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Interference Detection for Cable-Driven Parallel Robots (CDPRs)

Laurent Blanchet1 and Jean-Pierre Merlet2

Abstract— The main advantage of CDPRs is large
workspaces. However, multiple legs and large workspace are
both factors for interference. We consider a CDPR platform
within a 6D workspace, and as sources of interference the
collisions with the robot’s environment and self interference.
We present two algorithms and their interval analysis-based
applications to handle the different types of interference.
Finally, the efficiencies of the algorithms are presented.

Index Terms— Modeling and Design, Cable-Driven Parallel
Robots, leg interference, collision, robotics, Interval Analysis.

I. INTRODUCTION

In the last twenty years or so, a new class of parallel

robots, called Cable-Driven Parallel Robots (CDPRs), has

been the subject of several research projects [7], [4]. A CDPR

is composed of a mobile platform suspended by m cables

to a base; the set of parameters involved in the design and

their domains will be called the robot’s configuration. Cable

lengths control the pose of the platform, see figure 1. A

CDPR can be considered as a mechanical system of known

or encapsulated precision which must satisfy the set of

constraints of a given application. As well as practical errors

(real position of the cables exit points, of the attachment

points on the platform, control errors, real cables versus

model, ...), it must also account for numerical round-off

errors in the constraints calculation.
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Fig. 1. Schematic of a CDPR with its parametrization.

To account for these errors, interval arithmetic may be

used to certify performances, see [6] for a quick intro-

duction, survey results and an extensive bibliography about

this arithmetic. Instead of single values for parameters, a

range of all possible values for each parameter is used, and
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constraint satisfaction may be guaranteed in spite of vari-

ations of the parameters. Indeed interval arithmetic allows

the qualification of the constraints for the interval values

of the parameters into three statuses: always valid (satisfied

for all values of the parameters range), always invalid (not

satisfied by any value of the parameters in their ranges) or

undetermined (in the parameters ranges, some values satisfy

the constraint, some other do not). This guarantee comes at

the price of computation time.

The main motivation for designing a CDPR is its extended

workspace. However, self-collisions and collisions in general

are the main drawbacks of dealing with large workspaces.

This paper addresses this issue, with the provision of a

“straight” cables hypothesis, meaning that the CDPR has no

deliberately crossing cables, and with the aim of avoiding

such interference. In the negative, Wischnitzer et al. devised

some strategies in [13].

In the following we call box B a n-vector of intervals. Such

a box is defined by the values of its boundaries. We will also

make use of 2B-consistency. A consistency technique ([8])

removes values from the bounds of the variables domains

which are not consistent with the constraint(s), thus without

losing solutions. The basic algorithm is a branch and prune

scheme as described by Van Hentenryck in [12], with branch-

ing occurring when a constraint is evaluated as undetermined

over the considered pose box, i.e. the 6-dimensional interval

vector representing the domain of definition of the robot

end-effector position and orientation. By ‘application’, we

denote the total user-specified workspace, including a list

of pose boxes and trajectories in specified coordinate and

angle systems, and associated sets of external wrenches. The

workspace is called WS in equations, while the sub-set of

pose with interference is called WSI . We will use the terms

‘object’ for a generic object represented by the facets of

its manifold, and ‘obstacle’ for fixed objects. Finally, �a
designate the domain of the variable a.

A versatile algorithm relying on intersection queries be-

tween indexed facets, mainly used for detecting interference

with external obstacles (layout of the factory for example) is

first described. This algorithm relies on the CGAL library,

see [1]. Following is a leg-leg interference algorithm based

on the work of Merlet et al. in [9]. The first one allows one

to handle all types of intersections with relatively simple

approaches, but provides rigorous answers only to non-

interference cases. The second algorithm is applied here only

on the leg/leg collision detection, and provides definitive

answers on non- or with-interference cases. The differences

between the last algorithm and the reference paper are the

extension to CDPRs, a slightly different approach of the

geometrical problematic and the 2B reduction presented in

III-B ii.) and assessed at the end of that section.



II. OBJECT INTERFERENCE

Preliminaries: Objects are represented as a list of facets

in an STL file. The only constraint on the objects is to respect

the STL specification of a closed manifold. The facets of

the obstacles are indexed into an Axis-Aligned Bounded

Box (AABB) tree, with origin shift and exact similitude

transformation. Intersection queries are handled by the 3D

Fast Intersection and Distance Computation algorithm [1].

The concept of swept space is used in thi paper. To

the knowledge of the author, Boyse in [2] was the first to

introduce it, in an interference algorithm detecting potential

interference between moving parts of a mechanism. The idea

is to consider the whole space described by a given entity

as a virtual part. Absence of time dependance provides for

fast algorithms but determining the swept space is often an

problem (see the survey [5]). In the current case, interval

analysis allows for fast, simple, but unfortunately overesti-

mated evaluation of the swept spaces.

We define necessary conditions for collision (border, pose

box of undetermined status), and sufficient conditions (in-

valid pose box). With the hypothesis that the list is exhaus-

tive, the negation of all conditions for the whole pose box

implies absence of collision (valid pose box).

Necessary conditions for collision: A bisection is

needed to reduce the evaluation overestimation if any of the

following interference is detected for part of the pose box:

• obstacle against platform (attachment point) swept space:

the obstacle intersects part of the platform swept space.

This intersection can also be evaluated through the attach-

ment point swept spaces. All swept spaces are obtained

through interval evaluation. Example figure 2.

• obstacle against cable sheaths: the obstacle intersects part

of a cable swept space. Cable swept spaces are 4 to 8 faces

polyhedra and will be called sheaths. Example on fig. 3.

Q

Fig. 2. Example of a mobile plat-
form interference with an object.
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Fig. 3. Depiction of a cable sheath
and an interference with an object.

Sufficient conditions for collision: The pose box is

declared fully outside of valid workspace if any of the

following intersections is detected for part of the pose box:

• object against configuration space: the object intersects

part of the configuration space considered;

• object against centre of any cable sheath: if the object

intersects the segment from the centre of the anchoring

space to the centre of the swept space of the platform

attachment point of a given leg, it is considered not caused

by overestimation, thick line on figure 3;

• object against application space: the object intersects part

of the desired workspace, see figure 4.

Fig. 4. Example of an application
with a self-interfering definition.
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Fig. 5. Depiction of the sheath-
sheath interference test; example of
an intersection (in red) of the sheaths.

III. CABLE/CABLE INTERFERENCE

Two poses X1, X2 of the application may satisfy all

constraints, but if getting from one to the other causes the

cables to cross, then X2 won’t be reached, at least not with

the straight cable control assumed throughout this section. If

a trajectory from X1 to X2 has cables colliding, then there

exists at least one pose XC ⊂ WSI with crossing cables.

Even if X1, X2 are not in the same pose box after bisections,

the algorithm will close in on XC and all poses of WSI .

If such scenario occurs then there is an intersection of

the interval-evaluated swept spaces. Such a scenario is also

equivalent to a small distance between the axes of the

two legs. The first implication is implemented as a first,

theoretically fast algorithm using swept spaces on the same

principle as the object/cable interference test above, and may

either qualify a pose box as interference-free or request a

split, as it is not possible to differentiate false-positive from

overestimation. The second equivalence is implemented as a

complete, reliable algorithm, looking for and at the shortest

distance(s) between two legs.

A. Swept space based algorithm.

Like in the object versus cable test, leg’s swept spaces

(sheaths) are built around the anchoring region of a given leg

and the space swept by the other end of the leg considering

all poses of the platform of a given pose box. The sheaths are

then tested for intersection versus each one of the other legs

sheaths, see figure 5. As this algorithm loose the correlation

between the attachments on the platform, it is very fast when

there is no possibility of interference, but leads to numerous

splits and often undetermined exits in the rest of the cases.

B. Shortest distances based algorithm.

In [9], Merlet et al. describe three forms of an interval-

evaluation based leg/leg interference algorithm for parallel

robots. We describe here a new algorithm which can be

summed up in three to four steps with reference to the

schematic 6 and its parameterisation:

i.) Determination of the radius of the cylinder/sheath of

the legs by computing the maximum sagging value from

the catenary model.

ii.) Determination of sets of values of the model parame-

ters which might lead to the minimal distance between

two given legs over a box of poses.

iii.) Determination of the range of values of the potential

minimal distances for each of the sets of parameters

determined in the previous step.

iv.) In some cases, evaluation of the legs situation with

reference to each other.



Presentation of the algorithm: Using the parameterisation

of figure 6, we can write the position vectors of points

Mi and Mj in the base frame as the generic equation

OM = OA + lAB. Using Chasles relation and distributive

property of the parameters, those vectors can be re-written as

equations (1), functions of the following known quantities:

• OAi, from the robot’s configuration.

• QBi|Rb
= RQBi, position of the attachment points in

the base frame, depending on the robot’s configuration

and platform orientation matrix within WSR ⊂ SO(3).
WSR ⊂ R

3 is the current workspace orientation box, sub

box of the specified workspace (a.k.a. the application); it

spans the set WSR ⊂ SO(3) of matrices.

• OQ, end-effector position within WS ⊂ R
3, current

workspace position box, sub box of the application.

∀OQ ∈ WS,∀R ∈ WSR, ∃(li, lj) ∈ [0 ; 1]
2

:

OMi =OAi + (QBi|Rb
−OAi) li + OQli (1a)

OMj =OAj + (QBj|Rb
−OAj) lj + OQlj (1b)
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Fig. 6. Schematic of the two segments
representing two legs of a parallel robot and
parametrization for the minimum gap-based
interference test.
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Fig. 7. Schematic of a cable
with elasticity and sagging,
under the catenary model.

We derive equation (2) from the equations (1).

∀OQ ∈ WS,∀R ∈ WSR, ∃(li, lj) ∈ [0 ; 1]
2

:

MjMi = AjAi +
(
RQBi − OAi

)
li

−
(
RQBj − OAj

)
lj + OQ (li − lj) (2)

We will use the distance dij = ‖MjMi‖ to evaluate the

range of distances from leg i to leg j for given box(es)

of parameters p = (x, y, z, α, β, γ, li, lj). Moreover, a re-

arrangement of equation (2) will be used to do a useful

2B-consistency on the domain of either one of the last two

parameters, which is particularly effective for CDPRs. The

partial derivatives of dij will also be used in a local branch

and prune algorithm to find out those boxes.

Step i.) Computation of a maximum sagging value: In

the frame of the CableBot European project, we compared

a sagging simulation experimentation by Technalia [11]

with simulation results obtained using the catenary model

popularized by Irvine in [3]. This qualitative comparison is

presented figure 8.

The approach used in [9] is suited for parallel robots

with non-deformable legs, not CDPRs with sagging cables.

In regards to this qualitative comparison, we make the

hypothesis that the cable is encapsulated in a cylinder whose

radius is the maximum sagging value obtained from the

catenary model over the configuration space, the pose box

x

z

Fig. 8. Depiction of the qualitative comparison of Technalia’s sagging
experiments versus catenary model based simulation results.

and for the wrench box of the application. This hypothesis is

likely correct as long as the cable is taut. As Merlet shows in

[10], several poses lead to at least one slack cable, hence an

additional hypothesis: when the cable is slack, the tension,

reduced to the cable self-weight and the bending rigidity, is

supposedly negligible in front of a taut cable tension.

Since the longer the leg is, the more massive is the hanging

part of the cable, we first look for the couple (anchor space,

workspace box) which leads to the higher uncoiled length.

Taking the higher end of the cable as origin of a new

local frame R1 whose x1Oz1 plane contains the cable (see

figure 7), we integrate the catenary model equations (3) of the

normalized horizontal and vertical parametrized coordinates

of a cable (noted here x(s) and z(s)) using dL0s = L0ds
from their differentiated expressions (4). We note the weight

of the uncoiled length of the cable Pc0
= ρ0gL0 and the

difference of the z component of the force applied on the

cable at the platform attachment point, by the weight of

the cable portion left from abscissa s to lower point B,

∆Fz (s) = Fz + Pc0
(s − 1) = ∆Fz (0) + sPc0

.

x(s) =
FxsL0

EA0

+
|Fx|L0

Pc0

(

arcsinh

(

∆Fz (s)

Fx

)

− arcsinh

(

∆Fz (0)

Fx

))

(3a)

z(s) =
∆Fz (0) sL0

EA0

+
Pc0

L0

EA0

s2

2

+
L0

Pc0

(√

F 2
x + (∆Fz (s))

2 −
√

F 2
x + (∆Fz (0))

2

)

(3b)

dx

ds
=

Fx

EA0

+
Fx

√

F 2
x + (∆Fz (s))

2

(4a)

dz

ds
=

∆Fz (s)

EA0

+
∆Fz (s)

√

F 2
x + (∆Fz (s))

2

(4b)

We use a second local frame R2, which is a rotation of

angle θ of the current one such that both attachment points

of the cable (noted A and B) are on the new z2 axis.

In this frame, the parametrized sagging function is simply

the opposite of the x2(s) parametrized coordinates, issuing

equation (5) and its derivative. Then, we solve (6) in order

to find the extrema of (5).

sag(s) = − zABx(s)√
xAB

2 + zAB
2

+
xABz(s)√

xAB
2 + zAB

2
(5)



d (sag)

ds
= 0 ⇔ −zAB

dx

ds
+ xAB

dz

ds
= 0 (6)

However, (6) is equivalent to (7), whose first factor is

always strictly positive, whatever the value of s, ensuing the

equivalence (8).
(√

F 2
x + ∆Fz (s)

2
+ EA0

)

(xAB∆Fz (s) − zABFx) = 0

(7)
d (sag)

ds
= 0 ⇔ smax sag =

zAB

xAB

Fx

Pc0

−
∆Fz (0)

Pc0

(8)

At this point, the Fx and Fz variables are any values of

their respective domains, while xAB , zAB , and Pc0
are single

values. As all equations are for a normalized parameter, we

can safely discard solutions not in the [0 ; 1] interval. Then

we take the biggest value from the evaluation of the sagging

function for all values of smax sag left.

Step ii.) Determination of the boxes of parameters of

potential minimum gap: We need to determine a set S of

boxes of parameters Bk such that one of them contains the

values of the eight parameters p = (x, y, z, α, β, γ, li, lj)
leading to the minimal gap between leg i and leg j. To

do that, we use a branch and prune algorithm to solve the

equations
∂dij

∂pi
= 0, for dij = ‖MjMi‖. With no loss of

generality, we can write that ∃d ∈ R,∃u ∈ [−1 ; 1]
3

such

that MiMj = du.

We begin by a 2B reduction on the domain of either li or

lj . Let us choose parameter lj and proceed to the following

substitution: λ = lj − li. Then, from (2), we can derive (9).

∀OQ ∈ WS,∀R ∈ WSR, ∃li ∈ [0 ; 1],∃λ ∈ [−1 ; 1],

∃d ∈ R,∃u ∈ [−1 ; 1]
3

:

OQλ = AjAi +
(
RBjBi − AjAi

)
li

−
(
RQBj − OAj

)
λ − du (9)

Let us first encapsulate the distance vector for interference

poses. For some QI and RI a pose for which there is a leg/leg

interference, as the distance vector MiMj is the shortest

distance between the two legs, we have ‖MiMj‖ ≤ ri + rj .

Moreover, MiMj ∈ [−a
2

; a
2
]
3
, see figure 9. By choosing a

so that the cube (C) is the circumcube of the sphere (S),
we have a = ri + rj .

a

r
i +

r
j

(C)

(S)

Fig. 9. Schematic of the encapsula-
tion of the distance vector dij for a
leg/leg interfering pose.
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Fig. 10. Schematic of the “cap”
situation in case one leg is right
above - or below - the other, and
parametrization.

Now, for the derivation of the equations for the 2B

reduction, using (9) we build the set WSI (λ), equation (10),

which represents a linear combination of the set of positions

for which there are leg/leg interference(s) for a given value of

the parameter λ, and the box H (λ), equation (11), a known

box depending on parameter λ, and superset of WSI (λ).

WSI (λ) =
{
λQI ∈ λ.WS

∣
∣ ∃li ∈ [0 ; 1],∃R ∈ WSR,

∃d < ri + rj ,∃u ∈ [−1 ; 1]
3
,OQIλ = AjAi+

(
RBjBi − AjAi

)
li −

(
RQBj − OAj

)
λ − du

}
(10)

H (λ) =
{
AjAi +

(
RBjBi − AjAi

)
li

−
(
RQBj − OAj

)
λ − du

∣
∣ ∀li ∈ [0 ; 1],

∀R ∈ WSR, ∀d < ri + rj ,∀u ∈ [−1 ; 1]
3
}

(11)

This inclusion is equivalent, ∀λ ∈ [−1 ; 1], to the two

inequalities (12).

Inf (H (λ)) ≤ Inf (WSI (λ)) (12a)

Sup (WSI (λ)) ≤ Sup (H (λ)) (12b)

Moreover, the definition (10) implies the inequalities (13).

Inf (WSI (λ)) ≤ Sup (�OQλ) (13a)

Inf (�OQλ) ≤ Sup (WSI (λ)) (13b)

Combining (12) and (13) leads to (14).

∀λ ∈ [−1 ; 1], Inf (H (λ)) ≤ Sup (�OQλ)
∀λ ∈ [−1 ; 1], Inf (�OQλ) ≤ Sup (H (λ))

(14)

It is important to notice in the inequalities (14) that the

parameter λ is a single real number, not a set. This fact,

combined with the linearity of the two interval operators

Inf (X) and Sup (X), justifies the distributivity used to

obtain inequalities (15). The two inequalities (14) are ac-

tually 6 inequalities, as they apply on all three translational

dimensions. Using the notation e to represent a generic eigen

vector of the box WS, inequalities (15) follow.

∀λ ∈ [−1 ; 1],∀e ∈ WS,

Inf (H (λ) .e) ≤ Sup (�OQ.e) λ (15a)

Inf (�OQ.e) λ ≤ Sup (H (λ) .e) (15b)

Finally, with H = {H (λ) | ∀λ ∈ [−1; 1]}, for all λ ∈
[−1 ; 1], and with e such that 0 6∈ �OQ.e, (15) brings (16).

Inf (H.e)

Sup (�OQ.e)
︸ ︷︷ ︸

λmin

≤ λ ≤
Sup (H.e)

Inf (�OQ.e)
︸ ︷︷ ︸

λmax

(16)

The interest of this framing of the λ parameter lies in

the fact that for a CDPR, we will often have big values

for the interval �OQ.z = WS|3 in order to mitigate the

tension in the cables through their inclinations with reference

to the vertical, ensuing small values over H.z in front of the

values of �OQ.z. It is even more interesting for almost

planar configurations, which induces small values over the

interval H.z. For the case defined in section IV, the size of

the resulting λ domain was ranging from 2.52% to 16.34%
of the initial domain size; the contraction resulted in no valid

domain, eg no interference, for 7.14% of the search tree for

a small workspace (SB) and 42.24% for a big one (BB).
The leg/leg interference algorithm continues with the

branch and prune algorithm fig. 11 for each of the variables.



1) 2B on λ. If λmax < λmin, then EXIT, no interference

for this pose box with the current configuration box.
2) initialize global variables: i = 8, S = {⊘}
3) initialize local variables: n = 1, W
4) While n < nmax, do:

a) W := eval

(

�
∂dij

∂pi

)

b) if 0 ∈ W . . .

(b.i) but no (or not enough) variations on W, change

�pi := Mid (�pi)
(b.ii) and both Diam (W ) > min allowed for

∂dij

∂pi

and Diam (�pi) > minimum allowed for param-

eter pi, split �pi, store lower half in to-do list L,

and change �pi := [Mid (�pi) ; Sup (�pi)]
(b.iii) but either W or �pi is not big enough, store

�pi in list S, and if to-do list is not empty change

�pi := L (last), else exit (to sub-step 5).

c) if 0 6∈ W . . .

(c.i) and first evaluation, hence i == 1, then dij is

monotonous with respect to parameter pi. If the

evaluation W is negative, dij (pi) is decreasing;

change �pi := Sup (�pi). If the evaluation W
is positive, dij (pi) is increasing; change �pi :=
Inf (�pi). Exit (to sub-step 5).

(c.ii) and to-do list L is not empty, discarding current

�pi and change �pi := L (last)
(c.iii) and to-do list L is empty, check if there was at

least one contribution of this variable domain to

the list S and exit (to sub-step 5), else overesti-

mation of the derivative: go to (c.i).

d) n = n + 1, go to 4

5) if i == 7 (thus current parameter is li), �li =
(�li ∩ � (lj − λ)). If �li = {⊘}, EXIT, no interference

for this pose box with the current configuration box.
6) if i > 1, decrement i for next variable, go to 3

Fig. 11. Branch and prune solving algorithm for all parameters of the
leg/leg interference tests.

Step iii.) Computation of all potential minimal distances

between the legs i and j: Once determined all boxes of

potential interference S = {Bk | ∀k ∈ J0 ; rK}, the algorithm

evaluate the distance interval dij between the legs i and j
for parameters in Bk, and compare it to the radii of the legs,

see figure 12. Those are intervals; there is no interference

if all distances from all the boxes (the lowest values of dij

for all Bk) test above the sum of the two radii; and there is

interference if all distances from one of the boxes (the highest

value of dij for any Bk) test below the i-th leg radius. If all

distances are above the i-th leg radius, but not above the sum

of the two radii, there are several possibilities, see Step iv.).

Step iv.) evaluation of the legs situation with reference to

the other leg: If all distances are above the i-th leg radius,

but not above the sum of the radii, it could be that the legs

actually are interfering, the respective cylinders just crossing,

but not as far as crossing each other’s axes, or it could be

that leg i is right above or below leg j, with no intersection.

To differentiate those two situations we begin by testing on

the first possibility, see algorithm figure 13. From the vector

7) for all boxes in S, eval (dij (x, y, z, α, β, γ, li, lj)).

a) if it exists at least one box Bk in list S such that

Sup (dij (Bk)) ≤ ri, EXIT, there is a leg/leg interference

in this pose box with the current configuration box.
b) if it exists at least one box Bk in list S such that

ri + rj ∈ dij (Bk), EXIT, need bisection of pose box.
c) if all boxes Bk in list S satisfy Inf (dij (Bk)) > ri+rj ,

EXIT, no interference for this pose box with the current

configuration box.
d) else (if ri < Sup (dij (Bk)) ≤ ri + rj) there might be

interference, if leg j is not right above or below leg i.
Calling Step iv.).

Fig. 12. For all sets of potential leg/leg interference, computation of
leg/leg distance and test for interference.

AjBj of leg j, we build the generic cartesian equation of

a perpendicular plane (or actually, a set of planes, as the

normal vector of the plane is a box). Then, we check if the

box of the potential positions of Mi contains a point that

could be on the planes at either one the leg’s end points. If

so, we need a bisection to reduce overestimation and clear up

the situation. Otherwise, checking the signs of the distances

between Mi and the planes at each end points of the leg j
allows to determine either if:

• Mi is in-between the cylinder caps planes, hence the two

legs are on the same level, and their cylinders interfere;

• Mi is outside of the space delimited by the planes in which

case we need to check that the angle α between the two

legs is perpendicular enough for the legs not to interfere.

From the parametrization figure 10, and considering succes-

sively triangles BAC and DAE, we find the two relations

(17) on α, from which ensues (18).

cos (α) =
dij − ǫ − ri

rj
; sin (α) =

d(plane,Mi)

dij

(17)

dij − ǫ = ri + rj cos

(

arcsin

(

d(plane,Mi)

dij

))

(18)

We derive the two conditions (20) from equation (18) and

ask for a bisection if neither conditions are met. For D1 =
�dij ∩ [0 ; ri +rj ], D2 = d (plane,Mi), we get the distances

D3 as (19) and the tests as equations (20).

D3 = ri + rj

√
√
√
√1 −

(

D2

D1

)2

(19)

No intersection if: Inf (D1) > Sup (D3)
Intersection if: Sup (D1) ≤ Inf (D3)

(20)

The whole algorithm (from 1) to 8 ) is applied to each

distinct pair of legs. Hence, for m the number of legs of the

robot, it is run

(
m
2

)

=
m (m − 1)

2
times at each box.

IV. COMPUTATION TIME

Computation times were obtained using the C library

’Time’ for a single core of an Intel R©Xeon R©CPU E5520

at 2.27GHz. The robot considered is a 6-legged suspended

CDPR with planar configuration and cubic platform with

uncertainties on cable exit points and platform attachment

points. The nominal positions of the cable exit points



8) if for any box Bk in S, dij evaluate such that

Sup (dij) ∈ ]ri ; ri +rj ] and all other boxes Bl of S either

evaluate to the same case, or satisfy Inf (dij (Bl)) > ri+rj

(test of non-interference 7c), then do:

a) build planes at Aj and Bj , evaluate for boxes Mi in

each Bk of S,
b) if any contains 0, EXIT, need bisection of pose box.
c) if the projection of Mi on plane at Bj is negative,

and the projection of Mi on plane at Aj is positive,

then EXIT, there is a leg/leg interference in this pose

box with the current configuration box.
d) if not, cap situation: for D3 defined by (19),

(d.i) if Inf (�dij) > Sup (D3), then EXIT, no

interference for this pose box with the current

configuration box.
(d.ii) if Sup (�dij) ≤ Inf (D3), then EXIT, there is

a leg/leg interference in this pose box with the

current configuration box.
(d.iii) else, EXIT, need bisection of pose box.

Fig. 13. Last part of the leg/leg interference algorithm, in case of potential
crossing of leg’s cylinders or one above/below the other.

form a 20m × 15m rectangle, the platform has 1m long

edges. The application is either a cartesian workspace of

6m × 1.5m × 6m × 17 deg×22 deg×12 deg centred on

(0,−1.25, 21, 7.5, 0, 5) for the big box case (BB); or a

cartesian workspace of 10mm on translations and 2 deg on

rotations centred on (−5, 5, 15,−10, 20, 0) for the small box

case (SB). A given obstacle (8.8 MiB STL file comprising

33087 facets) is placed at several positions to get close-

to- and collision configurations. The former is achieved by

pulling away the obstacle of a collision configuration. Except

for the obstacle tree building and overhead times, all other

measurements were done on a loop of 106 occurrences of

the evaluation and the statistics are obtained for 103 runs or

more. We use the following notations for tables I, II and III:

• OBT: OBstacle Tree computation time. The obstacle col-

lision algorithms use a tree of traits to search for intersec-

tion. As the object is fixed, the tree of the obstacle(s) is

computed once and for all before the analysis.

• OH: OverHead computation time, mainly the OBT.

• STB: Sheaths Tree Building computation time: the object

collision algorithm has the object features tree, but need a

leg sheaths tree, which must be rebuilt for all legs, at each

pose-box. Also used for LLCS. The times are per leg.

• OC: Object Collision computation time: all five or six

tests, for all 6 legs are embedded in this time.

• LLCS: Leg/Leg Collision computation time, Sheaths-

based algorithm, for all 6(6 − 1)/2 = 15 tests.

• LLCG: Leg/Leg Collision computation time, minimum

Gap-based algorithm, for all 6(6 − 1)/2 = 15 tests.

Finally, the performance of the collision algorithms is as-

sessed by the rate of undetermined-validity boxes, hence

needing a bisection and re-evaluation (the lower the better).

V. CONCLUSIONS

While LLCS and OC use leg sheaths and all leg sheaths

must be built beforehand, the LLCS is performing well in

terms of computation time, under 10ms, as expected. The

OBT [s] OH [s] STB [µs]
range [0.33 ; 0.49] [0.33 ; 0.50] [18.42 ; 22.68]
mean 0.347 0.348 19.792

std dev 0.010 0.010 0.883

Table I. Static computation times. OBT=OBstacle Tree, OH=OverHead,
STB=Sheath Tree Build.

OC [ms] LLCS [ms] LLCG [ms]
range [0.26 ; 90.76] [7.55 ; 8.31] [0.94 ; 1.01]
mean 40.00 7.83 0.99

std dev 40.03 0.17 0.003
split rate 14.30% 0% 0%

Table II. Interference algorithm computation times for small boxes.
OC=Obstacle Collision, LLCS=Leg/Leg Collision - Swept space based,
LLCG=Leg/Leg Collision - min Gap based.

OC [ms] LLCS [ms] LLCG [ms]
range [0.02 ; 543.96] [0.66 ; 9.28] [0.74 ; 1.20]
mean 44.42 4.65 0.96

std dev 110.95 3.55 0.17
split rate 18.96% 50.1% 0%

Table III. Interference algorithm computation times for big boxes.

obstacle collision (OC) scheme suffer from the sheath-based

leg/object test in delicate cases. Summed computation times

of all tests in the OC save this one range in [0.02 ; 0.18]ms.

The sheath-based tests (LLCS and OC) suffer from the lack

of sure-intersection test, especially troublesome with the fail-

first strategy common to effective branching algorithms.

The LLCG is surprisingly effective, as it is both box-size

independent and very fast: sheath-free hence no additional

time, and less than 1.2ms even for delicate situations to state

on the interference of all legs with each other. Those algo-

rithms were developed for offline analysis of a pair {CDPR

configuration, application}, but the figures - consistent over

several cases - open the door for real-time applications.
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