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A

In this paper we obtain an inequality on the unit disk B in R 2 , which improves the classical Moser-Trudinger inequality and the classical Hardy inequality at the same time. Namely, there exists a constant C0 > 0 such that

where

This inequality is a two dimensional analog of the Hardy-Sobolev-Maz'ya inequality in higher dimensions, which has been intensively studied recently. We also prove that the supremum is achieved in a suitable function space, which is an analog of the celebrated result of Carleson-Chang for the Moser-Trudinger inequality.

 or Remark 1 below for n = 2) such that

Introduction

Let B denote the standard unit disk in R 2 . The famous Moser-Trudinger inequality [START_REF] Moser | A sharp form of an inequality by N.Trudinger[END_REF][START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF] (1)

B e 4πu 2 ∇u 2 2 dx ≤ C < ∞, ∀ u ∈ H 1 0 (B)
plays an important role in two dimensional analytic problems. This inequality is viewed as a 2-dimensional analog of the Sobolev inequality. It is optimal in the sense that the constant 4π in [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF] could not be replaced by any larger constant. Its slightly weaker form

1 2 B |∇u| 2 dx -8π log B e u dx ≥ -C > -∞, ∀ u ∈ H 1 0 (B)
has been intensively used in the study of prescribing Gaussian curvature problem, and recently in the study of mean field equation. Here again, the constant 8π is optimal to have a finite infimum.

There is another important inequality in analysis, the Hardy inequality

(2)

H(u) := B |∇u| 2 dx - B u 2 (1 -|x| 2 ) 2 dx ≥ 0, ∀ u ∈ H 1 0 (B).
In this paper | • | denotes always the Euclidean norm. This result is also optimal in the sense that for any λ > 1, inf Hence u H := H(u) defines a norm over H 1 0 (B n ) and the completion of C ∞ 0 (B n ) with respect to the norm • H is a Hilbert space, which is denoted by H(B n ). Obviously H 1 0 (B) H(B). For simplicity, we denote H(B) by H and • H by • . In this paper we call H the Hardy functional.

In this paper, one of our main objectives is to improve the Moser-Trudinger inequality by combining the Hardy inequality.

Theorem 1. There exists a constant C 0 > 0 such that

(4) B e 4πu 2 H(u) dx ≤ C 0 < ∞, ∀ u ∈ H\{0}.
A direct consequence is the following, slightly weaker, but applicable form.

Corollary 1. There exists a constant C > 0 such that

(5) 1 2 B |∇u| 2 dx - 1 2 B u 2 (1 -|x| 2 ) 2 dx -8π log B e u dx ≥ -C > -∞, ∀ u ∈ H.
In the first glimpse these improved inequalities look too strong to be true. But if one compares to the recent work on the Hardy-Sololev inequality in higher dimensional case, one would speculate that this can be true. The Hardy-Sobolev inequality for higher dimension is also called the Hardy-Sobolev-Maz'ya inequality. Maz'ya proved in [START_REF] Maz | Sobolev Spaces[END_REF] (Section 2.1.6, Corollary 3) that there exists a constant C > 0 such that for any u ∈ H

1 0 (B n ) with n > 2, (6) 
B n |∇u(x)| 2 dx - B n u 2 (1 -|x| 2 ) 2 dx ≥ C B n |u(x)| 2n n-2 dx n-2 n
.

This inequality combines naturally the Sobolev inequality and the Hardy inequality. Let C n be the best constant such that [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF] holds. In some recent works, the constant C n has been estimated (see [START_REF] Tertikas | On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality[END_REF] for n > 3 and [START_REF] Benguria | The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space[END_REF] for n = 3).

• If n > 3, then C n < S n and the sharp constant C n is achieved in H(B n ). See [START_REF] Tertikas | On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality[END_REF].

• If n = 3, then C 3 = S 3 is not achieved in H(B n ). See [START_REF] Benguria | The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space[END_REF].

Here S n denotes the best constant for the Sobolev embedding from H 1 (R n ) into L 2n n-2 (R n ). See also [START_REF] Lewis | A geometric characterization of a sharp Hardy inequality[END_REF]. The Moser-Trudiner inequality (1) is considered as the most natural 2-dimensional analog of the Sobolev inequality. Therefore, the work on the Hardy-Sobolev-Maz'ya inequality inspires us to ask if one can also combine the Moser-Trudiner inequality [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF] and the Hardy inequality (2) into one single inequality. Theorem 1 gives an affirmative answer to this question and shows that the analog of the Hardy-Sobolev-Maz'ya inequality [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF] holds on a two dimensional disk with the same best constant 4π as in the classical Moser-Trudinger inequality (1). We call (4) or (5) a Hardy-Moser-Trudinger inequality. Moreover, we prove that the maximum of the functional in (4) is achieved, which is a Carleson-Chang type result. The original Carleson-Chang [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF] result asserts that the maximum of the functional in (1) is achieved, which is one of seminal results in geometric analysis.

Theorem 2. There exists u 0 ∈ H such that u 0 = 1 and

B e 4πu 2 0 dx = max u∈H, u ≤1 B e 4πu 2 dx = max u∈H\{0} B e 4πu 2 
H(u) dx.
Note that the supremum is not achieved in H 1 0 (B), see Remark 6 below. If we denote the best constant in the Moser-Trudinger inequality by S 2 and the best constant in (4) by C 2 , the results proved in this paper could be stated in a similar form as above

• If n = 2, then C 2 = S 2 = 4π is achieved in H(B 2 ).
We wonder if this kind of Hardy-Moser-Trudinger inequality holds for more general domains Ω ⊂ R 2 . For example, let Ω ⊂ R 2 be a regular, bounded and convex domain, then (see [START_REF] Brezis | Hardy's inequality revisted[END_REF])

H d (u) := Ω |∇u| 2 dx - 1 4 B u 2 d(x, ∂Ω) 2 dx > 0, ∀ u ∈ H 1 0 (Ω)\{0}.

We propose the following

Conjecture: There is a constant C(Ω) > 0 such that

Ω e 4πu 2 H d (u) dx ≤ C(Ω) < ∞, ∀ u ∈ H d (Ω) \ {0}.
Here H d (Ω) denotes the completion of C ∞ 0 (Ω) with the corresponding norm, defined by u 2

H d = H d (u).
The conjecture is true when Ω = B. This follows immediately from Theorem 1, since

H(u) ≤ H d (u) for any u ∈ C ∞ 0 (B).
There is another improved Moser-Trudinger inequality on the disk in R 2 , which was recently proved and studied in [START_REF] Mancini | Moser-Trudinger inequality on conformal disks[END_REF][START_REF] Adimurthi | On a version of Trudinger-Moser inequality with Möbius shift invariance[END_REF].

sup

u∈H 1 0 (B), ∇u 2 ≤1 B e 4πu 2 -1 (1 -|x| 2 ) 2 dx < ∞. (7)
For other generalizations of the classical Moser-Trudinger inequality (1), see for instance [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF][START_REF] Figueiredo | On an inequality by N. Trudinger and J. Moser and related elliptic equations[END_REF][START_REF] Kichenassamy | Renormalized variational principles and Hardy-type inequalities[END_REF][START_REF] Li | Moser-Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension 2[END_REF][START_REF] Li | A sharp Trudinger-Moser type inequality for unbounded domains in R n[END_REF]. See also [START_REF] Ding | Kähler-Einstein metrics and the generalized Futaki invariant[END_REF][START_REF] Tian | A nonlinear inequality of Moser-Trudinger type[END_REF] for a Moser-Trudinger inequality in Kähler geometry. A generalization of (4) to a higher dimensional ball like in [START_REF] Lin | Extremal functions for Moser's inequality[END_REF] and to higher order derivatives like in [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF][START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF][START_REF] Fontana | Sharp borderline Sobolev inequalities on compact Riemannian manifolds[END_REF][START_REF] Lu | Adams' inequalities for bi-Laplacian and extremal functions in dimension four[END_REF] would be very interesting. For the related higher order equations see also [START_REF] Gazzola | Polyharmonic boundary value problems, Positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF].

For the proof of our results, we use an important tool in geometric analysis, the blow-up analysis. Similar approaches were used in [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF][START_REF] Ding | The differential equation ∆u = 8π -8πhe u on a compact Riemann surface[END_REF][START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF][START_REF] Li | Moser-Trudinger inequality on compact Riemannian manifolds of dimension two[END_REF][START_REF] Li | A sharp Trudinger-Moser type inequality for unbounded domains in R n[END_REF] to establish 2-dimensional inequalities. The blow-up analysis for elliptic equations related to the classical Moser-Trudinger inequality (1) was initiated in [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF][START_REF] Struwe | Critical points of embedding of H 1,n 0 into Orlicz space[END_REF][START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF]. This proof is different from Moser's proof for the classical Moser-Trudinger inequality (1). It would be an interesting question if there is a proof similar to Moser's approach for (4). After symmetrization, as in [START_REF] Moser | A sharp form of an inequality by N.Trudinger[END_REF][START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF], we need only to deal with a one-dimensional inequality, or equivalently to deal with (4) in the class of nonincreasing, radially symmetric functions (see (8) below). However, it is difficult to us to follow Moser's proof, even for the weaker inequality (16) below. First, the condition H(u) ≤ 1 is weaker than the condition D(u) ≤ 1. Here D(u) is the Dirichlet functional |∇u| 2 . Second, the integrand of the Dirichlet energy D is nonnegative, while the integrand of the Hardy functional H could be somewhere negative. Hence, unlike in [START_REF] Maz | Sobolev Spaces[END_REF], we can only obtain weaker estimates of u(r) in terms of H(u) (see Remark 2 below). Nevertheless, we can show the claim [START_REF] Fontana | Sharp borderline Sobolev inequalities on compact Riemannian manifolds[END_REF], which, together with a weak Moser-Trudinger inequality (see [START_REF] Kichenassamy | Renormalized variational principles and Hardy-type inequalities[END_REF] below), implies a weaker Hardy-Moser-Trudinger inequality (see Theorem 3 below). With this weaker inequality we start the blow-up analysis.

Our paper is organized as follows: In Section 2, by using symmetrization we reduce our problem to a problem with radially nonincreasing functions and study the property of such functions with bounded H(u). We also study Green's function to the operator

L H := -∆ - 1 (1 -|x| 2 ) 2 .
In Section 3, we prove a subcritical or a weaker Hardy-Moser-Trudinger inequality [START_REF] Flücher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] with constant (4π -ε) for any constant ε ∈ (0, 4π), and show that ( 16) is achieved by a function u ε .

In Section 4, we analyze the convergence of family of the extremals {u ε } as ε tends to 0, and its blow-up behavior. Finally, Theorems 1 and 2 are proved respectively in Sections 5 and 6, by contradiction arguments.

In the following, • p denotes the standard L p norm for p ∈ [1, ∞] and C denotes a positive constant, which may change from line to line.

Preliminaries

First of all, we use the nonincreasing symmetrization with respect to the standard hyperbolic metric dv H = dx (1-|x| 2 ) 2 over B, which will enable us to reduce our problem to a one-dimensional problem, or equivalently to a problem in the space of nonincreasing, radially symmetric functions.

For any u ∈ H 1 0 (B), let u * denote the associated radially nonincreasing rearrangement with respect to dv H . It is well-known that u * ∈ H 1 0 (B) and ∇u * 2 ≤ ∇u 2 (see for example [START_REF] Baernstein | A unified approach to symmetrization, Partial differential equations of elliptic type[END_REF]). We know also

B u 2
and H 1 be the closure of Σ in H. To prove Theorem 1, we need only to show that sup

u∈H 1 , u ≤1 B e 4πu 2 dx ≤ C 0 < ∞. (8) Let u ∈ Σ, r = ϕ(t) = tanh t 2 and u(t) := u(r) = u • ϕ(t).
Let B r be the disk of radius r centered at 0 and B c r = B\B r its compliment in B. Define

H Ω (u) := Ω |∇u| 2 dx - Ω u 2 (1 -|x| 2 ) 2 dx, ∀ Ω ⊂ B.
It is easy to see that

H B c r (u) = 2π ∞ t=ϕ -1 (r) u 2 - u 2 4 sinh(s)ds, ∀ r ∈ (0, 1). Set v(s) = e s 2 u(s).
Noting that v(s) = 0 for large s, integration by parts gives then

H B c r (u) 2π = ∞ t e -s v 2 -vv sinh(s)ds = v 2 (t) 2 e -t sinh(t) + ∞ t e -2s v 2 ds + ∞ t e -s v 2 sinh(s)ds. ( 9 
)
We obtain, by taking t → 0, i.e. r → 0,

H(u) 2π = ∞ 0 e -2s v 2 ds + ∞ 0 e -s v 2 sinh(s)ds, ∀ u ∈ Σ. ( 10 
)
Consequently, we have

Lemma 1. H 1 is embedded continuously in H 1 loc (B) ∩ C 0, 1 2 
loc (B \ {0}). Moreover, for any p ≥ 1, H 1 ⊂ L p (B) and this embedding is compact.

Proof. Fix any r ∈ (0, 1), we have for all u ∈ Σ,

Br u 2 dx + Br |∇u| 2 dx = 2π ϕ -1 (r) 0 u 2 1 4 cosh 4 ( s 2 ) + u 2 sinh(s)ds ≤ C ϕ -1 (r) 0 u 2 + u 2 sinh(s)ds ≤ C ϕ -1 (r) 0 v 2 e -s + v 2 e -s sinh(s)ds ≤ C r ϕ -1 (r) 0 v 2 e -2s + v 2 e -s sinh(s) ds ≤ C r H(u). (11) 
Here the constant C r depends only on r ∈ (0, 1). From above we have H 1 ⊂ H 1 loc (B). By the Sobolev embedding theorem, we get

H 1 ⊂ ∩ p≥1 L p loc (B) and H 1 ⊂ C 0, 1 2 loc (B \ {0}).
Furthermore, for any r ∈ (0, 1), there exists

C r > 0 such that u(r) ≤ C r H(u), ∀ u ∈ H 1 . Since u ∈ H 1 is nonincreasing, H 1 is continuously embedded in L p (B) for any p ≥ 1.
For any bounded sequence {u k } ⊂ H 1 , we may assume, by taking a subsequence, that u k converges to u weakly in H and a.e. in B. by the following Lemma.

Lemma 2. Let Ω ⊂ R n be of finite measure and w k be a sequence of measurable functions converging a.e. in Ω to w. Assume that there exists q > 1 such that {w k } is bounded in L q (Ω), then w k converges to w in L 1 (Ω).

Remark 1. Using the symmetrization argument, we can see that H is embedded continuously in L p (B) for any p ∈ [1, ∞).

Moreover, from [START_REF] Brock | A general rearrangement inequality à la Hardy-Littlewood[END_REF] we get

H B c r (u) 2π ≥ v 2 (t) 2 e -t sinh(t) ≥ 0, ∀ u ∈ Σ, r = tanh t 2 , t > 0.
Since u(s) is nonincreasing in s for any u ∈ Σ, from [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF] we have

H(u) 2π ≥ t 0 e -2s v 2 ds = t 0 e -s u 2 (s)ds ≥ (1 -e -t ) u 2 (t), ∀ u ∈ Σ, t > 0.
Since e t = 1+r 1-r and sinh(t) = 2r 1-r 2 , the above inequalities imply then Lemma 3. For any u ∈ H 1 ,

(12) u 2 (r) ≤ 1 -r 2 2πr H B c r (u) and u 2 (r) ≤ r + 1 4πr H(u), ∀ r ∈ (0, 1]. Remark 2. We note that H Br (u) ≤ H(u) for any u ∈ H 1 and r ∈ (0, 1), since H B c r (u) ≥ 0. However, H B c r (u) ≤ H(u) is in general not true. For example H Br (u) < 0 if u is a positive constant on B r . Therefore we have no a priori control of H B c r (u) even u ≤ 1, this is why we estimate u(r) also by H(u) = u 2 .
Another crucial point in our approach is to handle the Hardy operator

L H = -∆ - 1 (1 -|x| 2 ) 2 .
The problem is not trivial because we cannot apply directly the classical theory to H due to the potential which is singular on the boundary. Our idea is to separate the study into two parts, and to use the classical theory near the origin and the L 2 theory in H for the exterior part.

Proposition 1. For any f ∈ L 1 (B) ∩ L 2 (B c 1 8
), there exists a unique

v ∈ H + W 1,p 0 (B 1 2 ) with p ∈ (1, 2) such that L H (v) = -∆v - v (1 -|x| 2 ) 2 = f in D (B). (13) Moreover, we can decompose v = v 1 + v 2 where v 1 ∈ H, v 2 ∈ ∩ p<2 W 1,p 0 (B 1 2 
) and

v 1 + ∇v 2 p ≤ C p f 1 + C f L 2 (B c 1 8 
) ∀ p ∈ (1, 2).

Remark 3. Of course, the decomposition (v 1 , v 2 ) is not unique. However the solution v is uniquely determined. For L 2 theory with more general singular potentials, see for example [START_REF] Dávila | Comparison results for PDE's with a singular potential[END_REF].

Proof. To simplify notations, define

Ω 1 = B c 1 8
,

Ω 2 = B 1 2 and a(x) = 1 (1 -|x| 2 ) 2 .
For the uniqueness of v, we need only to consider the case

f = 0. Let v = v 1 + v 2 satisfy L H (v) = 0 in D (B) with v 1 ∈ H, v 2 ∈ W 1,p 0 (Ω 2 ) and p > 1. We have v 1 , ϕ H ≤ C ϕ ≤ C ∇ϕ L 2 (Ω 2 ) , ∀ ϕ ∈ C ∞ 0 (Ω 2 ). From L H (v) = 0, we have -∆v 2 -a(x)v 2 ∈ H -1 (Ω 2 ), the dual space of H 1 0 (Ω 2 ). For any u ∈ H 1 0 (Ω 2 ), let w(x) = u( x 2 ) ∈ H 1 0 (B).
Using the monotonicity of a, we have

0 ≤ H(w) ≤ Ω 2 |∇u| 2 dx - B a(x)w 2 dx ≤ Ω 2 |∇u| 2 dx -4 Ω 2 a(x)u 2 dx,
and hence H Ω 2 (u) ≥ 3 4 ∇u 2 2 for all u ∈ H 1 0 (Ω 2 ). Therefore the operator L H is coercive in H 1 0 (Ω 2 ) and the classical regularity theory implies that v 2 belongs to

H 1 0 (Ω 2 ) ⊂ H 1 0 (B) ⊂ H. Finally v = v 1 + v 2 ∈ H verifies v, ϕ H = 0 for any ϕ ∈ C ∞ 0 (B)
. By a density argument, we have v = 0, namely there is at most one solution.

For the existence of solutions to [START_REF] Ding | The differential equation ∆u = 8π -8πhe u on a compact Riemann surface[END_REF] 

with f ∈ L 1 (B) ∩ L 2 (Ω 1 ), consider first L H (w) = f in Ω 2 , w = 0 on ∂Ω 2 .
From the standard elliptic theory, there exists a unique solution w ∈ ∩ p<2 W 1,p 0 (Ω 2 ) and ∇w p ≤ C p f 1 . Choose a cut-off function Ψ ∈ Σ such that Ψ(r) = 1 for r ≤ 1 8 and Ψ(r) = 0 for r ≥ 1 4 . It is easy to check that

L H ((1 -Ψ)w) = (1 -Ψ)f + 2∇w∇Ψ + w∆Ψ =: f 1 in D (Ω 2 ) with f 1 ∈ L p (Ω 2 ), ∀ p ∈ (1, 2). Thus we get (1 -Ψ)w ∈ W 2,p (Ω 2 ), ∀ p ∈ (1, 2).
In particular, from the Sobolev embedding theorem, the extension of w by 0 lies in W 1,q (B c ) for all q > 1.

Define now Ψ 1 (x) = Ψ(2x) and h = (1 -Ψ 1 )f + 2∇w∇Ψ 1 + w∆Ψ 1 . It is clear that h ∈ L 2 (B).
Thus we obtain hϕ 1 ≤ h 2 ϕ 2 ≤ C h 2 ϕ in view of (3) or Remark 1. By the Riesz Theorem, we know that there exists unique v 1 ∈ H such that

v 1 , ϕ H = B hϕdx, ∀ ϕ ∈ H.
It is easy to see that

v 1 ≤ C h 2 ≤ C f L 2 (Ω 1 ) + C p (1 -Ψ)w W 2,p (Ω 2 ) ≤ C p f 1 + C f L 2 (Ω 1 ) . Finally, let v 2 = wΨ 1 , we check readily that v = v 1 + v 2 is the desired solution.
Using this result, we cab define Green's function associated to the operator L H . Proposition 2. There exists a unique function

G 0 ∈ H + W 1,p 0 (B 1 2 ) with p ∈ [1, 2) such that L H (G 0 ) = δ 0 in D (B) (14)
where δ 0 stands for the Dirac distribution at 0. Moreover, G 0 is a radial function and there is a constant C G ∈ R such that for any α ∈ (0, 1),

G 0 (r) = - ln r 2π + C G + O r 1+α as r → 0, (15) Proof. Let G 2 (r) = - 1 2π Ψ(r) ln(r), F (r) = - ln r 2π(1 -r 2 ) 2 Ψ - Ψ πr - ln r 2π ∆Ψ.
Here Ψ is the same cut-off function as in the previous proof. It is clear that

F ∈ L 2 (B). Denote G 1 the unique solution in H such that G 1 , ϕ H = B F ϕdx, ∀ ϕ ∈ H.
Clearly, G 0 = G 2 + G 1 satisfies equation ( 14). The uniqueness of G 0 is ensured by Proposition 1, which implies then G 0 is radial. Since F belongs to L p (B) for any p > 1, the standard elliptic theory yields that G 1 ∈ W 2,p loc (B) ⊂ C 1,α loc (B) for any α ∈ (0, 1). Hence we have the expansion [START_REF] Figueiredo | On an inequality by N. Trudinger and J. Moser and related elliptic equations[END_REF].

Remark 4. Since (1 -Ψ) ln r 2π ∈ H 1 0 (B), we have G 0 (r) = -ln r 2π + G(r) in B with G ∈ H.

A weaker Hardy-Moser-Trudinger inequality

In this Section we prove a weaker form of the Hardy-Moser-Trudinger inequality, or its subcritical version, which will be used in our proof of Theorem 1.

Theorem 3. For any constant ε ∈ (0, 4π), it holds

sup u∈H 1 , u ≤1 B e (4π-ε)u 2 dx < ∞. ( 16 
)
and the supremum is achieved by some

u ε ∈ H 1 . Define A u (r) = 1 πr 2 Br u 2 (1 -|x| 2 ) 2 dx. Lemma 4. Let u ∈ H 1 and r ∈ (0, 1), we have π 1 2 -r 2 A u (r) ≤ H(u) + πu(r) 2 1 -r 2 .
Proof. From an elementary inequality

(u -b) 2 + b 2 ≥ u 2 2 , ∀ u, b ∈ R,
we have for any r ∈ (0, 1),

1 r 2 Br (u -b) 2 (1 -|x| 2 ) 2 dx ≥ 1 2r 2 Br u 2 (1 -|x| 2 ) 2 dx - 1 r 2 Br b 2 (1 -|x| 2 ) 2 dx = π 2 A u (r) - πb 2 1 -r 2 .
Applying the above formula to w(x) = u(rx) -u(r) ∈ H 1 0 (B) and b = u(r), we get

B w 2 (1 -|x| 2 ) 2 dx ≥ Br (u -u(r)) 2 r 2 (1 -|x| 2 ) 2 dx ≥ π 2 A u (r) - πu(r) 2 1 -r 2 .
It follows that, together with the Hardy inequality,

0 ≤ H(w) = Br |∇u| 2 dx - B w 2 (1 -|x| 2 ) 2 dx ≤ Br |∇u| 2 dx - π 2 A u (r) + πu(r) 2 1 -r 2 = H Br (u) + πr 2 A u (r) - π 2 A u (r) + πu(r) 2 1 -r 2 ≤ H(u) + πu(r) 2 1 -r 2 -π 1 2 -r 2 A u (r),
which is just the conclusion.

Proof of Theorem 3. By a density argument, we need only to show [START_REF] Flücher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] for the subspace Σ. Moreover we only need to show [START_REF] Flücher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] for functions u ∈ Σ with u(0) > 1, since if u(0) ≤ 1, we have e (4π-ε)u 2 L 1 (B) ≤ πe (4π-ε) . We first claim that there exist two constants r 2 ∈ (0, 1) and

C 1 > 0 independent of u ∈ Σ ∩ {u | u(0) > 1} such that (17) ∇u L 2 (Br 2 ) ≤ 1 and u(r 2 ) ≤ C 1 . Define r 1 = inf{r > 0 | u(r) ≤ 1} > 0.
Since u(r 1 ) = 1, we have an upper bound of r 1 , r 1 ≤ 1 2π by the second inequality in [START_REF] Dávila | Comparison results for PDE's with a singular potential[END_REF] for H(u) ≤ 1. From Lemma 4 and the fact u(r) ≥ 1 for r ≤ r 1 , we know that there exists C > 0 independent of u such that A u (r) ≤ Cu(r) 2 , ∀ r ∈ (0, r 1 ]. Using the first estimate in [START_REF] Dávila | Comparison results for PDE's with a singular potential[END_REF], we have, for any r ≤ r 1 ,

Br |∇u| 2 dx = H Br (u) + πr 2 A u (r) ≤ 1 -H B c r (u) + Cπr 2 u(r) 2 ≤ 1 -H B c r (u) + C 2 rH B c r (u). (18) 
Therefore, there exists r 2 ∈ (0, r 1 ] small enough, independent of u, such that

∇u L 2 (Br 2 ) ≤ 1.
Moreover, Lemma 3 and H(u) ≤ 1 imply that u(r 2 ) ≤ C 1 for some constant C 1 > 0 independent of u. This finishes the proof of the claim. Thanks to the weak Moser-Trudinger inequality ( 19): for any small ε > 0

(19) B e (4π-ε/2)u 2 ∇u 2 2 dx ≤ C ε < ∞, ∀ u ∈ H 1 0 (B),
we have

Br 2 e (4π-ε/2)(u(r)-u(r 2 )) 2 dx = B e (4π-ε/2)(u(r)-u(r 2 )) 2 + dx ≤ C ε < ∞,
in view of [START_REF] Fontana | Sharp borderline Sobolev inequalities on compact Riemannian manifolds[END_REF]. Here f + = max{f, 0}. It is easy to see for any r ≤ r 2 we have

(4π -ε)u(r) 2 ≤ (4π -ε/2) u(r) -u(r 2 ) 2 + 2(4π -ε/2)u(r)u(r 2 ) -ε/2u(r) 2 ≤ (4π -ε/2) u(r) -u(r 2 ) 2 + C(ε),
for some positive constant C(ε) depending on C 1 and ε, but independent of u. This yields

B e (4π-ε)u 2 dx = Br 2 e (4π-ε)u 2 dx + B c r 2 e (4π-ε)u 2 dx ≤ Br 2 e (4π-ε/2)[u-u(r 2 )] 2 +C(ε) dx + π(1 -r 2 2 )e (4π-ε)u(r 2 ) 2 ≤ e C(ε) C ε + πe 4πC < ∞.
The proof of inequality ( 16) is completed.

Now we show the achievement of the supremum. Fix ε > 0, consider a maximizing sequence u j ∈ H 1 for ( 16) with u j ≤ 1. Recall that • is the norm in H. By taking a subsequence, we may assume that u j converges to u ε ∈ H 1 weakly in H. Thus u ε ≤ 1. By Lemma 1, we may assume also that u j converges to u ε a.e. in B.

Using ( 16) with ε 2 , we see that e (4π-ε)u 2 j is bounded in L q (B) for some q > 1. Lemma 2 implies that e (4π-ε)u 2 j converges in L 1 (B), that is,

B e (4π-ε)u 2 ε dx = lim j→∞ B e (4π-ε)u 2 j dx,
and hence the supremum of ( 16) is attained by u ε . Clearly we must have u ε = 1.

Remark 5. Instead of the weak Moser-Trudinger inequality ( 19) one can certainly use the Moser-Trudinger inequality (1) in the proof of Theorem 3. Since the proof of the weak Moser-Trudinger inequality is very elementary (see [START_REF] Maz | Sobolev Spaces[END_REF]), we use it here to make the proof of Theorem 3 also elementary. In the proof, the claim ( 17) is crucial. We do not know if there is a very elementary proof of Theorem 3, similar to the original proof of Moser in [START_REF] Maz | Sobolev Spaces[END_REF], without first showing the claim. Remark that the proof of the Hardy-Moser-Trudinger inequality, Theorem 1, does not follow from this argument, since the constant C(ε) → +∞ as ε → 0.

Blow-up analysis

For any ε ∈ (0, 4π), let u ε be the maximizer obtained by Theorem 3. In this Section we consider the convergence of the sequence {u ε } when ε goes to zero.

Suppose that u ε ∞ = u ε (0) does not go to infinity as ε tends to 0. Namely then there exists ε j → 0 such that u ε j ∞ ≤ C. It is easy to see that in this case, up to a subsequence u ε j converges weakly to u 0 ∈ H 1 in H and a.e. in B, with u 0 ≤ 1 and

u 0 ∈ L ∞ (B). Let w ∈ H, w ≤ 1, B e (4π-ε j )w 2 dx ≤ B e (4π-ε j )u 2 ε j dx, for any j ∈ N.
Applying respectively monotone and dominated convergence Theorem, we have

B e 4πw 2 dx = lim j→∞ B e (4π-ε j )w 2 dx ≤ lim j→∞ B e (4π-ε j )u 2 ε j dx = B e 4πu 2 0 dx < ∞.
In other words, u 0 realizes the finite maximum of the Hardy-Moser-Trudinger functional. Therefore both Theorems 2 and 1 are proved in this case.

In the following, we will suppose the contrary, i.e. lim ε→0 u ε ∞ = ∞ and perform a blow-up analysis as in [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF][START_REF] Li | A sharp Trudinger-Moser type inequality for unbounded domains in R n[END_REF]. Since u ε ∈ H 1 is a maximizer, there exists λ ε > 0 such that

L H (u ε ) = -∆u ε - u ε (1 -|x| 2 ) 2 = λ ε u ε e (4π-ε)u 2 ε in D (B). ( 20 
)
From Lemma 1, ( 16) and ∆u ε ∈ L q loc (B) for some q ∈ (1, 2), we get u ε ∈ W 2,q loc (B) from the standard regularity theory. By the Sobolev embedding theorem in dimension two, we have that u ε is continuous in B, and hence u ε ∈ C(B). Here the continuity up to ∂B follows from u ε ∈ H 1 . Indeed, u ε is the so called H-solution of (20) over B, in the spirit of Dávila and Dupaigne [START_REF] Dávila | Comparison results for PDE's with a singular potential[END_REF]. Using u ε as a test function, we have

λ ε B u 2 ε e (4π-ε)u 2 ε dx = u ε 2 = 1. (21)
Remark 6. Notice that u ε does not belong to H 1 0 (B). This is due to Theorem III in [START_REF] Brezis | Hardy's inequality revisted[END_REF], because u ε ∈ C(B) and

a(x) - 1 4d(x, ∂B) 2 = 1 (1 -r 2 ) 2 - 1 4(1 -r) 2 = 1 1 -r × (3 + r) 4(1 + r) 2 = O d(x, ∂B) -1 .
Suppose that Theorem 1 does not hold true, then

lim ε→0 B e (4π-ε)u 2 ε dx = ∞ = lim ε→0 u ε ∞ . ( 22 
)
Since u ε = 1, there exist weakly convergent subsequences in H. Note that from now on, for simplicity, we do not distinguish between convergence and subconvergence. Assume u ε → u 0 ∈ H 1 weakly in H.

Lemma 5. We have u 0 ≡ 0.

Proof. Suppose the contrary, then there is r 0 ∈ (0, 1 2 ) such that u 0 (r 0 ) > 0. By Lemma 1, u ε tends to u 0 in C loc (B \{0}) (since the embedding of C 0, 1 2 into C 0 is compact), and hence u ε (r 0 ) ≥ δ > 0 for ε small enough. Using Lemma 4, we have A uε (r) ≤ Cu ε (r) 2 for any r ≤ r 0 when ε is small enough, for u ε (r) ≥ u ε (r 0 ) ≥ δ and H(u ε ) = 1. Hence we have

Br |∇u ε | 2 dx = 1 -H B c r (u ε ) + πr 2 A uε (r) ≤ 1 - 2πr 1 -r 2 u ε (r) 2 + Cr 2 u ε (r) 2 , ∀ r ≤ r 0 .
There exists then r 1 ∈ (0, r 0 ) and η > 0 such that for ε small, ∇u ε L 2 (Br 1 ) ≤ 1 -η < 1. By the Moser-Trudinger inequality (1), we have Similarly as in the proof for [START_REF] Flücher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF], using lim ε→0 b ε = u 0 (r 1 ) < ∞, we can conclude that e 4πu 2 ε 1 ≤ C < ∞ for small enough ε. This contradicts [START_REF] Li | Moser-Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension 2[END_REF]. Hence u 0 ≡ 0.

Applying Lemma 5 and Lemma 1, we know that u ε ∈ H 1 converges uniformly to 0 in B c r for r > 0. Thus we will concentrate now our attention on the behavior of u ε near the origin. Define

M ε = u ε (0) = max u ε and r 2 ε = e (ε-4π)M 2 ε λ ε M 2 ε . ( 23 
)
Using ( 16), there holds

λ -1 ε = B u 2 ε e (4π-ε)u 2 ε dx ≤ B 1 2 u 2 ε e (4π-ε)u 2 ε dx + C ≤ M 2 ε e (2π-ε)M 2 ε B e 2πu 2 ε dx + C ≤ M 2 ε e (2π-ε)M 2 ε sup u ≤1 B e 2πu 2 dx + C ≤ CM 2 ε e (2π-ε)M 2 ε + C. It follow that (recall that lim ε→0 M ε = ∞) r 2 ε M 2 ε = e (ε-4π)M 2 ε λ ε ≤ CM 2 ε e -2πM 2 ε ,
and hence lim ε→0 r ε M ε = 0 and lim ε→0 r ε = 0. Define

v ε (x) = u ε (r ε x) and ξ ε (x) = M ε v ε (x) - M ε . A direct calculation leads to -∆ξ ε = v ε M ε e (4π-ε)(v 2 ε -M 2 ε ) + r 2 ε M 2 ε (1 -r 2 ε |x| 2 ) 2 v ε M ε in D (B r -1 ε ). (24)
For any R > 0, -∆ξ ε = O(1) in B R for small ε, since 0 ≤ v ε ≤ M ε . By ξ ε (0) = 0, the standard elliptic estimate implies that ξ ε converges in C 1 loc (R 2 ) to ξ. Therefore we have

v ε -M ε = ξ ε M ε → 0, v ε M ε → 1 and v 2 ε -M 2 ε = 2ξ ε + ξ 2 ε M 2 ε → 2ξ in C 1 loc (R 2 ). ( 25 
)
By taking ε → 0 in [START_REF] Lin | Extremal functions for Moser's inequality[END_REF], we know that ξ ∈ C 1 (R 2 ) satisfies

-∆ξ = e 8πξ in D (R 2 ). ( 26 
)
Combining the facts ξ(0) = 0, ξ is radially symmetric and nonincreasing with respect to r, we can deduce that

ξ(x) = - 1 4π ln(1 + πr 2 ), R 2 e 8πξ dx = 1. ( 27 
)
Note that all solutions of ( 26) with e 8πξ ∈ L 1 (R 2 ) were classified in [START_REF] Li | Classification of solutions of some nonlinear elliptic equations[END_REF].

From the above analysis we understand the behavior of the sequence {u ε } near the blow-up point 0, more precisely in B rεR for any large, but fixed R > 0. Let L > 1 and R > 0 large. We divide the disk B into three parts: the interior part B rεR , the outer part

{Lu ε ≤ M ε } := x ∈ B | u ε (x) ≤ M ε L
and the neck region

{Lu ε ≥ M ε } \ B rεR := x ∈ B\B rεR | u ε (x) ≥ M ε L .
To analyze {u ε } in the outer part and the neck region, let us denote u ε,L = min(u ε , Mε L ). We have then Lemma 6. For any

L > 1, lim sup ε→0 H(u ε,L ) ≤ L -1 . Proof. Consider ζ ε,L = u ε -u ε,L = u ε -Mε L + . Fix R > 0. Using ζ ε,L as a test function to equation (20), we have B |∇ζ ε,L | 2 dx - B u ε ζ ε,L (1 -|x| 2 ) 2 dx = λ ε B ζ ε,L u ε e (4π-ε)u 2 ε dx ≥ λ ε B rεR ζ ε,L u ε e (4π-ε)u 2 ε dx = B R v ε M ε - 1 L + v ε M ε e (4π-ε)(v 2 ε -M 2 ε ) dx → 1 - 1 L B R e 8πξ dx, (28) 
when ε → 0. The convergence in ( 28) is ensured by [START_REF] Lu | Adams' inequalities for bi-Laplacian and extremal functions in dimension four[END_REF]. Recall that r ε is defined by [START_REF] Li | A sharp Trudinger-Moser type inequality for unbounded domains in R n[END_REF]. Moreover, one can check easily that

H(u ε,L ) = H(u ε ) - B |∇ζ ε,L | 2 dx + B u ε ζ ε,L (1 -|x| 2 ) 2 dx.
which, together with ( 28) and ( 27), completes the proof of the Lemma, if we let R → ∞.

Using our subcritical inequality (16) to functions

Lu ε,L 2 , we get B e πL 2 u 2 ε,L dx ≤ C < ∞, for ε small enough. (29)
Furthermore, Lemma 7. We have

lim ε→0 λ ε M 2 ε = 0 (30)
and

lim ε→0 λ ε M ε B u ε e (4π-ε)u 2 ε dx = 1. ( 31 
)
Proof. Let us first estimate e (4π-ε)u 2 ε 1 . Fix L > 2. We deduce

I ε := {Luε≤Mε} e (4π-ε)u 2 ε dx ≤ B e (4π-ε)u 2 ε,L dx → π, as ε → 0.
The convergence follows from the facts that u ε,L → 0 a.e. in B, estimate (29) and Lemma 2.

Using once again the uniform convergence of u ε to zero in B c r for any r ∈ (0, 1), we have

{Luε≤Mε} e (4π-ε)u 2 ε dx ≥ B c r e (4π-ε)u 2 ε dx → π(1 -r 2 ), as ε → 0.
Taking r → 0, we have that lim ε→0 I ε = π. On the other hand, there holds

J ε := {Luε≥Mε} e (4π-ε)u 2 ε dx ≤ L 2 λ ε M 2 ε {Luε≥Mε} λ ε u 2 ε e (4π-ε)u 2 ε dx ≤ L 2 λ ε M 2 ε B λ ε u 2 ε e (4π-ε)u 2 ε dx = L 2 λ ε M 2 ε . Finally, we have ∞ = lim ε→0 B e (4π-ε)u 2 ε dx = lim ε→0 (I ε + J ε ) ≤ π + lim sup ε→0 L 2 λ ε M 2 ε , (32) 
which implies lim inf ε→0 λ ε M 2 ε = 0. This argument is in fast valid for any subsequence. Hence we obtain [START_REF] Tertikas | On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality[END_REF].

To prove [START_REF] Tian | A nonlinear inequality of Moser-Trudinger type[END_REF], we estimate the integral over three parts separately. First, we have

λ ε M ε {Luε≤Mε} u ε e (4π-ε)u 2 ε dx ≤ λ ε M 2 ε I ε → 0, as ε → 0.
Moreover, for any R > 0, we get

λ ε M ε B rεR u ε e (4π-ε)u 2 ε dx = B R v ε M ε e (4π-ε)(v 2 ε -M 2 ε ) dx → B R e 8πξ dx
and

λ ε M ε {Luε≥Mε}\B rεR u ε e (4π-ε)u 2 ε dx ≤ L {Luε≥Mε}\B rεR λ ε u 2 ε e (4π-ε)u 2 ε dx ≤ L B\B rεR λ ε u 2 ε e (4π-ε)u 2 ε dx = L -L B rεR λ ε u 2 ε e (4π-ε)u 2 ε dx → L 1 - B R e 8πξ dx .
The proof of ( 31) is completed by tending R to ∞.

Let g ε = M ε u ε . It is clear that g ε satisfies the following equation L H (g ε ) = λ ε g ε e (4π-ε)u 2 ε in D (B). (33) 
(31) and its proof shows that λ ε g ε e (4π-ε)u 2 ε converges to the Dirac operator δ 0 in D (B). This suggests that g ε should tend to the corresponding Green's function G 0 , which is confirmed as follows.

Proposition 3. When ε → 0, the family {g ε } converges to G 0 in W 1,p loc (B) weakly for p ∈ (1, 2), strongly in L q (B) for all q ≥ 1 and also in C(B c r ), ∀ r ∈ (0, 1). Here G 0 is defined by Proposition 2.

Proof. Since g ε ∈ H, using Proposition 1 on (33) we know that there exist k ε and h ε such that

g ε = h ε + k ε with h ε ∈ H and k ε ∈ ∩ p<2 W 1,p 0 (B 1 2 
) satisfying that for any p ∈ (1, 2),

h ε + ∇k ε p ≤ C p λ ε g ε e (4π-ε)u 2 ε 1 + C λ ε g ε e (4π-ε)u 2 ε L 2 (Ω 1 )
where

Ω 1 = B c 1 8 
.

Since u ε e (4π-ε)u 2 ε tends to zero uniformly in Ω 1 , h ε + ∇k ε p are uniformly bounded for ε small. Thus we see (by taking a subsequence) that h ε converges weakly to h 0 in H and k ε converges weakly to k 0 in W 1,p 0 (B 1 2

) for p ∈ (1, 2).

Let

g 0 = h 0 + k 0 ∈ H + W 1,p 0 (B 1 2 
). Since λ ε g ε e (4π-ε)u 2 ε → δ 0 , we have L H (g 0 ) = δ 0 in D (B). Proposition 2 implies g 0 = G 0 and we obtain all statements about the convergence of {g ε } to G 0 .

Proof of Theorem 1

Proof of Theorem 1. Suppose that Theorem 1 does not hold. Let ρ ∈ (0, 1) be a small constant, which will be determined later. Thanks to Proposition 3, we have

lim ε→0 M ε u ε (ρ) = G 0 (ρ), lim ε→0 Bρ a(x)M 2 ε u 2 ε dx = Bρ a(x)G 2 0 dx =: J 1 (ρ). ( 34 
)
Recall that a(x) = (1 -|x| 2 ) -2 . By equation [START_REF] Yang | A sharp form of Moser-Trudinger inequality on compact Riemannian surface[END_REF], we get

H B c ρ (g ε ) = H(g ε ) -H Bρ (g ε ) = λ ε B c ρ g ε e (4π-ε)u 2 ε dx - ∂Bρ ∂g ε ∂ν g ε dσ.
It is clear that the first term goes to 0 when ε → 0. From ( 31) and (34), we have

- ∂Bρ ∂g ε ∂ν g ε dσ = -g ε (ρ) Bρ ∆g ε dx = g ε (ρ) Bρ a(x)g ε dx + λ ε Bρ g ε e (4π-ε)u 2 ε dx → G 0 (ρ) Bρ a(x)G 0 dx + 1 =: J 2 (ρ).

Finally we have

Bρ

|∇u ε | 2 dx = 1 -H B c ρ (u ε ) + Bρ a(x)u 2 ε dx = 1 - 1 M 2 ε J 2 (ρ) -J 1 (ρ) + o ε (1) , (35) 
where lim ε→0 o ε (1) = 0, for any fixed ρ > 0.

Furthermore, using the expansion of G 0 , we can show that

J 2 (ρ) ∼ - ln ρ 2π and J 1 (ρ) ∼ ρ 2 (ln ρ) 2 4π as ρ → 0.
Hence there is ρ > 0 small enough such that J 2 (ρ) -J 1 (ρ) > 0. Fixing such a ρ, it is easy to see that (35) implies On the other hand, there holds

u 2 ε (r) = [u ε (r) -u ε (ρ)] 2 + 2u ε (r)u ε (ρ) -u 2 ε (r) ≤ [u ε (r) -u ε (ρ)] 2 + 2M ε u ε (ρ). Therefore, letting ε tend to 0, we have B e 4πu 2 ε dx = Bρ e 4πu 2 ε dx + B c ρ e 4πu 2 ε dx ≤ Bρ e 4π[uε-uε(ρ)] 2 +8πMεuε(ρ) dx + πe 4πuε(ρ) 2 ≤ e 8πgε(ρ) C M T + πe 4πuε(ρ) 2 → e 8πG 0 (ρ) C M T + π.
This contradicts obviously the hypothesis [START_REF] Li | Moser-Trudinger inequalities of vector bundle over a compact Riemannian manifold of dimension 2[END_REF], hence the Hardy-Moser-Trudinger inequality must hold true.

Proof of Theorem 2

Proof of Theorem 2. Let u ε be the maximizer given by Theorem 3. We will prove the Theorem also by a contradiction argument and follow ideas in [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF][START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF][START_REF] Li | A sharp Trudinger-Moser type inequality for unbounded domains in R n[END_REF]. We know that we only need to exclude the case lim ε→0 u ε ∞ = ∞. By contradiction we assume lim ε→0 u ε ∞ = ∞.

Define

T ε = B e (4π-ε)u 2 ε dx = max u∈H, u ≤1 B e (4π-ε)u 2 dx, ∀ ε ∈ (0, 4π).
It is easy to see that T ε is increasing and

lim ε→0 T ε = sup u∈H, u ≤1 B e 4πu 2 dx := T 0 .
By Theorem 1, T 0 < ∞. It is trivial to see that T 0 > π.

All arguments and properties obtained for u ε in the previous Section are true, except two points. One is the proof of the fact that the weak limit u 0 is 0 and another is the property [START_REF] Tertikas | On existence of minimizers for the Hardy-Sobolev-Maz'ya inequality[END_REF].

For the former point one can argue as follows. Fixing ρ ∈ (0, 1), we see that for any L > 1, u ε,L = u ε in B c ρ for ε small enough, because u ε is uniformly bounded in B c ρ by Lemma 1 and lim ε→0 M ε = ∞. It follows, together with Lemma 6, lim sup

ε→0 u ε L ∞ (B c ρ ) = lim sup ε→0 u ε,L L ∞ (B c ρ ) ≤ C ρ lim sup ε→0 H(u ε,L ) ≤ C ρ L .
Letting L tend to ∞, we have u 0 = 0 in B c ρ . Since ρ > 0 is arbitrary, thus u 0 = 0.

The latter is no longer true. In fact, now we have

Lemma 8. lim ε→0 λ ε M 2 ε = (T 0 -π) -1 .
Proof. By the same argument as in the proof of (32), we get

T 0 = lim ε→0 T ε ≤ π + lim sup ε→0 L 2 λ ε M 2 ε , ∀ L > 2, which implies that lim sup ε→0 λ ε M 2 ε < ∞ since T 0 > π. Hence lim ε→0 λ ε M ε = 0. Let p 1 = L 2 4 > 1 (as L > 2)
. The estimate [START_REF] Struwe | Critical points of embedding of H 1,n 0 into Orlicz space[END_REF] and u ε q → 0 (for any q ≥ 1) imply that as ε → 0,

{Luε≤Mε} u ε e (4π-ε)u 2 ε dx ≤ e (4π-ε)u 2 ε,L p 1 u ε q 1 → 0 where 1 p 1 + 1 q 1 = 1.
The same argument shows that Since L H (G 0 ) = 0 in Ω ρ,r ⊂ R 2 , the Pohozaev identity yields (recall that a

λ ε M ε {Luε≤Mε} u ε e (4π-ε)u 2 ε dx → 0,
(x) = (1 -|x| 2 ) -2 ) Ωρ,r div a(x)x] 2 G 2 0 (x)dx -π s 2 G 2 0 (s) + a(s)s 2 G 2 0 (s) ρ r = 0.
Using the expansion (15) and tending r → 0, we have

Bρ div a(x)x] 2 G 2 0 (x)dx -πρ 2 G 2 0 (ρ) -πa(ρ)ρ 2 G 2 0 (ρ) = - 1 4π , ∀ ρ ∈ (0, 1).
Similarly, applying the Pohozaev identity to L H (u ε ) = λ ε u ε e (4π-ε)u 2 ε in B ρ and multiplying by M 2 ε , we obtain that for any ρ ∈ (0, 1),

Bρ div a(x)x] 2 g 2 ε (x)dx -πρ 2 g 2 ε (ρ) -πa(ρ)ρ 2 g 2 ε (ρ) = λ ε M 2 ε πρ 2 e (4π-ε)uε(ρ) 2 4π -ε - Bρ e (4π-ε)u 2 ε 4π -ε dx .
Finally, since g ε converges to G 0 in C 1 loc (B \ {0}) and L 2 (B), by the standard elliptic theory and Proposition 3, we obtain, for any ρ ∈ (0, 1) (as lim sup ε→0 λ

ε M 2 ε < ∞), λ ε M 2 ε Bρ e (4π-ε)u 2 ε dx -πρ 2 → 1, as ε → 0.
Taking ρ → 1 and using the uniform convergence of u ε to 0 in B c r for r > 0, we have the conclusion of the Lemma.

To get a contradiction, we proceed as in [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF][START_REF] Li | A sharp Trudinger-Moser type inequality for unbounded domains in R n[END_REF]. We first claim a Carleson-Chang type result.

Lemma 9. If lim ε→0 u ε ∞ = ∞, then T 0 ≤ π(1 + e 1+4πC G )
where C G is given by [START_REF] Figueiredo | On an inequality by N. Trudinger and J. Moser and related elliptic equations[END_REF].

Proof. Fix L > 2 and let R > 0. Using (29) and Lemma 2, we have the estimate for the exterior region as follows.

{Luε≤Mε} e (4π-ε)u 2 ε dx ≤ B e (4π-ε)u 2 ε,L dx → π, as ε → 0.
On the neck region, there holds

{Luε≥Mε}\B rεR e (4π-ε)u 2 ε dx ≤ L 2 λ ε M 2 ε {Luε≥Mε}\B rεR λ ε u 2 ε e (4π-ε)u 2 ε,L dx ≤ L 2 λ ε M 2 ε B\B rεR λ ε u 2 ε e (4π-ε)u 2 ε,L dx = L 2 λ ε M 2 ε 1 - B rεR λ ε u 2 ε e (4π-ε)u 2 ε,L dx → L 2 (T 0 -π) 1 - B R e 8πξ dx .
For the integral over the interior region B rεR , fix a small constant ρ ∈ (0, 1). By (35), we know that

Bρ |∇u ε | 2 dx = 1 - E ρ + o ε (1) M 2 ε ,
where lim ε→0 o ε (1) = 0 and [START_REF] Lu | Adams' inequalities for bi-Laplacian and extremal functions in dimension four[END_REF]. Therefore, we have

E ρ := J 2 (ρ) -J 1 (ρ) = G 0 (ρ) + G 0 (ρ) Bρ a(x)G 0 dx - Bρ a(x)G 2 0 dx. Let ε (x) = ∇u ε -1 L 2 (Bρ) u ε (x) -u ε (ρ) + . Clearly, ε ∈ H 1 0 (B ρ ), ∇ ε 2 =
e 4π 2 ε -1 dx ≤ πeρ 2 . (36) Moreover, we know M -1 ε ε → 1 uniformly in B rεR since M -1 ε u ε → 1 uniformly in B R by
u 2 ε (x) = ε (x) + u ε (ρ) 2 ∇u ε 2 L 2 (Bρ) = ε (x) + M -1 ε G 0 (ρ) + o ε (M -1 ε ) 2 × 1 -M -2 ε E ρ + o ε (M -2 ε ) = 2 ε (x) + 2 ε (x)M -1 ε G 0 (ρ) -2 ε (x)M -2 ε E ρ + o ε (1) = 2 ε (x) + 2G 0 (ρ) -E ρ + o ε (1)
, where o ε (1) tends to 0 uniformly in B rεR as ε goes to 0. It implies that, together with (36), lim sup

ε→0 B rεR e (4π-ε)u 2 ε dx ≤ lim sup ε→0 B rεR e 4πu 2 ε -1 dx ≤ e 8πG 0 (ρ)-4πEρ lim sup ε→0 B rεR e 4π 2 ε -1 dx ≤ e 8πG 0 (ρ)-4πEρ lim sup ε→0 Bρ e 4π 2 ε -1 dx ≤ πρ 2 e 1+8πG 0 (ρ)-4πEρ .
Combining the three parts of estimation and letting R tend to ∞, we conclude

T 0 = lim ε→0 B
e (4π-ε)u 2 ε dx ≤ π + πρ 2 e 1+8πG 0 (ρ)-4πEρ , for any small ρ > 0.

Using the expansion (15), we have

1 2π ln ρ + 2G 0 (ρ) -E ρ → C G , as ρ → 0.
Hence it follows T 0 ≤ π(1 + e 1+4πC G ).

We complete the proof of Theorem 2 with the following lower bound estimate, which contradicts Lemma 9.

Lemma 10. There holds T 0 > π(1 + e 1+4πC G ).

Proof. The proof is a direct verification by choosing suitable test functions as in [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF]. Thanks to the blow-up analysis, we will consider a family f ε such that f ε looks like M -1 ε G 0 outside a very small region of 0 and M -1 ε ξ(r -1 ε x) + M ε near the origin where ξ is given by [START_REF] Maz | Sobolev Spaces[END_REF]. For ε > 0 small, define

f ε (r) =        β ε + ξ(ε -1 r) + γ ε β ε if r ≤ εR ε G 0 (r) β ε if εR ε ≤ r ≤ 1 with R ε = -ln ε.
Here β ε and γ ε are constants to be chosen later. First, choose γ ε such that

G 0 (εR ε ) β ε = β ε + ξ(R ε ) + γ ε β ε ,
which makes functions f ε continuous. Using the expansion of G 0 , as ε → 0, we have On the other hand, we have

B εRε |∇f ε | 2 dx = 1 β 2 ε B εRε |∇ξ(ε -1 x)| 2 dx = 1 β 2 ε B R |∇ξ| 2 dx = 1 4πβ 2 ε ln(1 + πR 2 ε ) -1 + 1 1 + πR 2 ε ,
and hence

H(f ε ) ≤ H B c εRε (f ε ) + B εRε |∇f ε | 2 dx ≤ 1 4πβ 2 ε -2 ln ε + 4πC G -1 + ln π + O R -2 ε . ( 38 
)
We choose β ε > 0 such that H(f ε ) = 1. The estimate (38) leads to (recall that R ε = -ln ε) as ε → 0. (39) Now we estimate e 4πf 2 ε 1 . Using e t ≥ 1 + t in R and (39), we have

B c εRε e 4πf 2 ε dx ≥ π -π(εR ε ) 2 + 4π β 2 ε B c εRε G 2 0 dx = π + 4π β 2 ε B G 2 0 dx + o (εR ε ) - ε 2 R 2 ε β 2 ε 4 = π + 4π β 2 ε B G 2 0 dx + o ε (1) .
Moreover, in B εRε , by (37) and (39), there holds

4πf 2 ε (r) = 4π β ε + ξ(ε -1 r) + γ ε β ε 2 ≥ 4πβ 2 ε + 8πγ ε + 8πξ(ε -1 r) = 4π(β 2 ε + γ ε ) + 4πγ ε + 8πξ(ε -1 r) ≥ -2 ln ε + 4πC G + ln π + 1 + 8πξ(ε -1 r) + O R -2 ε .
The above estimate is uniform in B εRε . Consequently we have

B εRε e 4πf 2
ε dx ≥ e -2 ln ε+4πC G +ln π+1+O(R -2 ε )

B εRε e 8πξ(ε -1 r) dx = πe 4πC G +1+O(R -2 ε )

B Rε By choosing a small ε > 0, we conclude readily T 0 ≥ e 4πf 2 ε 1 > π + πe 4πC G +1 . Hence we finish the proof of Lemma 10, and hence the proof of Theorem 2.

Remark 7. Like u ε , the maximizer u 0 ∈ H 1 given by Theorem 2 cannot belong to H 1 0 (B).

  (uε-bε) 2 dx ≤ C M T , where b ε = u ε (r 1 ).

Bρ |∇u ε | 2

 2 dx < 1 for ε small enough.Applying the classical Moser-Trudinger inequality (1) to[u ε -u ε (ρ)] + ∈ H 1 0 (B), we get Bρ e 4π[uε-uε(ρ)] 2 dx = B e 4π[uε-uε(ρ)] 2 + dx ≤ C M T .

  as ε → 0 and (31) holds true. Thus Proposition 3 remains true. Let Ω ρ,r = B ρ \ B r with 0 < r < ρ < 1.

  1 and ε converges weakly to 0 in D (B ρ ). Using a result of Carleson-Chang [10], there holds lim sup ε→0 Bρ

4π β 2 εβ 2 εG 0

 220 + γ ε = -2 ln(εR ε ) + 4πC G + ln(1 + πR 2 ε ) + o (εR ε ) = -2 ln ε + 4πC G + ln π + O R -2 ε . (37) Clearly, f ε ∈ H. Now we estimate f ε . Let 0 < r < ρ < 1, by the equation of G 0 , H Bρ\Br (G 0 ) = ∂(Bρ\Br) G 0 ∂G 0 ∂ν dσ = -2πrG 0 (r)G 0 (r) + 2πρG 0 (ρ)G 0 (ρ) ≤ -2πrG 0 (r)G 0 (r),since G 0 is decreasing by the comparison principle. Taking ρ → 1, we getH B c εRε (f ε ) = (εR ε )G 0 (εR ε ) (εR ε ) + 4πC G + o (εR ε ) .

4πβ 2 ε

 2 ≤ -2 ln ε + 4πC G -1 + ln π + O R -2 ε = O (| ln ε|) , as ε → 0. From (37), it follows 4πγ ε ≥ 1 + O R -2 ε , β ε = O | ln ε| 1 2

B e 4πf 2 ε dx ≥ π + 4π β 2 ε B G 2 0 2 ε= π + πe 4πC G +1 + 4π β 2 ε B G 2 0

 22222 e 8πξ dx = πe 4πC G +1 1 + O R -2 ε ,where[START_REF] Maz | Sobolev Spaces[END_REF] has been used in the last equality. Finally since R -2ε β 2 ε = o ε (1), it holds dx + o ε (1) + πe 4πC G +1 1 + O R -dx + o ε (1) .
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