι+1)
d = f

(ι)
d −

(

f
(ι)
d · g

d̂

)

g
d̂
∀d 6= d̂(ι), (6)

where f
(ι)

d̂
is the vector of the previously selected descrip-

tor d̂(ι) for all the individuals of the entire dataset and

g
d̂
= f

(ι)

d̂
/‖f

(ι)

d̂
‖ is its normalized form.

4.4 Class modeling and automatic classification

Each instrument class is modeled into the projected classi-

fication space resulting from the application of LDA. Thus,

each class can be represented by its gravity center µ̂k which

corresponds to the vector of the averaged values of the pro-

jected individuals which compose the class k. The classi-

fication decision which affect a class k̂ to an input sound

represented by a projected vector x̂ is simply performed by

minimizing the Euclidean distance with the gravity center

of each class as follows:

k̂ = argmin
k

‖µ̂k − x̂‖2 ∀k ∈ [1,K], (7)

where ‖v‖2 denotes the l2 norm of vector v. Despite its

simplicity, this method seems to obtain good results com-

parable with those of the literature [12].

5. EXPERIMENTS AND RESULTS

In this section we present the classification results obtained

using the proposed method described in Section 4.

5.1 Method evaluation based on self database

classification

In this experiment, we evaluate the classification of each

distinct database using different taxonomies. We applied

the 3-fold cross validation methodology which consists in

partitioning the database in 3 distinct random subsets com-

posed with 33% of each class (no collision between sets).

Thus, the automatic classification applied on each subset

is based on training applied on the remaining 66% of the



database. Figure 5.1 compares the classification accuracy

obtained as a function of the number of used descriptors.

The resulting confusion matrix of the CREM database us-

ing 20 audio descriptors is presented in Table 4 and shows

an average classification accuracy of 80% where each in-

strument is well classified with a minimal accuracy of 70%
for the aerophones. These results are good and seems com-

parable with those described in the literature [11] using

the same number of descriptor. The most relevant feature

descriptors (selected among the top ten) estimated by the

IRMSFP and used for the classification task are detailed in

Table 7. This result reveals significant differences between

the two databases. As an example, harmonic descriptors

are only discriminative for the CREM database but not for

the Iowa database. This may be explained by the pres-

ence of membranophone in the CREM database which are

not present in the Iowa database. Contrarily, spectral and

perceptual descriptors seems more relevant for the Iowa

database than for the CREM database. Some descriptors

appear to be relevant for both database like the Spectral

flatness (Sflat) and the ERB scale frame energy (ErbFErg)

which describe the spectral envelope of signal.

aero c-struc c-pluc c-bowed i-pluc i-struc i-clink membr

aero 70 3 9 5 7 5

c-struc 6 92 3

c-pluc 5 8 73 4 8 1

c-bowed 13 80 7

i-pluc 79 14 7

i-struc 9 2 5 2 79 4

i-clink 100

membr 11 17 72

Table 4. Confusion matrix (expressed in percent of the

sounds of the original class listed on the left) of the CREM

database using the 20 most relevant descriptors selected by

IRMSFP.

5.2 Cross-database evaluation

In this experiments (see Table 5), we merged the two data-

bases and we applied the 3-fold cross validation method

based on the T1 taxonomy to evaluate the classification ac-

curacy on both database. The resulting average accuracy

is about 68% which is lower than the accuracy obtained

on the distinct classification of each database. The results

of cross-database evaluation applied between databases us-

ing the T1 taxonomy are presented in Table 6 and obtain a

poor average accuracy of 30%. This seems to confirm our

intuition that the Iowa database conveys insufficient infor-

mation to distinguish the different playing styles between

the non-western cordophones instruments of the CREM

database.

6. CONCLUSION AND FUTURE WORKS

We applied a computationally efficient automatic timbre

classification method which was successfully evaluated on

an introduced diversified database using an ethnomusico-

logical taxonomy. This method obtains good classification

results (> 80% of accuracy) for both evaluated databases

which are comparable to those of the literature. However,
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Figure 3. Comparison of the 3-fold cross validation classi-

fication accuracy as a function of the number of optimally

selected descriptors.

the cross-database evaluation shows that each database can-

not be used to infer a classification to the other. This can

be explained by significant differences between these data-

bases. Interestingly, results on the merged database obtain

an acceptable accuracy of about 70%. As shown in pre-

vious work [11], our experiments confirm the efficiency

of IRMFSP algorithm for automatic features selection ap-

plied to timbre classification. The interpretation of the



aero c-struc c-pluc c-bowed i-pluc i-struc i-clink membr

aero 74 14 5 3 2 1

c-struc 12 69 10 5 1 2

c-pluc 1 7 58 29 1 2 2

c-bowed 3 6 33 52 1 3

i-pluc 7 14 79

i-struc 2 2 4 11 2 51 30

i-clink 11 89

membr 6 17 78

Table 5. Confusion matrix (expressed in percent of the

sounds of the original class listed on the left) of the evalu-

ated fusion between the CREM and the Iowa database us-

ing the 20 most relevant descriptors selected by IRMSFP.

aero c-struc c-pluc c-bowed

aero 72 9 10 9

c-struc 12 12 34 42

c-pluc 23 47 28 3

c-bowed 28 34 24 14

Table 6. Confusion matrix (expressed in percent of the

sounds of the original class listed on the left) of the CREM

database classification based on Iowa database training.

CREM T1 Iowa T1 Iowa T2 CREM+Iowa T1

Edur AttSlp AttSlp AmpMod

Acor Dec Acor Acor

ZCR RMSenv

Hdev

Hnois

HTris3

Sflat SFErg Sflat Sflat

ERoff SRoff SVar

SSkew SKurt

Scre

ErbGKurt ErbKurt ErbSprd

ErbFErg ErbFErg ErbFErg

ErbRoff ErbRoff

ErbSlp ErbGSprd

ErbGCent

Table 7. Comparison of the most relevant descriptors esti-

mated by IRMFSP.

most relevant selected features shows a significant effect of

the content of database rather than on the taxonomy. How-

ever the timbre modeling interpretation applied to timbre

classification remains difficult. Future works will consist

in further investigating the role of descriptors by manually

constraining selection before the classification process.
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