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BioSensib, Strasbourg, France, 2. CNRS, UMR-7178, LIA-647 BioSensib, Strasbourg, France, 3.
AgroParisTech ENGREF, Paris, France, 4. IFREMER – UMR 212– Ecosystème Marin Exploité, Sète, France,
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Abstract

As the number of breeding pairs depends on the adult sex ratio in a monogamous

species with biparental care, investigating sex-ratio variability in natural populations

is essential to understand population dynamics. Using 10 years of data (2000–

2009) in a seasonally monogamous seabird, the king penguin (Aptenodytes

patagonicus), we investigated the annual sex ratio at fledging, and the potential

environmental causes for its variation. Over more than 4000 birds, the annual sex

ratio at fledging was highly variable (ranging from 44.4% to 58.3% of males), and on

average slightly biased towards males (51.6%). Yearly variation in sex-ratio bias

was neither related to density within the colony, nor to global or local oceanographic

conditions known to affect both the productivity and accessibility of penguin

foraging areas. However, rising sea surface temperature coincided with an increase

in fledging sex-ratio variability. Fledging sex ratio was also correlated with

difference in body condition between male and female fledglings. When more

males were produced in a given year, their body condition was higher (and

reciprocally), suggesting that parents might adopt a sex-biased allocation strategy

depending on yearly environmental conditions and/or that the effect of

environmental parameters on chick condition and survival may be sex-dependent.

The initial bias in sex ratio observed at the juvenile stage tended to return to 1:1

equilibrium upon first breeding attempts, as would be expected from Fisher’s

classic theory of offspring sex-ratio variation.
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Introduction

In animal populations, determinants of adult sex ratio (ASR, i.e. the proportion of

male to female adult individuals [1]) are likely to occur before adulthood, due to

variations in parental sexual allocation of resources (before and after birth,

reviewed in [2]), and to fluctuations in sex-specific mortality of these offspring

before recruitment into the breeding population. According to Fisher [3], parental

investment into male and female offspring should be equal at the termination of

parental care, as the production of any zygote requires one mother and father.

Thus, the reproductive value of males and females should be equal [3] and any

tendency to deviate from a 1:1 sex allocation should return to equilibrium by

frequency-dependent selection [4–5]. Nonetheless, Hamilton pointed out that

biased sex ratios were likely to occur in natural conditions [6], if the costs of

producing male and female offspring were different. In such cases, a bias towards

the less costly sex should be expected [3, 6–8]. In sexually dimorphic species for

instance, the higher costs of producing the larger (e.g. male) sex should favour a

production bias towards the smaller (e.g. female) one. Additionally, Trivers &

Willard [7] hypothesised that mothers in good condition may afford to invest

more into the sex with greatest variance in reproductive success, when mothers in

poor condition gain more by investing into the sex less affected by poor maternal

rearing conditions [7, 9]. This seems to be the case in the red deer (Cervus elaphus)

in which high population densities during female pregnancy lead to adverse

nutritional stress causing mothers to produce fewer male than female offspring

[10]. Alternately, sex-ratio bias may also stem from the fitness benefits/costs

associated with inter-sexual differences in competition/cooperation, favouring

selection for the sex in which competition between parents and offspring is lowest

and/or cooperation highest [6]. In particular, Clark’s resource competition model

([11]; generalisation of Hamilton’s model) highlights an additional cost of

producing offspring for mothers, in that they must later compete for food/mate/

reproductive site resources. Consequently, mothers might favour the more

dispersive sex. For instance, during years of El Niño events, Northern elephant

seal (Mirounga angustirostris) females experience poor foraging conditions and

high nutritional stress [12]. Interestingly, offspring production is biased towards

males in those years and this male-biased sex ratio has been suggested as an

adaptive strategy to decrease later resource competition between mothers and

daughters on similar food patches [13].

Because it has direct consequences on breeder proportions [14–15], under-

standing the dynamics of ASR and the reasons for its fluctuations is an important

perspective in animal ecology (e.g. [16], see [17] for a review in birds). In this

study, we used a decade-long dataset to investigate sex-ratio variability in a wild

seabird population of king penguins (Aptenodytes patagonicus). In these seasonally

monogamous seabirds, bi-parental care is necessary for successful reproduction,

so that a biased ASR should produce adults of the supernumerary sex that are

unable to find mates and reproduce, resulting in a reduced number of breeders at

the population scale with potential consequences on population dynamics.
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Surprisingly however, male-biased ASRs have been suggested in king penguin

populations [18–21] and so has male-biased mate competition [22]. Yet, the

reason for such a bias, and life history stage at which it arises, remains unclear.

Therefore, using over more than 4000 king penguins of ‘La Baie du Marin’ colony

(Crozet Archipelago; Southern Ocean), we considered fledgling sex-ratio

variability and its potential links with environmental parameters. The breeding

biology of king penguins imposes strong constraints on parental investment. The

absence of a nest [23] compels breeding birds to navigate through thousands of

conspecifics to locate both partners and chicks [24]. In addition, chick

development from hatching to fledging occurs over an exceptionally long period

(over 11 months [23, 25–26]), encompassing the austral winter when chick

growth is limited and mortality is high [26–28], chicks gather in crèches to limit

predation pressure [29] and increase thermoregulation [30]. This long breeding

cycle (over a year from courtship to fledging) also results in non-synchronised

laying, early and late offspring being reared in highly heterogeneous conditions

(i.e. differences in food resources [31] and bird colony density [32]). In particular,

early and late chicks are known to differ in their phenotype at hatching [27] and

to exhibit strong differential mortality during the winter [26–28]. Finally, as

penguins are state-dependent breeders [33], environmental conditions before the

onset of breeding might affect parental body condition [34] and foraging

efficiency, with potential consequences on chick growth and survival [33–34].

Given the above features, king penguins provide an interesting model to

investigate how sex ratio may be modulated by environmental factors and whether

biased sex ratio may arise over early life history in this species, either due to

differential parental allocation or sex-specific mortality. For instance, sex ratio

might change between fledging and adulthood, as male and female juveniles may

differ in their return rates to their natal colony [35].

Materials and Methods

Ethics

Most animals in this study were handled only once (during their first moult) for

marking with a subcutaneous transponder tag and measurement of morphological

features. A smaller number of individuals had also been previously handled as

chicks (in their first month) for marking with a small external plastic pin (Fishtag,

Floytag) and blood-sampling. All procedures employed during the field work were

approved by the Ethical Committee of the French Polar Institute (Institut Paul

Emile Victor – IPEV) and conducted in accordance with its guidelines, also

complying with French laws including those relating to conservation and animal

welfare. Authorizations to enter the breeding site (permits n˚ 2005–191 issued on

the 21st of November 2005, 2006–67 issued on the 6th of November 2006, 2007–

149 on the 24th of October 2007, 2008–98 issued on the 5th of September 2008,

2009–57 issued on the 26th of August 2009, 2010–79 issued on the 3rd of

September 2010) and handle birds (permits n˚ 99/346/AUT issued on the 30th of
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November 1999, 00/240/AUT issued on the 5th of September 2000, 01/315/AUT

issued on the 4th of July 2001, 01/322/AUT issued on the 16th of August 2001,

2003–113 and 2003–114 issued on the 7th of October 2003, 2004–182 and 2004–

183 issued on the 14th of December 2004, 2005–203 issued on the 1st of December

2005, 2006–73 issued on the 6th of November 2006, 2007–144 issued on the 24th of

October 2007, 2008–71 issued on the 5th of September 2008, 2009–59 issued on

the 29th of August 2009, 2010–67 issued on the 3rd of September 2010) were

delivered first by the French ‘Ministère de l’Aménagement du Territoire et de

l’Environnement’ and then by the ‘Terres Australes et Antarctiques Françaises’

(TAAF). Handled animals were removed from the colony in order to minimize

the disturbance to neighbouring birds and carried a few meters away for

manipulation. They were hooded to reduce their stress and manipulations lasted

between 5 and 10 minutes. The transponder tags weigh 0.8 g and have no known

adverse effects. They were shown to have no effect on survival of king penguins

[36] or breeding success, recruitment or survival of great tits (Parus major) [37].

Furthermore, concerns about infections should be minimal, as transponder tags

are kept sealed sterile in iodine capsules (Betadine) and removed from the

capsules only by the process of injecting them into the bird. Vétédine soap and

alcoholic antiseptic solutions were used to disinfect the skin and the injecting

needle before each insertion. Flesh wounds did not appear infected thereafter

(personal observations on a sample of recaptured birds). Blood was sampled in

small quantities, taking into account the age of the chick (1 mL for fledglings and

100 mL for younger chicks).

Long-term monitoring and sex-ratio determination

Our study was conducted in the king penguin colony of ‘La Baie du Marin’, on

Possession Island, Crozet Archipelago (46 2̊59S, 51 4̊59E). From 2000 to 2009, we

marked 3787 king penguin chicks that we later monitored using an automatic

system (ANTAVIA), based on radio-frequency identification (RFID) of

individuals born in a subpart of the colony [38]. Around the peak of fledging,

chicks in advanced moult were captured on the edge of the colony and implanted

with passive transponder tags under the skin of their leg, without any other

external mark. Upon capture, the chick’s head was covered with a hood to keep it

calm. A 1-mL blood sample was collected from its marginal flipper and used for

sex determination based on genomic DNA (see below). Because those chicks were

initially captured right before fledging, we did not know whether they were issued

from an early (laying prior to Jan. 1st) or late reproduction [23, 26]. Thus, we

captured and marked 200 early and 200 late chicks per year from 2007 to 2009

(,3–4 week old). Those chicks were temporarily tagged with a small external

plastic pin (Fishtag, Floytag). Of those, 225 chicks (198 early chicks and 27 late

chicks) survived to fledging and were re-captured, transponder-tagged and blood-

sampled at that time. Finally, as part of a separate study, 20 early and 20 late

chicks were captured in 2009, and 173 early and 197 late chicks were captured in

2010, right after hatching (,1 week old). Those were marked with a fishtag, blood
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sampled (,100 mL), and used to investigate the changes in sex ratio between

hatching and fledging.

Chick sex was determined from DNA extracted from blood samples following

the protocol described by Sambrook et al. [39]. Sex determination relied on

polymerase chain reaction (PCR) amplification of two parts of the sex

chromosome CHD1 gene, which in birds differs in size between the Z and W

chromosomes [40, 41]. Females were characterized by displaying both a W-

specific fragment and a Z-specific fragment, while males showed only the shorter

Z-fragment. All individuals were tested with primers F1/R1 [42], and in each year,

ca. 10% of them were controlled at random using another pair of primers P2/P8

[43] to confirm sex determinations. Sex ratio was calculated as the proportion of

males in the population (given as a %).

Chick morphological measurements and body condition

Standardised measurements of flipper length, beak length (¡1 mm) and body

mass were collected on all but 3 chicks upon capture right before fledging

(N54101). Flipper and beak lengths are highly repeatable measurements [44] and

provide good descriptors of structural size. However, because those measurements

are correlated (Spearman’s rank correlation; p,0.001, rho50.32, N54101), we

established a Structural Size Index (SSI) using principal component analysis as

previously described in [35]. The first principal component of the analyses

explained 79% of the variation in bill and flipper length and was retained as the

SSI (SSIf ledging~PC1~0:26|Beakz0:97|Flipper).

Because body mass is highly variable in king penguins and perhaps associated

with differences in nutritional status as well as structural size, OLS-regression

residuals of body mass on structural size are likely to provide a better reflection of

the actual energy stores of the animal [45]. Thus, we calculated body condition as

the residuals of an OLS-regression of chicks’ body mass on SSI [35, 46].

To determine if the sexual size dimorphism occurred at hatching or fledging,

we also calculated body condition from an OLS regression of body mass on

structural size at hatching over 173 early and 197 late-hatched king penguin chicks

in 2010 (SSIhatching~PC1~0:28|Beakz0:96|Flipper).

Life-history determination of transponder-tagged birds

Once implanted with a transponder tag, chicks are automatically identified

throughout their lifetime in the ANTAVIA sub-colony by RFID antennas. Those

antennas are buried underground at unique transit pathways in and out of the

sub-colony and allow continuous monitoring of bird movements and presence

within the colony [38]. Such data have yielded detailed information on

individuals’ lives after fledging, including data on first return rates to their natal

colony [35], reproduction [47–49], age-specific survival and breeding perfor-

mances (Le Bohec et al., unpublished data). Thus, monitoring individuals tagged

from fledging allows assessment of changes in sex ratio throughout different life-
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history stages. This information was used to investigate changes in sex ratio

between fledging, first return to the colony, and first reproductive attempt. For

this analysis, only the first 4 cohorts of tagged chicks were used, as most of the

birds from latter cohorts had not yet started to breed.

Environmental descriptors

Climate and oceanographic conditions

To investigate how sex ratio may be influenced by climatic conditions, we used

indicators of processes acting both at local and global scales [50–51]. A large-scale

climatic index, the Southern Oscillation Index (SOI; calculated on a monthly basis

as the fluctuation in the air pressure difference between Tahiti and Darwin) was

obtained from the Australian Bureau of Meteorology. Prolonged periods of

negative SOI values are usually associated with warm ocean temperatures in our

study area, typical of El Niño events [52]. We used Sea Surface Temperature (SST,

in C̊), as a local proxy of prey abundance and distribution, a good indicator for

marine predators such as king penguins [35, 53–55]. Indeed, by affecting primary

production, SST has strong consequences on prey abundance [56]. Monthly SST

values were obtained from the National Ocean and Atmospheric Administration

of the USA and averaged for the feeding areas (46–60 S̊, 46–56 E̊) of king

penguins during the summer (Polar Front, PF) and the winter (Marginal Ice

Zone, MIZ) [57]. We previously found that breeding success in our study colony

was mostly affected by the SOI and SST conditions of the same year [53].

However, we tested for SOI and SST effects over four different periods: 6- and 12-

mo time-lag prior to laying (prior to the mean annual laying date of early

breeders, May–Oct. or Nov.–Oct.), 6-mo time-lag after laying (after the mean

annual laying date of early breeders, Nov.–Apr.), and over the entire breeding

cycle (from laying to fledging, Nov.–Oct.). The different time-periods yielded

similar results, so that results are given only over one period: the summer season,

i.e. the 6-mo period following the onset of reproduction (the mean annual laying

date of early breeders). Finally, we recorded the mean annual laying date of early

breeders from 2004 to 2009 as a proxy of environmental conditions before

breeding onset, and calculated the mean annual breeding success of the colony

from 2000 to 2009 (Le Bohec et al., unpublished data) as a proxy of the annual

environmental conditions endured during reproduction. Early years and/or years

of high breeding success could be viewed as more favourable years of high

resource availability.

Colonial breeding conditions

Because colony density of king penguins varies to a large extent over the course of

a breeding season and may affect the physiological status of breeding parents [32],

we considered whether colony density might affect chick sex ratio. Each year,

starting in 2004, we calculated yearly colony density indices in the ANTAVIA sub-

colony by counting breeding individuals on pictures taken in December (peak

density of the breeding season). We further calculated a second annual density

Sex-Ratio Variability in Fledging King Penguins
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index as the proportion of transponder-tagged birds monitored as breeding in a

given year among tagged birds alive and of breeding age.

Statistics

All statistics were run using R v. 2.13.0 [58]. Because chicks were randomly

sampled in the absence of their parents, we could not know whether sampled

chicks may come from the same breeding pairs from year to year. This prevented

us from looking for pseudo-replication in our data and using Generalized Linear

Mixed Models (GLMMs) that would take adult identity into account. Yet, it

should be noted that no more than 500–600 chicks were marked per year in a part

of the colony retaining ca. 8,000 breeding pairs, so that the probability of pseudo-

replication should be low. Therefore, Generalized Linear Models (GLMs;

maximum likelihood approach) fitted to a binomial distribution were used to

evaluate sex ratio with environmental factors or laying period. As all independent

variables (e.g. laying period) were not available for all individuals, we could not

run a single general model and use an information theoretical approach to select

variables. Instead, we had to compute separate models for different independent

variables. Still, in the case of climatic variables, we ran a single global model with

SST and SOI as independent variables. The most appropriate models were selected

using Akaike’s Information Criterion (AIC). Adjusted R2 values are indicated

along with p-values. Data were checked for normality and for between-group

homoscedasticity and between-year comparisons were performed using Wilcoxon

rank-sum tests. Sex-ratio comparisons across life-history stages were performed

using a binomial proportion test (’prop.test’ package in R). Variables were

considered significant for P,0.05. Bonferroni corrections were considered for

multiple testing in three occasions, i.e. comparisons of sex ratio between life-

history stages (Pv
0:05

3 ) comparisons of body condition between males and

females for each year (Pv
0:05
10 ), and finally pairwise comparisons of sex ratio

between years (Pv
0:05
45 ). In the first 2 cases, results were similar regardless of

whether the Bonferroni adjustment was applied or not, indicating their

robustness. In the last case (pairwise comparison of annual sex ratios), differences

appeared. As Bonferroni adjustments are often criticized for being too

conservative preventing from detecting significant differences, we decided to

present the results without this adjustment on Figure 1. The number of birds is

given as N.

Results

Sex ratio at fledging and inter-annual variability

Over the 10-year study period, fledging sex ratio was slightly biased towards males

(1941 females vs. 2071 males), implying that an overall greater proportion of male

offspring successfully fledged from 2000 to 2009, i.e. 51.62% of male (GLM;

z52.05, P50.04, N54012; upper-right panel, Fig. 1). However, fledging sex ratio

Sex-Ratio Variability in Fledging King Penguins
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varied significantly between years (Pairwise tests given in Fig. 1) and significant

male-bias was observed in only 2 of the study years (GLM; z52.90, P50.004,

N5383 and z52.84, P50.004, N5295 for 2001 and 2002, respectively; Fig. 1).

Because the data were limited to 10 points, we could not perform breakpoint

analyses, but from a visual inspection (Fig. 1) it seems that the proportion of

fledged males increased from 2000 to 2002 (44.37% to 58.31%, z52.39, P50.02,

N5820), before decreasing continuously over 2002–2007, from 58.31% to 47.45%

(z523.39, P,0.001, N52392). Finally, sex ratio at fledging was stable over the

last 3 years (2007–2009) of the study (z50.70, P50.48, N51546).

Sex ratio and breeding timing: Early vs. late-hatched chicks

In 2010, the proportion of hatched males tended to be greater for early (57.95%)

than for late (48.66%) chicks (GLM; z521.90, P50.06, N5419; Fig. 2). Also in

2010, we found that chick sex ratio did not vary between hatching and fledging

Figure 1. Sex ratio of fledging king penguins over a 10-year period. Sex ratio is presented as male proportion (%). Dotted lines represent the 95%
confidence interval. The grey area of the figure (fledging males ,50%) corresponds to female-biased sex ratios, while the white area corresponds to male-
biased sex ratios. Points not sharing a common superscript are different for P,0.05. Sample sizes are given in brackets. The insert shows the average sex
ratio over the 10-year study (*significant difference for P,0.05).

doi:10.1371/journal.pone.0114052.g001
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(which included the austral winter period), both in early (–5.90%; Proportion

test; P50.47, N5195/73) and late (+1.34%; P51, N5224/6) chicks (see Fig. 2).

From 2007 to 2010, we determined fledgling sex ratio for chicks hatched either

early or late in the season (Fig. 2). Although the overall proportion of males

appeared higher in late chicks (62.50% vs. 52.35% for early chicks), this difference

was not statistically significant over the years (GLM; z50.88, P50.38, N5317).

Similarly, we observed no significant difference in early- vs. late-chick sex ratio

when years were considered separately (GLM2007; z50.23, P50.81, N529;

GLM2008; z51.08, P50.28, N5124; GLM2009; z50.49, P50.62, N585; GLM2010;

z520.10, P50.92, N579).

Sex ratio and life-history stages

Sex ratio at chick-fledging (55.22%), when juveniles first return to the colony

(54.62%), or at first breeding attempt (53.27%) did not vary among cohorts

hatched between 2000 and 2003. Sex ratio did not change significantly between

fledging and first returns (Proportion test; P50.83, N51112/866), between first

returns and first breeding attempts (P50.65, N5866/597), or between fledging

and first breeding attempts (P50.47, N51112/597).

Figure 2. Sex ratio of king penguin chicks produced either early or late during the 2007–2010 breeding
seasons. Sex ratio is presented as male proportion (%). White and grey bars correspond to early and late
chicks, respectively. In 2010, chick sex was determined both at hatching and fledging. Sample sizes are
specified in the bars.

doi:10.1371/journal.pone.0114052.g002
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Fledging sex ratio and environmental factors

Climatic parameters

Over the 10-year study (2000–2009) and 4012 individuals, the most appropriate

models, selected by AIC, did not show any effect of SOI or SST on fledgling sex

ratio. Indeed, the null model was retained regardless of the tested period (before

breeding, summer after laying, and entire breeding cycle).

However, it is interesting to note that the period of decreasing male proportion

at fledging (2002–2007, except in 2006) coincided with negative values of SOI

during the period of incubation and chick-brooding. Also, variability in fledging

sex ratio tended to increase with SST (Fig. 3), i.e. warmer years produced very

unbalanced sex ratios (whether in favour of males or females) compared to colder

years during which the sex ratio was close to 1:1.

From 2004 to 2009, the mean annual laying date of early breeders did not affect

annual sex ratio at fledging (GLM; z520.02, P50.99). Similarly, the mean annual

breeding success of the colony over the 10-year study (2000–2009) was not related

to fledgling sex ratio (GLM; z51.07, P50.28).

Colonial environment

From 2004 to 2009, sex ratio at fledging was not related to colony density (global

colony-counts of individual penguins; GLM; z50.76, P50.44). Colony density as

estimated only by counting tagged birds reproducing in the colony from 2007 to

2009, yielded similar results (GLM; z50.94, P50.35).

Fledging sex ratio and chicks’ structural size and body condition

According to the structural size index, no dimorphism was observed at hatching

neither for the 2010 early-hatched king penguin chicks (Wilcoxon; W54378,

P50.86, N5173), nor for the 2010 late-hatched chicks (Wilcoxon; W54378,

P50.24, N5197).

At fledging, however, chicks exhibited sexual size dimorphism, males being

larger than females according to the structural size index (3.36¡0.26 vs.

23.59¡0.25, Wilcoxon; W51372092, P,0.001, N54101). However, when

looking at body condition at fledging, the difference between males and females

was not constantly in favour of males (Fig. 4A). Males had a higher body

condition than females only in 2004 (Wilcoxon; W521025, P50.003, N5449).

The yearly difference in body condition between males and females was

correlated with sex ratio at fledging (r50.67, P50.04; Fig. 4B). Higher male

proportions were associated with a higher male body condition when compared

to females.

Discussion

Over a 10-year period, fledgling sex ratio in our king penguin population was

slightly male-biased. This finding is in line with previous data on male-biased ASR

both in the present [18, 48] and other king penguin colonies (on Kerguelen [19–
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20] and South Georgia [21] archipelagos). Interestingly, biased ASR in birds

appears to mainly result from adult sex-specific mortality, rather than biased

offspring sex ratios. Indeed, in a review of 140 estimates of offspring sex ratio,

only few (17%) differed significantly from 1:1 (9.3% female biased and 7.8% male

biased) [59]. Yet, despite slightly higher annual survival on average for males vs.

females (94.2% vs. 90.7%), this difference is not significant ([48] and unpublished

results over 1999–2010). Our result on biased sex ratio at fledging is thus relatively

unusual for birds. Yet, it should be noted that despite a high sample size, the bias

was only barely significant, indicating that fledgling sex ratio was mainly

maintained close to the Fisher equilibrium of 1:1. In agreement with previous

studies in adults [25, 44], we found that king penguin fledglings also exhibited

slight sexual dimorphism in favour of males, probably a result of differential

growth, as no sexual dimorphism was observed at hatching for king penguin

chicks (though size at hatching was available only for one cohort). Higher costs of

raising males might therefore be expected. Given the equalization of fitness of

male and female offspring at the termination of parental care, theory would then

predict an even or slightly female-biased sex ratio at fledging [3]. Of course, for

this to be true, costs of raising male and female offspring actually need to differ

and remain to be accurately measured (e.g. in terms of energy allocation).

Nonetheless, our results might thus appear in this regard to contradict Fisher’s

theory because a significant male-bias occurred [3]. However, this is perhaps not

Figure 3. Changes in sex ratio of fledging king penguins according to the Sea Surface Temperature
(SST) over a 10-year period. Sex ratio is presented as male proportion (%). SST ( C̊) was averaged over the
summer season, i.e. the 6-mo period following the onset of reproduction (mean annual laying date of early
breeders) (see methods).

doi:10.1371/journal.pone.0114052.g003
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surprising given that life histories of birds clearly violate several assumptions of

the standard sex allocation models (e.g. extended biparental care, overlapping

generations, see [60] for a review).

In contrast to the overall limited sex-ratio bias, we observed high interannual

variability in fledging sex ratio ranging from 44% to 58% of males. Such

fluctuation at fledging may result from yearly fluctuations in primary sex ratio

and/or from differential chick survival between hatching and fledging.

Unfortunately, we only had one year of data on hatching sex ratio, so that our

Figure 4. Yearly changes in male and female fledging body condition (BC; panel A) and yearly sex ratio
at fledging according to fledging BC difference between males and females (panel B) in king penguins.
Panel A: male and female body conditions are given as solid line, open circles and dotted line, full circles,
respectively. Letters in superscript indicate differences between years in the average (male and female) body
condition. Average values not sharing a common superscript are different for P,0.05. Panel B: the grey area
corresponds to the years in which male body condition is higher than female body condition, while the white
area presents the opposite. Note that the horizontal solid line indicates the balanced sex ratio at fledging.
Every point situated above corresponds to a higher proportion of males, while below corresponds to a higher
proportion of females.

doi:10.1371/journal.pone.0114052.g004
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findings have to be considered preliminary. Nonetheless, they suggest that sex

ratio could be biased as soon as hatching, but also that sex-biased chick mortality

may occur between hatching and fledging. Finally, we found that biased sex ratios

at fledging were associated with biased body conditions in male and female

fledglings. When sex ratio was male-biased, males presented a higher body

condition than females, and reciprocally. Because fledgling body condition affects

post-fledging return rates and may be viewed as an index of chick quality [35],

this may suggest that parents adopt sex-specific production strategies depending

on yearly environmental conditions. For instance, larger males may be more

vulnerable than females to food shortage [61] in specific years, making it a better

option to produce females under harsh environmental conditions [7]. Also,

parents in poor condition (e.g. nutritional stress or lack of experience) may favour

the less costly sex either to avoid impairing future fitness or because reproduction

is likely to fail, i.e. the ‘cost of reproduction hypothesis’ [62–65]. Alternatively,

females may survive better than males in poor years, even under equal investment,

because of lesser energy requirements during the growth period.

In our study, the proportion of hatching males tended to be higher early in the

season (58 vs. 49% late in the season), although our small sample size of late

fledglings prevents us from definite conclusions. Such seasonal variability in sex

ratio has been previously reported in the painted turtle (Chrysemys picta) [66],

and may result from poor foraging and nutritional conditions, because of

mismatch with peak resource productivity (e.g. [67–68]). In king penguins, late

breeding birds spend longer foraging trips at sea during chick-rearing and build

up larger fuel reserves than early birds, reflecting the well-known trade-off

between adult maintenance and offspring care/survival in long-lived birds

[31, 62]. If male chicks indeed require larger amounts of food than females, a

change in parental provisioning late in the season may affect male mortality, thus

explaining the observed female bias in sex ratio.

Fledging sex ratio was relatively insensitive to environmental descriptors

measured in this study. Yearly population (colony) density did not affect fledging

sex ratio. Although effects of population density on sex ratio have been reported

in mammals [10], those effects were mediated by maternal condition affected by

high competition on nutritional resources [10]. However, intra-specific

competition may be less of a problem for king penguins, for which foraging

success appears to be more influenced by local oceanic characteristics of food

patches than by density-dependent processes (see [69] for a discussion). Similarly,

global climatic conditions (SOI) did not appear to have an effect on fledging sex

ratio. However, whether this is a result of sex ratio truly being insensitive to global

oceanographic conditions or because only relatively mild La Niña/El-Niño events

occurred over the 10-year monitoring period (low amplitude in annual SOI

variation, see [70]) remains to be examined. Finally, no effect of yearly local

environmental conditions (SST) on fledging sex ratio was highlighted in this

study. Although we did record a significant bias in fledging sex-ratio variability

with increasing SST (cold years were associated with sex ratios close to 1:1,

whereas warm years resulted in highly biased sex ratios), this bias was not

Sex-Ratio Variability in Fledging King Penguins

PLOS ONE | DOI:10.1371/journal.pone.0114052 December 10, 2014 13 / 17



consistently in favour of either sex, and our large sample sizes suggest that yearly

changes in sex ratio were likely just related to stochasticity in environmental

parameters (including SST) affecting chick mortality.

Finally, if understanding which parental/environmental variables influence

offspring sex ratio is fundamental to the breeding and evolutionary biology of

king penguins, one should bear in mind that it is actually the ASR that is a key

parameter to population dynamics. In our study colony, although the sex-ratio

bias was 2 percentage points lower at recruitment (i.e. first breeding attempt) than

at fledging (suggesting a return towards equilibrium at recruitment), this decrease

was not statistically significant.

To conclude, our results over a 10-year period hint to potential effects of

oceanographic conditions on fledging sex ratio. With a predicted increase in warm

climate episodes (IPCC 2013, [71]), investigating king penguin sex ratio over later

life-history stages appears the next step to assess its importance in modulating

population trajectories and population persistence over time [72]. From results to

date, it appears that an expectation of considerable fluctuations in fledging sex

ratio might accompany further ocean warming.
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