
HAL Id: hal-01095091
https://hal.science/hal-01095091v2

Submitted on 11 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Diffeomorphic Registration: Representing
Uncertainty

Demian Wassermann, Matt Toews, Marc Niethammer, William (sandy) Wells
Iii

To cite this version:
Demian Wassermann, Matt Toews, Marc Niethammer, William (sandy) Wells Iii. Probabilistic Dif-
feomorphic Registration: Representing Uncertainty. Biomedical Image Registration, 2014, London,
United Kingdom. pp.72 - 82, �10.1007/978-3-319-08554-8_8�. �hal-01095091v2�

https://hal.science/hal-01095091v2
https://hal.archives-ouvertes.fr


Probabilistic Diffeomorphic Registration:
Representing Uncertainty?

Demian Wassermann1,3, Matt Toews1, Marc Niethammer4, and William Wells III1,2

1 SPL, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
2 CSAIL, Massachusetts Institute of Technology, Boston, MA, USA

3 EPI Athena, INRIA Sophia Antipolis-Méditerranée, Sophia Antipolis, France
4 School of Medicine, University of North Carolina, Chapel Hill, NC, USA

Abstract. This paper presents a novel mathematical framework for representing
uncertainty in large deformation diffeomorphic image registration. The Bayesian
posterior distribution over the deformations aligning a moving and a fixed image
is approximated via a variational formulation. A stochastic differential equation
(SDE) modeling the deformations as the evolution of a time-varying velocity field
leads to a prior density over deformations in the form of a Gaussian process. This
permits estimating the full posterior distribution in order to represent uncertainty,
in contrast to methods in which the posterior is approximated via Monte Carlo
sampling or maximized in maximum a-posteriori (MAP) estimation. The frame-
work is demonstrated in the case of landmark-based image registration, including
simulated data and annotated pre and intra-operative 3D images.

1 Introduction
Deformable image registration seeks to identify a deformation field that aligns two im-
ages, and is a key component of image analysis applications such as computational
anatomy [1, 2]. An important body of literature focuses on deformations in the form
of diffeomorphisms [3, 4, 2], one-to-one mappings between image coordinate systems
that are smooth and invertible. These properties help in ensuring biologically plausible
deformations, and avoiding phenomena such as folding or tearing that may occur in
non-diffeomorphic registration approaches [5].

While a good deal of literature has focused on identifying optimal diffeomorphic
registration solutions, it would be useful to quantify the inherent uncertainty in these
solutions when interpreting the results of registration. Quantification of deformable
registration uncertainty, particularly at point locations throughout the image, remains
an open problem. The Bayesian approach quantifies probabilistic uncertainty via a pos-
terior distribution over deformations conditioned on image data. Estimating the full
posterior in the case of large deformation diffeomorphisms is desirable but computa-
tionally challenging, and has typically been avoided. Simpson et al. propose a Bayesian
variational framework based on small deformation kinematics [5], however this does
not address the general case of large deformations. Markussen proposed a stochastic
differential equation (SDE) model for large deformations, however only the computa-
tion of the maximum a posteriori deformation is provided lacking the estimation of a
distribution on the deformations [6]Alternatively, the posterior may be investigated via
sampling methods, e.g. Markov chain Monte Carlo (MCMC) [7] or Hamiltonian Monte
Carlo [8].
? This work was supported by grants NIH P41EB015898, R01CA138419 and NSF EECS-

1148870.



2

This paper introduces a novel mathematical framework that allows representing and
computing of the full Bayesian posterior in the case of large deformation diffeomor-
phisms. Our framework considers a SDE modeling the deformation field as the evo-
lution of a time-varying velocity field, with additive noise in the form of a Wiener
process. A Gaussian process (GP) density results from a locally linear approximation
of the SDE and taking the initial deformation field to be Gaussian process distributed.
Deformation field uncertainty is quantified by the point-wise covariance of the defor-
mation field throughout the image, and can be summarized, e.g., via the Frobenius norm
of the covariance (FC). This can be pictured through the following example: if the FC
at a point approaches 0, the marginal density of the transform approaches an impulse
function denoting the existence of a single probable solution. On the other hand, when
FC is large, the density becomes “broader” denoting a larger set of solutions with high
probability at that point. Hence the point-wise FC is a model of uncertainty. Experi-
ments demonstrate our framework in the context of landmark correspondences, where
a heteroscedastic model accounts for variable uncertainty in landmark localization. This
is particularly useful when estimates of landmark localization variability are available.

2 Methods
2.1 Variational Approximation to Registration
We start by posing the registration problem in a probabilistic framework. Let M and
F be moving and fixed objects with domains in ΩM and ΩF respectively, and let φ :
ΩM 7→ ΩF be a mapping between the two. The registration problem seeks a posterior
probability density over mappings φ conditioned on data (M,F ), which is expressed
via Bayes theorem as

p(φ|M,F ) = p(φ)p(M,F |φ)/p(M,F ). (1)

In Eq. (1), p(φ) is a prior density over φ embodying geometrical constraints such as
smoothness. p(M,F |φ) is the data attachment factor or likelihood of the map φ relating
F and M . E.g. the probability that M deformed by φ, which we note φ ◦M , is similar
to F . Finally, p(M,F ) is a normalizing constant.

The direct calculation of the posterior density p(φ|M,F ) is a difficult problem.
Hence, we use a variational method to estimate a distribution q(φ) (abbreviated as q)
that is close to p(φ|M,F ) in the sense of the Kullback-Leibler divergence (KL [·‖·]).
Specifically, we seek q minimizing:

KL [q‖p(φ|M,F )] = KL [q‖p(φ)]−
∫

log p(M,F |φ)dq(φ) + log p(M,F ). (2)

In the registration literature the data attachment factor p(M,F |φ) is typically mod-
eled using a measure of similarity between the registered objects: m : ΩF × ΩF 7→ R
which is minimal when two objects are exactly the same and grows as they become dif-
ferent. Adopting the equality − log p(M,F |φ) = m(φ ◦M,F ), Eq. (2) may be rewrit-
ten as:

KL [q‖p(φ|M,F )] = KL [q‖p(φ)] + 〈m(φ ◦M,F )〉q + log p(M,F ), (3)
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where 〈m(φ ◦M,F )〉q is the expected value of m with respect to the density q. There
are two main differences of this formulation with respect to common diffeomorphic
registration approaches [3, 4]. First, instead of seeking a single optimal deformation φ,
e.g. the maximum a-posteriori (MAP) solution in the Bayesian formulation, we seek to
obtain the full distribution q(φ). In this way, we obtain both the MAP deformation φ
in addition to the uncertainty at any given point in space, which can be calculated from
q(φ). Second, we obtain q(φ) by minimizing the data attachment term over a weighted
combination of all possible deformation fields in the family of φ instead of only at a
single deformation φ.

2.2 Probabilistic Diffeomorphic Deformations
The variational approximation to p(φ|M,F ) described in the previous section requires
a parameterization for q(φ) over which Eq. (3) can be minimized. In this section we
derive a novel parameterization in the form of a Gaussian Process (GP). The theoretical
basis for our derivation lies in a stochastic interpretation of the work of [1], common
to many diffeomorphic registration approaches [2]. Here, we begin by outlining the
relevant elements of this work, then we present our derivation in three propositions and
their proofs, with our primary contributions being in Propositions 2 and 3.

Following the work of [1], many diffeomorphic deformation formulations seek an
optimal registration solution φ, e.g. the MAP deformation in Eq. (1), by constraining
the map φ to be the solution at t = 1 of the ordinary differential equation (ODE)

d
dtφt(x) = vt(φt(x)), φ0(x) = x, t ∈ [0, 1]. (4)

and setting φ1 in Eq. (4) to minimize

E(φ;M,F ) = Ev(v) + Eφ(φ;M,F ), Ev(v) =
1

2

∫ 1

0

∫
Ωm

‖Lvt(x)‖22dxdt. (5)

From the two terms of E, Ev(v) regularizes the evolution of the time-varying velocity
field and Eφ(φ;M,F ) drives E such that the deformed moving object, φ1 ◦M , be-
comes as similar to F as possible. The regularization term Ev(v), is driven by L, a
linear differential operator. The key insight here is that given suitable L according to
[1], Eq. (5) restricts φt(x) defined as in Eq. (4) to the space of diffeomorphisms [1].
From this, we make the following propositions:

Proposition 1. Under a probabilistic interpretation, the regularization term Ev(v) in
Eq. (5) corresponds to the negative logarithm of the GP prior on the stochastic velocity
field v

p(v) = GP(0, Σts(x, y)), Σts(x, y) ∈ SPDd (6)

where the covariance function Σts(x, y), representing the relation between the point x
at time t and the point y at time s, is determined by the operator L in Eq. (5).

Proposition 2. Interpreting the energy Ev(v) in Eq. (5) as the negative logarithm of
the density of a stochastic process v induces a random process φ with density p(φ) on
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the deformation field of Eq. (4) that is a solution of the stochastic differential equation
(SDE)

dφt(x) = vt(φt(x))dt+
√
Σt(φt(x))dWt, (7)

Wt ∼ GP(0, Θts(x, y)), Θts(x, y) = min(t, s) Id, (8)

where
√
Σ is the square root matrix

√
Σ
√
Σ

ᵀ
= Σ; the GP Wt ∈ Rd is called

Brownian motion or a Wiener process [9]; vt(x) ∈ Rd is a deterministic velocity field
like in Eq. (4); and Σt(x) , Σtt(x, x) ∈ SPDd 5, the covariance of the probabilistic
prior defined in Prop. 1, is a consequence of Eq. (5).

Proposition 3. For the stochastic process φ with density p(φ), defined in prop. 2, the
mean φ̄ and covariance Λ functions are solutions of the deterministic ODEs

d
dt φ̄t(x) = 〈vt (φt(x))〉p (9a)

Λts(x, y) = covp [φt(x),φs(y)] =
〈
φt(x)φᵀ

s (y)
〉
p
− φ̄t(x)φ̄ᵀs (y) (9b)

d
dt

〈
φt(x)φᵀ

s (y)
〉
p

=
〈
vt(φt(x))φᵀ

s (y)
〉
p

+
〈
φt(x)vᵀs (φs(y))

〉
p

(9c)

+ 〈Σts(φt(x),φs(y))〉p .

Moreover, up to a first order approximation:

p(φ) = GP(φ̄t(x), Λts(x, y)), (10)

The proofs for Propositions 1-3 are as follows:
Proof of Prop. 1 This proposition has been proven by Joshi et. al.[2], here we pro-

vide a sketch of the relevant points. We start by relatingEv(v) in Eq. (5) to a probability
density on velocity fields as stochastic processes v, p(v):

− log(p(v)) = Ev(v) + const =
1

2

∫ 1

0

∫
ΩM

‖Lvt(x)‖22dxdt+ const, (11)

To show that p(v) is a stochastic process with a particular distribution, we need to
prove that any finite sample of the domain ΩM ∈ Rd has the same parametric distri-
bution [10]. We take N samples X ∈ RN×d in space and t ∈ [0, 1]N in time, and let
Vij = [vti (Xi)]j ∈ RN×d. Then we rewrite Eq. (11) as

− log(p(V)) = 1
2 (L vec V)

ᵀ
L vec V + const = 1

2 vec VᵀLᵀL vec V + const, (12)

where L is the matrix such that [LVi·] = [Lvti(Xi)]j . Eq. (12) is recognisable as
the log probability of a centered multivariate Gaussian with covariance C = (LᵀL)−1

and, therefore v(x) is a GP. The covariance function Σts(x, y) can be calculated as the
matrix Green’s function of the operator L [2]; specifically, if x, y ∈ Rd, Σts(x, y) ∈
SPDd where [Σts(x, y)]ij is the covariance between xi at time t and yj at time s.

5 SPDd: set of symmetric positive definite matrices of dimension d
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This shows that for a given velocity field v(x), random perturbations according
to the regularization term Ev(v) in Eq. (5) or prior Eq. (11) follow a GP, therefore
the velocity fields according to Ev(v) in Eq. (5) have the density specified in Eq. (6)
proving Prop. 1.

Proof of Prop. 2 A formal proof of Prop. 2 is beyond the scope of this paper. In-
stead, using Prop. 1 we argue its validity and provide appropriate references. In Prop. 1
we characterized the density of random perturbations of velocity fields according to
Eq. (5). Adding such random perturbations to Eq. (4) leads to Eq. (7).

The second term in Eq. (7) comes from considering the velocity fields vt of Eq. (4)
as a stochastic process according to Prop. 1. We achieve this by perturbing the right
hand side of Eq. (4) with noise. The factor Wt ∈ Rd is white noise, which multiplied
by
√
Σt is a centered Gaussian random variable with covariance Σt, a sample drawn

from Eq. (6). We noted the stochastic velocity field in Eq. (7) v to distinguish it from
the deterministic one v. Eq. (7) ceases to be an ODE as a sample path of Wt is almost
surely not differentiable. Alternatively, using the Itō interpretation of Eq. (7) leads to
the SDE in Eq. (7), whose solution is the density on φ [9, Chap. 8].

Proof of Prop. 3 The ODE for the mean of the stochastic process φ, Eq. (9a), is
obtained by calculating the expectation on both sides of Eq. (7). It is a consequence of
the linearity of the expected value and the derivative operator and the definition of Wt

as a zero-centered Wiener process in Eq. (8).
To obtain the ODE for the second moment of φ, shown in Eq. (9c), we use the Itō

product rule [9] to obtain an expression for d(φt(x)φᵀ
s (y)) and substitute it in Eq. (7)

obtaining〈
d(φt(x)φᵀ

s (y))
〉
p

= d
〈
φt(x)φᵀ

s (y)
〉
p

=
〈
vt(φt(x))dtφᵀ

s (y)
〉
p

+
〈√

Σt(φt(x))dWtφ
ᵀ
s (y)

〉
p

+
〈
φt(x)(vs(φs(y)))ᵀds

〉
p

+
〈
φt(x)(

√
Σt(φs(y))dWs)

ᵀ
〉
p

+

〈(
vt(φt(y))dt+

√
Σt(φt(y))dWt

)(
vs(φs(y))ds+

√
Σs(φs(y))dWs

)ᵀ
〉
p

,

(13)
which, using the Itō identities for expected values of differentials [9] results in Eq. (9c).

Obtaining a parametric form of the density of φ, p(φ), satisfying the SDE (7) in the
general case is an open problem and a wide field of study. However, in the case where
the drift v and diffusion coefficient

√
Σ are linear functions on their time and location

parameters, and the initial condition φt=0 is a GP, φt(x) is known to be a GP [9]. With
this purpose we define a locally linearized (LL) v and

√
Σ centered at t0, x0 [11]:

vt(x) ≈ vt0(x0) + ∂tvt0(x0)(t− t0) + Dxvt0(x0)(x− x0) (14a)
√
Σt(x) ≈

√
Σt0(x0) + ∂t

√
Σt0(x0)(t− t0) +

∑
i

∂xi

√
Σt0(x0)(x− x0)i (14b)

where Dxvt is the Jacobian of vt(x) w.r.t. x and ∂tvt its partial derivative w.r.t. t. Consid-
ering that L is assumed time-invariant in Prop. 1, the time derivative of

√
Σ in Eq. (14b)

is equal to 0. Then, using the LL equations Eqs. (14a) and (14b), we approximate Eq. (7)



6

as

dφt(x) ≈ (Atφt(x) + at)dt+

(∑
i

Sitφt(x)i +Rt

)
dWt (15)

At , Dxvt0(x0) at , −Dxvt0(x0)x0 + ∂tvt0(x0)(t− t0) + vt0(x0)

Sit , ∂xi

√
Σt0(x0) Rt , −

∑
i

Sit · (x0)i +
√
Σt0(x0).

(16)

The LL approximations in Eqs. (14a) and (15) lead to an approximation of the mean
function of φ, φ̄, by the solution of the ODE

dφ̄t(x)
dt ≈ vt(φ̄t(x)) where vt(x) ≈ (Atφ̄t(x) + at), (17)

and its second moment
〈
φt(x)φs(y)ᵀ

〉
when t = s by

d
〈
φt(x)φ

ᵀ
t (y)

〉
dt ≈ At

〈
φt(x)φ

ᵀ
t (y)

〉
+
〈
φt(x)φ

ᵀ
t (y)

〉
A
′ᵀ
t + atφ̄

ᵀ
t (y) + φ̄t(x)a

′ᵀ
t

+
∑
ij

Sit

〈
φt(x)φ

ᵀ
t (y)

〉 (
S′jt

)ᵀ
+

(∑
i

Sitφ̄t(x)i

)
R
′ᵀ
t +Rt

(∑
i

S′it φ̄t(y)i

)ᵀ

+RtR
′ᵀ
t ,

(18)

where A′t; a
′
t; S
′i
t ; and R′t are the same as At; at; Sit ; and Rt in Eq. (16) substituting y

and y0 for x and x0.
As long as the initial condition φt=0 is a GP, the linear approximation of φt is a

GP uniquely determined by φ̄ and Λ [9]. Then, given a set of stochastic velocity fields
v0 . . . vtM−1

with t0 = 0 and tM−1 = 1, the parameters of the stochastic process rep-
resenting the transform φ are obtained integrating Eqs. (17) and (18) with the initial
conditions φt=0 ∼ GP(φ̄t=0, Λt=0). Having characterized stochastic transformations
representing a diffeomorphic deformation, we are in position to formulate our proba-
bilistic diffeomorphic registration algorithm.

2.3 Probabilistic Diffeomorphic Registration
The stochastic diffeomorphic deformation model of Section 2.2 leads to a GP approx-
imation on deformation fields, whose parameters are determined by v and Σ; we use
this model as q(φ1), our variational distribution. In this section, we show how to com-
pute the parameters of q(φ1) minimizing Eq. (2) for a particular registration problem.
Taking the approach of [3], we focus on operators L for the energy Eq. (5) regular-
izing in space but not in time. Due to the time-independent regularization, the prior
on velocity fields of φ derived with Prop. 1 is the joint probability of the fields at
each time t: p(φ1) =

∏1
0 p(vt)

dt with p(vt) ∼ GP(0, Σ0). Then, we rewrite left-
most term of Eq. (2) as KL [q‖p(φ1)] =

∫ 1

0
KL [q(vt)|p(vt)] dt. We parameterize each

stochastic velocity field vt by a N -point set represented as a matrix Xt ∈ RN×d ren-
dering its mean equivalent to a spline model [10]. This sets the distributions of the
discretized velocity field prior to p(vec vt|Xt) = G(0, St=0|Xt). As in usual LDDMM
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approaches, we keep the L operator, hence the covariance S, fixed. Hence, the parame-
terized form of variational approximation to the posterior of the velocity fields becomes
q(vec vt|Xt) = G(µt, St=0|Xt). Due to GP properties given the mean and covariance
functions for the GP, we can characterize the mean and covariance for the discretized ve-
locity field as, µt(X) = vec vt(X) and [St=0(X)]di+k,dj+l = [Σt=0(Xi, Xj)]kl, i, j =
1 . . . N, k, l = 0 . . . d− 1 [10]. This leads to an objective which we minimize to obtain
q(φ1) representing the registration problem:

E(q(φ1)) = KL [q(φ1)‖p(φ1)] + 〈m(φ1 ◦M,F )〉q + log p(M,F ) (19a)

KL [q(φ1)‖p(φ1)] =

∫ 1

0

µ
ᵀ
t S
−1
t=0µtdt, s.t. dφ̄t

dt ≈ µt(φ̄t), φ̄0 = id . (19b)

Using the ideas of [3], Eq. (19) can be minimized through geodesic shooting [4], i.e.
it depends only on M , F and µt=0. The shooting equations for the proposed proba-
bilistic diffeomorphic registration can be derived using Eq. (19) in combination with
the evolution equation based on the most probable velocity field µ. In fact, the problem
formulation equations, shown in Eq. (4), stay the same as in [3], only the final condition
Eφ changes, which is then warped to t = 0 for a gradient descent with respect to the
initial velocity µt=0 leading to the objective function of q(φ1) parameterized on µt=0

argmin
µt=0

E(qµt=0(φ)) = 1
2µ

ᵀ
t=0S

−1
t=0µ

ᵀ
t=0 + 〈m(φ1 ◦M,F )〉q − log p(M,F ). (20)

Up to this point the framework we presented is general for cases where M and F
are images or landmarks. Henceforth, we specialize the treatment of the registration
problems for the landmark case where M and F are matrices in RN×d; m(M,F ) =
‖M − F‖22; and the random variable Φt = vec(φt ◦M) , vecφt(M). This allows us
to rewrite

〈m(φ1 ◦M,F )〉q = 〈m(Φ1, F )〉q = tr
〈
Φ1Φ

ᵀ
1

〉
q
− 2Φ̄

ᵀ
1F + trFF ᵀ. (21)

Replacing Eq. (21) in Eq. (20) leads to the gradient

∇µt=0
E(qµt=0

(φ1)) = 1
2S
−1
t=0µt=0 −

(
2Φ̄1 − 2F

)
.

Having this gradient, we minimize E w.r.t. µt=0 using a gradient descent algorithm.

3 Experiments
We are now in position to perform experiments using our probabilistic diffeomorphic
registration algorithm. For all our experiments, we chose the covariance function

Σts(x,y)ij = δ(t− s)
[
exp

(
−‖xi−yj‖22

2σ2

)]
ij
∈ Rd×d (22)

where σ2 is the model parameter. To conclude the specification of the model, we know
with certainty that the starting point of the registration algorithm is the identity trans-
form, hence φ0(x) ∼ GP(x, Σt=0,s=0(x,y)) and Σt=0,s=0(x,y) = 0.
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Mean Deformation

fixed registered

Covariance Frobenius Norm Map

moving registered
0.00

0.05

0.10

0.15

0.20

0.25

(a) Small Deformation

Covariance Frobenius Norm Map

(b) Diffeomorphic with Geodesic Shooting

Fig. 1 – Comparison between small deformation and diffeomorphic registrations with equal pa-
rameter values, the uncertainty is represented by the Frobenius norm of the covariance. The small
deformation model has a smaller variance in general at the expense of a possibly invalid defor-
mation field away from the landmarks.

3.1 Validity of the Locally Linear Approximation
To test the validity of our GP model for diffeomorphic deformations we compared the
GP through the LL method with one of the standard numerical solver for SDEs which
does not assume a parametric density on φ [9]. We generated two sets of landmarks, as
shown in Fig. 1, a circle and one resembling a flower, both of radius 10mm. Then we
generated random initial velocity fields with the covariance function in Eq. (22) with a
range of σ ∈ {.1, 2, 5}. We sampled from the SDE in Eq. (7) using the standard Euler-
Maruyama method [9] and then calculated the mean and covariance of the samples at
the end time of the simulation. On the other side we calculated the mean and covari-
ance at the same end time using the ODEs in Eqs. (17) and (18). After generating 100
experiments per landmark set and σ value, the mean arrival locations for both methods
differed by .5±.02 for σ = .1; .1±.003 for σ = 2 and .012±.0003 for σ = 5 all at least
two orders of magnitude smaller than the radius of the datasets; the Frobenius norm of
the difference between covariances was 11 ± 1 for σ = .1; 3 ± .02 for σ = 2; and
.5± .01 for σ = 5 which is small in comparison with the original variance of the points
74. This shows good agreement between the LL and the Euler-Maruyama methods.

3.2 Synthetic Registration Experiment
In order to compare our diffeomorphic model with a stochastic short deformation model
[5], we implemented our model and then registered the landmarks in the circle shown
in green in Fig. 1 to those of the “flower” shown in blue. The results for the short de-
formation model are illustrated in Fig. 1(a) and those of the diffeomorphic in Fig. 1(b).
It is noticeable that in the short deformation model the domain has been warped into a
non-invertible deformation which is not possible in the diffeomorphic case [3, 1]. We
also show the uncertainty in the transform as modeled by the of the deformation field
at each point. In Figs. 1(a) and 1(b) it is noticeable how, as expected, the uncertainty is
lower close to the landmarks and it grows as we move far away from them. Moreover,
in both models the FC values are comparable, showing that the increased complexity of
the diffeomorphic model has not increased the uncertainty in the results.

3.3 Registration of Pre-operative and Intra-operative Images
We illustrate the strength of our method in the case of multi-modal registration. We
use publicly available images [12] which include 12 clinical cases of brain tumor re-
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(a) MRI: Linear
Registration

(b) Intraoperative
Ultrasound

(c) MRI: Probabilistic
Diffeomorphic

Registration

Fig. 2 – Registration of pre-operative and intra-operative images: (a) The pre-operative MRI lin-
early registered and projected onto the ultrasound space. (b) The intra-operative ultrasound im-
age; and (c) the pre-operative MRI of (a) registered to (b) using our algorithm were we show the
warping according to the average registration field. The crosshair indicator shows how correspon-
dence between a-b is not as accurate as the one using deformable registration (c).

section. For these cases T1-MRI images have been acquired pre-surgically, manually
annotated with between 20 and 37 anatomical landmarks and a tumor delineation and
then intra-operative 3D ultrasound (US) reconstructions were acquired for the same
subjects before tumor resection. The same experts annotated the US images with the
same landmarks as the MRI.

We tested the accuracy of our registration algorithm on areas were there is no ex-
plicit information. For this, we used a leave-one-out (LOO) validation. For each subject
we took one of the landmarks out, registered all others and then measured the distance
of the landmark that we left out with the solution that were obtained by including it in
the registration. We show the results in Fig. 3(a). The results are over 12 subjects with
between 20 and 37 landmarks per subject. We obtained the best results with σ = 50mm.
Priors with σ < 50mm, were not able to move the left-out landmark to the ideal posi-
tion and had increased variance. Priors, σ > 50mm, had a closer distance to the ideal
location but an increased number of outliers. Finally, we register these subjects using
all the available landmarks and, through visual inspection, we are able the see that the
deformable registration improves the image matching as shown in Fig. 2. Moreover,
we also show how a prior enforcing a stronger smoothness constraint increases the cer-
tainty in of the registration in the whole image. We illustrate this in Fig. 3(b) where the
increase of the low uncertainty (blue) area of the image correlates with the increase of
the smoothness parameter.

4 Discussion and Conclusion
In this paper we presented a probabilistic diffeomorphic registration methodology. By
extending the usual diffeomorphic model of [1] from a deterministic ODE formulation
to a stochastic one, we were able to include in our model the registration error, or uncer-
tainty. To the best of our knowledge, this is the first algorithm proposing a probabilistic
diffeomorphic registration using a parametric density of the diffeomorphic deforma-
tions including a numerical method to calculate the parameters. Having presented our
model, we devised an algorithm to implement it through a locally linear approxima-
tion to a parametric density. We successfully tested this approximation against usual
methods for SDEs where a parametric density is not available. Then, we analyzed the
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Fig. 3 – (a): Evaluating registration accuracy against manually labeled landmarks using LOO (see
Section 3.3). The green line indicates the average pre-registration distance to the ideal location.
The yellow line indicates the median distance to the ideal position of the best configuration, σ =
50mm. (b): The MRI of Fig. 2 warped according to the mean deformation of the probabilistic
diffeomorphic registration using 5 different levels of smoothing. Overlapped on the warped image
is the estimated uncertainty. As the smoothness of the prior increases the uncertainty of the warp
diminishes spanning from a small neighborhood around the landmark to the rest of the image.

performance of our algorithm in synthetic and human data. Our experiments showed
that our algorithm produces good results. We measured this quantitatively through a
LOO experiment as well as qualitatively by visual assessment of 12 registrations be-
tween MRI and US modalities.
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