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Abstract: Using the entropy estimates in [14], we establish the global existence and uniqueness
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1 Introduction

We study here the following fourth order initial boundary value problem:





ut +
(
g(u)uxx

)
xx

= 0, x ∈ Ω ⊂ R, t > 0,

ux = uxxx = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where g(u) = u−n with n > 0, Ω is a bounded interval and u0 is a positive function in H1(Ω).
The problem can be used to denoise in image processing and it was considered in [14]. As
mentioned in [14], the diffusivity function g(u) = u−n corresponds to the TV diffusivity in
image processing if n = 1 [5, 18], while it is the BFB diffusivity if n = 2 [5, 11].

In the past decade, many nonlinear PDEs are proposed to deal with the tradeoff between noise
removal and edge preservation, the fourth-order parabolic PDEs are introduced by many scholars
with the hope that these equations would perform better than their second order analogues
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[20, 17, 21, 13, 2, 15]. Especially, You and Kaveh in [21] proposed the following fourth order
PDE associated with a second energy functional

ut +△
(
g1(△u)△u

)
= 0 (1.2)

for noise removal, where

g1(s) =
1

1 + ( sk )
2
,

k > 0 is the contrast parameter. The paper [2] described some reasons to consider the fourth
order PDEs in image processing. Numerical experiments, for example in [4, 21, 13] showed that
fourth-order models are able to avoid the staircasing and cartoonish effects of second order PDEs
while still removing noise and preserving edges.

However, theoretical analysis of these fourth-order nonlinear PDEs is much less-developed.
Because such equations often do not possess the maximum principle or comparison principle,
we need some different theoretic techniques in order to obtain a priori estimates and the non-
negativity or positivity of solutions. Other substantial difficulties are often due to the strong
degeneracy or singularity.

Bertozzi and Greer studied in [2] the following fourth order model:

ut +∇ ·
(
g1(△u)∇△u

)
= 0 (1.3)

which was designed to simplify an image based on its curvature. They made a key change of
variables to obtain the existence and uniqueness of global smooth solutions to (1.3) in dimension
one. Their work relies heavily on the special structure of g1(s), so the idea is difficult to be
applied in our case. We also refer to [12] for the existence and uniqueness of entropy solutions
to a fourth-order nonlinear degenerate parabolic equation for noise removal.

In [9], Jin and Yang considered the following fourth order problem for image restoration:





ut + (g1(ux)uxxx)x = 0, x ∈ Ω ⊂ R, t ≥ 0,
ux = uxxx = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x), x ∈ Ω.

Applying the Schauder fixed point method, they proved the local existence of solutions u ∈
C([0, T ];H2(Ω)) under the assumption that ‖u0‖H2(Ω) is small enough.

Two fourth order models for noise removal with fractional derivatives as an edge detection

ut +△
(
g1(|∇1−ǫu|)△u

)
= 0

and
ut +∇ ·

(
g1((−△)1−ǫu)∇△u

)
= 0

were also investigated by Guidotti and Longo [8] recently. Using the theory of maximal regularity,
they proved the local existence of solutions u ∈ W 1,p(0, T ;Lp(Ω)) to the above two equations
with periodic boundary conditions.

In the previous work [14], under the assumption of the existence of classical solutions to the
equation, we discussed the large time behavior of solutions to (1.1) using some entropy estimates



via the algebraic approach. In particular, we showed that problem (1.1) possesses some “first
order” entropies.

Here we investigate the well-posedness theory of problem (1.1), i.e. the global existence and
uniqueness of classical solution for suitable u0. Throughout this paper, by a classical solution u
in Ω× (0, T ), we mean

u ∈ C4,1(Ω× (0, T )) ∩ C([0, T ), H1(Ω)).

Here and after, by Hk(Ω), we mean the classical Sobolev spaces W k,2(Ω) for all k ≥ 1. As
g(u) = u−n, any classical solution is clearly positive. Note that constant functions are trivial
solutions to (1.1) and the total mass of any solution u to (1.1) is conserved in time, that is

1

|Ω|

∫

Ω
u(x, t) dx =

1

|Ω|

∫

Ω
u0(x) dx := m, t > 0, (1.4)

where |Ω| denotes the length of Ω. Due to the singularity of g(u) at u = 0, as we want to find
classical solutions, we consider initial data u0 which is small perturbation near the average m.
Indeed, we will use the entropy estimates obtained in [14] to get appropriate estimations, and we
use also an approximation process to handle the initial data u0 ∈ H1(Ω). The entropy estimate
is widely used to handle fourth order nonlinear parabolic equations, see for example [1] for thin
film and [3] for interface fluctuation modeling.

More precisely, it was shown in [14] that for suitable couple (n, α), Fα(u) is dissipative for
any classical solution u of (1.1), i.e.

Fα

(
u(x, t)

)
≤ Fα(u0), ∀ t ≥ 0, (1.5)

where

Fα(u) =
2

α2

∫

Ω
(u

α
2 )2x dx =

1

2

∫

Ω
uα−2u2x dx, α ∈ R

∗ := R \ {0}. (1.6)

More precisely, it was shown numerically that for n ≥ 1.18426 (see Fig. 1 in [14]), we can always
find α ∈ R∗ such that Fα is dissipative. Define

n0 = inf {s > 0 s.t. for any n ≥ s, ∃ α ∈ R
∗ making Fα dissipative} . (1.7)

In this paper we will give a rigorous derivation for n0 < ∞ in Appendix, where we show also
a rigorous upper bound estimate for n0. Moreover, for n = 2, it was showed in [14] that any
global classical solution u to (1.1) converges uniformly to the average of the initial data u0, with

an order like t−
1

4 for t → ∞. Here we generalize this fact for any n ≥ 1.18426.

Our main result is

Theorem 1.1. Assume that n > n0 and m > 0. There exist σ0 > 0 small, β0, γ0 > 0 and
C0 > 0 such that for any positive u0 ∈ H1(Ω) with ‖u0,x‖2 ≤ σ0 and the given average m, the
initial-boundary value problem (1.1) admits a unique global classical solution in the following
sense:

u ∈ C4,1
loc (Ω× (0,∞)) ∩ C(R+, H

1(Ω)). (1.8)

The solution u satisfies 0 < β0 ≤ u(x, t) ≤ γ0 < ∞ in Ω × [0,∞) and ‖ux(·, t)‖2 ≤ C0‖u0,x‖2
for any t ≥ 0.

Furthermore, for n ≥ 1.18426, there holds u(·, t) → m in C(Ω) when t goes to infinity.



Here and in the following, n0 is defined by (1.7), and ‖ · ‖p denotes the standard norm in
Lp(Ω) for p ∈ [1,∞]. For simplicity, we introduce several notations. Define QT := Ω× (0, T ) for
T > 0, and Q := Q∞. For k = 2, 3, let

Ḣk(Ω) :=

{
v ∈ Hk(Ω) : vx|∂Ω = 0 and

∫

Ω
v(x)dx = 0

}
,

with the norm ‖v‖Ḣk(Ω) = ‖∇kv‖2. Indeed, it is easy to check that the norm ‖∇kv‖2 is equivalent
to the norm ‖v‖Hk(Ω) in Ḣk(Ω) for k = 2, 3.

Our approach can also be used to handle the the corresponding Dirichlet boundary problem





ut +
(
g(u)uxx

)
xx

= 0, x ∈ Ω ⊂ R, t > 0,

u = m′, ux = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.9)

where m′ > 0 is a given constant, g(u) = u−n with n > n0, and Ω is a bounded interval.

Theorem 1.2. Suppose the initial data u0 satisfies u0−m′ ∈ H1
0 (Ω) and ‖u0,x‖2 ≤ σ for σ > 0

small enough, then there exists a unique global classical solution u to problem (1.9). Moreover
for n ≥ 1.18426, the solution satisfies

u(x, t) → m′ uniformly in x ∈ Ω, as t → ∞. (1.10)

The rest of the paper is organized as follows. Sec. 2 is devoted to the proof of our main
results. We give some numerical results to show that the model (1.1) can be effectively applied
in image processing, and we make some comparison with the second order PM equation and
YK equation in Sec. 3. The detailed derivation of the existence of n0 and its estimates is given
in the Appendix. Throughout the paper, we denote by C (sometimes Ci) some generic positive
constants, which may differ from line to line.

2 Existence and uniqueness of classical solution

Here we prove Theorem 1.1. Our main idea is the approximation method combined with the
entropy estimate.

Firstly, we have the following local existence of classical solutions to problem (1.1), provided
that u0 is more regular and ‖u0,x‖2 is sufficiently small.

Theorem 2.1. Let u0 ∈ C4+µ(Ω), µ ∈ (0, 1) with fixed average m > 0. Assuming that ‖u0,x‖2 <
σ1 < |Ω|− 1

2m, problem (1.1) admits a classical solution u ∈ C
4+µ,1+µ

4

x, t (Qδ) for some δ > 0.

Proof. Using Hölder’s inequality, we have |u0(x)−u0(y)| < |Ω| 12σ1 for all x, y ∈ Ω. In particular,
there hold

max
x∈Ω

u0(x)−m < |Ω| 12σ1, m−min
x∈Ω

u0(x) < |Ω| 12σ1.

Since 0 < σ1 < |Ω|− 1

2m, there exist two positive constants β1, γ1 depending only on σ1, Ω and
m such that

0 < β1 ≤ u0(x) ≤ γ1, ∀ x ∈ Ω. (2.1)



By standard parabolic Schauder theory (see Theorem 6.3 in [6], see also [7]), problem (1.1)

admits a unique classical solution u ∈ C
4+µ,1+µ

4

x, t (Qδ) for some δ > 0.

The next lemma is the key estimate for our approach.

Lemma 2.2. Given n > n0 and m > 0, there exist σ2, C1 > 0 such that for any classical
solution of (1.1) in QT with some T > 0, u0 of average m and ‖u0,x‖2 ≤ σ2 < |Ω|− 1

2m, there
holds

‖ux(·, t)‖2 < C1‖u0,x‖2, for all t ∈ (0, T ). (2.2)

Proof. As n > n0, by (1.7), we can fix α ∈ R∗ such that the estimate (1.5) holds true. Let

‖u0,x‖2 < σ1 < |Ω|− 1

2m. Using (2.1), there holds

Fα(u0) =
1

2

∫

Ω
uα−2
0 u20,x dx < C‖u0,x‖22.

Combining with (1.5),

∫

Ω

(
u

α
2 (x, t)

)2

x
dx =

α2

2
Fα(u(x, t)) ≤

α2

2
Fα(u0) <

α2C

2
‖u0,x‖22.

Using (1.4), there exists x ∈ Ω satisfying u
α
2 (x, t) = m

α
2 . Similarly as the deduction of (2.1), we

get
max
x∈Ω

u
α
2 (x, t)−m

α
2 < C2‖u0,x‖2, m

α
2 −min

x∈Ω
u

α
2 (x, t) < C2‖u0,x‖2.

Now fix 0 < σ2 < min
(
mα/2

2C2
, σ1

)
. There exist then two positive constants β, γ independent of

T verifying that
0 < β ≤ u(x, t) ≤ γ in QT , if ‖u0,x‖2 ≤ σ2. (2.3)

Hence when ‖u0,x‖2 ≤ σ2,
∫

Ω
u2xdx ≤ CFα(u) < C‖u0,x‖22, ∀ t ∈ (0, T ).

So we are done.

Using the above lemma, we can get now some uniform estimates for u in suitable Sobolev
spaces or uniform Hölder estimates locally in t-variable.

Lemma 2.3. Let T0 > 0. Assume ‖u0,x‖2 < σ2 as above. Let u be a classical solution of (1.1)
in QT for some T ∈ (0, T0). Then there exists a constant M > 0 independent of T such that

‖u−m‖L2(0,T ;Ḣ3(Ω)) ≤ M, (2.4)

and
|u(x, t1)− u(x, t2)| ≤ M |t1 − t2|1/8, ∀ x ∈ Ω, t1, t2 ∈ [0, T ]. (2.5)

Proof. Let v(x, t) := u(x, t)−m, then v verifies





vt +
(
g(v +m)vxx

)
xx

= 0, x ∈ Ω, t ∈ (0, T ],

vx = vxxx = 0, x ∈ ∂Ω, t ∈ (0, T ],

v(x, 0) = v0(x) = u0(x)−m, x ∈ Ω.

(2.6)



Due to (2.3), there holds
g(v +m) ≥ λ > 0 in QT . (2.7)

Multiplying the equation (2.6) by v and integrating over Ω, we have for any t ∈ (0, T ),

1

2

d

dt

∫

Ω
v2 dx+

∫

Ω
g(v +m)|vxx|2 dx = 0,

and so
1

2

d

dt

∫

Ω
v2 dx+ λ

∫

Ω
|vxx|2 dx ≤ 0,

which implies readily

‖v‖C([0,T ],L2(Ω)) + ‖v‖L2(0,T ;Ḣ2(Ω)) ≤ C‖v0‖2. (2.8)

Similarly, multiplying the equation in (2.6) by vxx, we deduce that

1

2

d

dt

∫

Ω
v2x dx+

∫

Ω
g(v +m)|vxxx|2 dx =

∫

Ω

(
g′(v +m)vxvxx

)
x
vxx dx. (2.9)

Fix 1
2 < ǫ < 1 and θ = 2+ǫ

3 < 1, by the interpolation inequality,

‖vxx‖∞ ≤ C‖v‖H2+ǫ(Ω) ≤ C‖v‖1−θ
2 ‖v‖θH3(Ω) ≤ C ′‖v‖1−θ

2 ‖vxxx‖θ2. (2.10)

Recalling (2.3) and (2.8), we get then

∫

Ω

(
g′(v +m)vxvxx

)
x
vxx dx ≤ ‖g′(v +m)‖∞‖vx‖2‖vxx‖∞‖vxxx‖2

≤ C‖vx‖2‖v0‖1−θ
2 ‖vxxx‖1+θ

2

≤ λ

2
‖vxxx‖22 + C‖vx‖

2

1−θ

2 ‖v0‖22.

We deduce from (2.9) that

d

dt

∫

Ω
v2x dx+ λ

∫

Ω
|vxxx|2 dx ≤ C‖vx‖

2

1−θ

2 ‖v0‖22.

Using now (2.2),

‖v‖C([0,T ];H1(Ω)) + ‖v‖L2(0,T ;Ḣ3(Ω)) ≤ C

(
‖v0,x‖

1

1−θ

2 ‖v0‖2
√
T0 + ‖v0,x‖2

)
.

Back to u, we obtain (2.4) for large enough M .

Setting h(u) = g(u)uxxx + g′(u)uxuxx, we have ‖h‖L2(QT ) ≤ C(T0) according to (2.3) and
Lemma 2.3. Then except the fact that the constant M depends on T0, the proof of (2.5) is
completely similar to that of Lemma 2.1 in [1]. So we omit the details.

Now we are ready to prove the main result.

Proof of Theorem 1.1. We divide the proof into three steps.

Step 1: Global existence.



Let u0 ∈ H1(Ω) with the fixed average m and ‖u0,x‖2 ≤ σ0 ∈ (0, σ2) where σ2 is the constant
given by Lemma 2.2. Take functions u0,ε ∈ C4+µ(Ω) with the given average m, µ ∈ (0, 1) and
which approximate u0 in H1(Ω) as ε → 0. We can assume that ‖ (u0,ε)x ‖2 < σ2.

Given T0 > 0, apply Theorem 2.1, the initial boundary problem





ut +
(
g(u)uxx

)
xx

= 0, x ∈ Ω, t > 0,

ux = uxxx = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0,ε(x), x ∈ Ω,

(2.11)

admits locally a unique classical solution uε(x, t) ∈ C4+µ,1+µ
4 (Qδε) for some 0 < δε ≤ T0.

Moreover, using Lemmas 2.2 and 2.3, we have

‖uε‖
C

1
2
, 1
8

x, t (Qδε )
≤ C,

where the constant C is independent of ε and δε. These a priori estimate bounds will allow
us to extend the solution uε step-by-step and to obtain a classical solution of (2.11) over QT0

for any given T0 > 0. So we get a global classical solution to (2.11). Moreover, combining the
estimates in Lemmas 2.2 and 2.3, there hold ‖uε‖C(R+,H1(Ω)) ≤ C and

‖uε‖
C

1
2
, 1
8 (QT )

+ ‖uε −m‖L2(0,T ;Ḣ3(Ω)) ≤ M(T ) < ∞, ∀ T > 0. (2.12)

By the Arzelà-Ascoli theorem, up to a subsequence, we have

uε → u in Cloc(Q)

for some function u. Obviously, there holds u ∈ C
1

2
, 1
8

loc (Q) ∩ L2
loc(R+, Ḣ

3(Ω)) by (2.12). Using
(2.3), (2.2) and (2.4), we obtain also

‖ux‖C(R+,L2(Ω)) ≤ C‖u0,x‖2, 0 < β ≤ u ≤ γ < ∞ in Q.

On the other hand, by regularity theory for uniformly parabolic equations, we can conclude that
u is a global classical solution to (1.1).

Step 2. Uniqueness

For any T > 0, assume u and ũ are two classical solutions of problem (1.1) in QT . Therefore
u and ũ verify

‖ux‖C([0,T ),L2(Ω)) + ‖ũx‖C([0,T ),L2(Ω)) ≤ C‖u0,x‖2, 0 < β ≤ u, ũ ≤ γ < ∞ in QT .

Let ω = u− ũ. By the Sobolev embedding, for any t ∈ [0, T ),

‖g(u)− g(ũ)‖∞ + ‖g′(u)− g′(ũ)‖∞ ≤ C‖ωx‖2, (2.13)

and




ωt +
(
g(u)uxx − g(ũ)ũxx

)
xx

= 0, in QT ,

ωx = ωxxx = 0, on ∂Ω× (0, T ),

ω(x, 0) = 0, in Ω.

(2.14)



Multiplying (2.14) by ωxx, and integrating over Ω, we get

1

2

d

dt

∫

Ω
ω2
x dx+

∫

Ω
g(ũ)ω2

xxx dx

=

∫

Ω

(
g′(u)uxuxx − g′(ũ)ũxũxx

)
x
ωxx dx+

∫

Ω

(
g(ũ)− g(u)

)
uxxxωxxx dx.

Applying (2.7), (2.13), Young’s inequality and interpolation inequality (2.10), we deduce

1

2

d

dt

∫

Ω
ω2
x dx+ λ

∫

Ω
ω2
xxx dx ≤

∣∣∣∣
∫

Ω

(
g′(u)− g′(ũ)

)
uxuxxωxxx dx

∣∣∣∣

+

∣∣∣∣
∫

Ω
g′(ũ)ωxuxxωxxx dx

∣∣∣∣

+

∣∣∣∣
∫

Ω
g′(ũ)ũxωxxωxxx dx

∣∣∣∣

+

∣∣∣∣
∫

Ω

(
g(u)− g(ũ)

)
uxxxωxxx dx

∣∣∣∣

:= I1 + I2 + I3 + I4.

Therefore,

I1 ≤ C‖ωx‖2‖ux‖2‖uxx‖∞‖ωxxx‖2 ≤
λ

8
‖ωxxx‖22 + C(λ)‖ωx‖22‖ux‖22‖uxx‖2∞,

I2 ≤ C‖ωx‖2‖uxx‖∞‖ωxxx‖2 ≤
λ

8
‖ωxxx‖22 + C(λ)‖ωx‖22‖uxx‖2∞,

I4 ≤ C‖ωx‖2‖uxxx‖2‖ωxxx‖2 ≤
λ

8
‖ωxxx‖22 + C(λ)‖ωx‖22‖uxxx‖22

and

I3 ≤ C‖ũx‖2‖ωxx‖∞‖ωxxx‖2 ≤ C‖ũx‖2‖ωx‖1−θ
2 ‖ωxxx‖1+θ

2

≤ λ

8
‖ωxxx‖22 + C(λ)‖ũx‖

2

1−θ

2 ‖ωx‖22.

We conclude then

d

dt
‖ωx‖22 + ‖ωxxx‖22 ≤ C(λ)η(t)‖wx‖22 in (0, T ),

where

η(t) = ‖ux‖22‖uxx‖2∞ + ‖uxx‖2∞ + ‖ũx‖
2

1−θ

2 + ‖uxxx‖22
is a nonnegative function in L1(0, T ), because u, ũ ∈ L2(0, T ;H3(Ω)) by (2.4). As ω(x, 0) ≡ 0,
Gronwall’s inequality yields that ‖ωx‖2 = 0 in (0, T ), that is u = ũ a.e. in Ω × [0, T ]. So we
obtain the uniqueness of the solution.

Step 3. Large-time behavior

The case for n = 2 has been shown in Theorem 2.3 of [14]. We can even simplify the
arguments in [14] with our uniform estimate. For the sake of completeness, we give the sketches
of proof. Assume first there exists α ∈ R∗ such that (n, α) lies in the interior of the special



entropy region (R1 ∩ R2) ∪ R3 given in [14], see also the Appendix below. By the proof of
Theorem 2.2 (especially the equality (3.12)) in [14], we get ε1 > 0 such that

d

dt
Fα(u) ≤ −ε1

∫

Ω
uα−n

(ux
u

)2 (uxx
u

)2
dx = −ε1

∫

Ω
uα−n−4u2xu

2
xx dx.

Replacing now G(u) in [14] by Fα(u), similarly as in [14], we have

d

dt
Fα(u) ≤ −CFα(u)

3, hence Fα

(
u(x, t)

)
≤

(
2Ct+ Fα(u0)

−2
)− 1

2 in (0,∞). (2.15)

Let h = W (u) with W (s) =
√
2

α s
α
2 in (0,∞). So for any t ∈ R+, there exists xt ∈ Ω verifying

h(xt, t) = W (m). As ‖hx‖22 = Fα(u), we get ‖h(·, t) − W (m)‖∞ ≤ C
√
Fα(u). Since h is

uniformly bounded by (2.3), using the mean value theorem, we conclude that

‖u−m‖∞ = ‖W−1(h)−m‖∞ ≤ C‖h−W (m)‖∞ ≤ C ′√Fα(u), ∀ t ∈ R
∗. (2.16)

Obviously, (2.16) and (2.15) yield that ‖u(x, t)−m‖∞ ≤ Ct−
1

4 for t → ∞.

It remains to verify that for any n ≥ 1.18426, there exists α ∈ R∗ such that (n, α) lies in the
interior of (R1 ∩ R2) ∪ R3. Indeed, by (A.7) and (A.8) below, it is clear that such α exist for
n > 14

11 but also for n ∈ (n1, n2).

Proof of Theorem 1.2. Using the ideas in [14], it is easy to check that entropy estimate
(1.5) also holds true if u is a classical solution to problem (1.9) in the sense of (1.8). As the
proof of Theorem 1.2 is totally similar to that of Theorem 1.1, we leave the details for interested
readers.

3 Numerical Results

In this section, we show the efficiency for noise removal of the proposed model

ut +△
(
kn|u|−n△u

)
= 0 (3.1)

by comparing with famous PM model [16]

ut = ∇ ·
(
g1(|∇u|)∇u

)
(3.2)

and YK model (1.2), where the constant k and n in (3.1) are positive parameters. For simplicity,
we take n = 1 in our model (3.1) for example. A 256 × 256 Lena image and a captured image
distorted by a Gamma multiplicative noise with mean value 1.0 and variance 0.05 (noisy image)
are used for our demonstration. All experiments are implemented with MATLAB 7.8 on a core
2 personal computer, 2.40 GHz, 2 GB RAM.

For the evaluated experiments, we use a peak signal-to-noise ratio (PSNR), a signal-to-noise
ratio (SNR) and a mean structural similarity (MSSIM) index defined in [19] to measure the
overall image quality. The PSNR and SNR used here are calculated as

PSNR = 10 log10

{
255× 255

1
M×N

∑M
i=1

∑N
j=1[I(i, j)− I∗(i, j)]2

}



and

SNR = 10 log10

{ ∑M
i=1

∑N
j=1[I(i, j)]

2

∑M
i=1

∑N
j=1[I(i, j)− I∗(i, j)]2

}
,

where I(i, j), I∗(i, j) and M, N are the original image, the image to be evaluated and the size
of the image, respectively. Obviously, the higher of all the three evaluation indexes, the better
of the image.

Figure 1: The original image and the noisy image

Figure 2: The restoration results by three models when m = 50. Left: PM equation (3.2);
Middle: YK equation (1.2); Right: our model (3.1).

For all the denoising models in this paper, we choose the time step size ∆t = 0.25 and space
grid size h = 1 in iterative approach:

t = m∆t, m = 0, 1, 2, ...

x = ih, i = 0, 1, 2, · · ·M,

y = jh, j = 0, 1, 2, · · ·N.



Furthermore, the parameters k are set to self-adaptive, 20 and 2 in (3.2), (1.2) and (3.1) respec-
tively. Here the only parameter to tune is the number m of iterations.

Fig. 1 shows the original Lena image and noisy image used in our experiments. The numerical
results by using (3.1), (3.2) and YK equation (1.2) to denoise when m = 50 are presented in
Fig. 2. In Fig. 3 and Fig. 4, we compare the restoration results of the Lena image by three
models if m = 100 and m = 200 respectively. We see from the Fig. 2-Fig. 4 that the restoration
results by the proposed model are visually much better than the PM equation and YK equation.

In order to characterize the effectiveness of the model for multiplicative noise removal quan-
titatively, we show the PSNR, SNR and MSSIM of the noisy image and the restored image with
three models when m = 50 in Table 1, and the cases for m = 100 and m = 200 are presented
in Table 2 and Table 3. It is clear that our model has a higher PSNR and SNR, but a lower
MSSIM than the PM model for the simulated images when m = 50 and m = 100.

Figure 3: The restoration results by three models when m = 100. Left: PM equation (3.2);
Middle: YK equation (1.2); Right: our model (3.1).

Figure 4: The restoration results by three models when m = 50. Left: PM equation (3.2);
Middle: YK equation (1.2); Right: our model (3.1).



Table 1: The value of evaluation indexes when m = 50

Lena (256*256) PSNR SNR MSSIM

noisy image 18.6927 12.9683 0.3688

denoising with PM 24.3143 18.5899 0.6985

denoising with YK 24.5533 18.8289 0.5527

denoising with (3.1) 25.3279 19.6035 0.6288

Table 2: The value of evaluation indexes when m = 100

Lena (256*256) PSNR SNR MSSIM

noisy image 18.6927 12.9683 0.3688

denoising with PM 23.5350 17.8106 0.6732

denoising with YK 24.2683 18.5438 0.5407

denoising with (3.1) 25.7491 20.0247 0.6641

Table 3: The value of evaluation indexes when m = 200

Lena (256*256) PSNR SNR MSSIM

noisy image 18.6927 12.9683 0.3688

denoising with PM 22.8605 17.1361 0.6535

denoising with YK 23.7784 18.0539 0.5185

denoising with (3.1) 25.7147 19.9903 0.6865

A Derivation of n0

In this appendix, we give a rigorous derivation of the existence of n0 defined by (1.7) and the
structure of the following entropy region for Fα:

Σ = {(n, α) ∈ (0,∞)×R
∗ s.t. Fα(u) is dissipative for any classical solution to (1.1)} . (A.1)

In [14], the fact that n0 < ∞ was observed numerically by using (R1∩R2)∪R3 ⊂ Σ, where

R1 :=
{
(n, α) ∈ (0,∞)×R

∗ s.t. − 18α4 − 33(n− 5)α3 + (7n2 + 305n− 450)α2

+(32n3 + 145n2 − 600n+ 375)α+ 2n(6n3 + 5n2 − 100n+ 125) ≤ 0
}
;

R2 :=
{
(n, α) ∈ (0,∞)×R

∗ s.t. 178α2 + 2(92n− 335)α+ (13n2 − 380n+ 700) < 0
}
;

R3 :=
{
(n, α) ∈ (0,∞)×R

∗ s.t. 53α4 + 2(56n− 191)α3 + 3(27n2 − 196n+ 379)α2

+
(
28n3 − 231n2 + 1188n− 1660

)
α+

1

4

(
29n4 − 56n3 + 840n2 − 3680n+ 3920

)
≤ 0

}
.

For completeness, we first recall some calculations for the entropy region using the following
two lemmas in [10].

Lemma A.1. Let the real polynomial be

P (ξ1, ξ2, ξ3) = a1ξ
6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ

2
2 + a5ξ1ξ2ξ3 + ξ23 .



Then P (ξ1, ξ2, ξ3) ≥ 0 in R3 is equivalent to have

either 4a4 − a25 > 0 and 4a1a4 − a1a
2
5 − a22 − a23a4 + a2a3a5 ≥ 0;

or 4a4 − a25 = 2a2 − a3a5 = 0 and 4a1 − a23 ≥ 0.

Lemma A.2. Let P (x) = a0 + a1x + a2x
2 with a2 > 0. For any x̂ ∈ R, then infx>x̂ P (x) < 0

is equivalent to have either P (x̂) < 0 or 4a0a2 − a21 ≤ 0 and 2a2x̂+ a1 < 0.

Recall the proof of Theorem 2.2 in [14]: Fα is a dissipative entropy if there exist constants
c4 and c5 ∈ R, making

Sc4,c5(ξ) = c4(α− n− 5)ξ61 +

[
(α− 2)(α− 3)

2
+ c5

]
ξ31ξ3

+

[
c5(α− n− 4) + 5c4 −

n(α− 2)(α− 3)

2

]
ξ41ξ2

+
[
3c5 − 2n(α− 2)

]
ξ21ξ

2
2 + (2α− 4− n)ξ1ξ2ξ3 + ξ23

a nonnegative polynomial in R3.

Using Lemma A.1, this problem is equivalent to either

0 < a4 − a25 = −4α2 + 12c5 − 4α(−4 + n)− (−4 + n)2, (A.2)

and

0 ≤ p(c4, c5) := 4a1a4 − a1a
2
5 − a22 − a23a4 + a2a3a5

=− 25c24 + c4

[
20 + α3 − 9n− 3n2 + n3 + α2

(
1 +

5n

2

)

− c5(40 + 7n) + α
(
−16 + 12c5 −

n

2
+ 3n2

) ]

+
c5
4

{
α4 + α2(65− 8c5 − 18n) + 2α3(−7 + n)

− 4(−21 + 18c5 + 3c25 + 12n+ 4c5n) + 4α[−31 + 13n+ c5(11 + n)]
}

:= A1c
2
4 +A2c4 +A3;

(A.3)

or

0 = 4a4 − a25 = −4α2 + 12c5 − 4α(−4 + n)− (−4 + n)2, (A.4)

0 = 2a2 − a3a5 =
1

2
(24− 32α+ 14α2 − 2α3 + 20c4 − 8c5 − 6n+ 5αn− α2n− 2c5n), (A.5)

0 ≤ 4a1 − a23 = −1

4
(6− 5α+ α2 + 2c5)

2 + 4c4(−5 + α− n). (A.6)

First, we solve the case (A.2)-(A.3). The inequality (A.2) gives readily

c5 > c̃5 =:
1

12
(16− 16α+ 4α2 − 8n+ 4αn+ n2).



Moreover, for fixed c5, p(c4, c5) is a quadratic polynomial in c4 with a strictly negative leading
coefficient. Therefore, there exists c4 ∈ R such that p(c4, c5) ≥ 0 if and only if p(c4, c5) has a
nonnegative discriminant: 0 ≤ ∆ := −3(c5 − c̃5)∆1(c5) where

∆1(c5) = 100c25 + (200− 180α+ 52α2 − 120n+ 56αn− 8n2)c5

+ [100− 60α− 11α2 + 6α3 + α4 − 40n− 28αn+ 16α2n

+ 4α3n− 36n2 + 20αn2 + 8α2n2 + 8n3 + 8αn3 + 4n4]

:= a0 + a1c5 + a2c
2
5.

So, we need only to determine those values of α, for which there exists c5 > c̃5 making ∆1(c5) ≤ 0.
By direct verifications, we can check that 4a0a2 − a21 ≤ 0 gives exactly the region R1, and
2a2c̃5+a1 < 0 gives exactly the region R2; while the condition a0+a1c̃5+a2c̃5

2 < 0 corresponds
exactly to the region R3. Applying Lemma A.2, we have already

(R1 ∩R2) ∪R3 ⊂ Σ.

For the case (A.4)-(A.6), we can remark that conditions (A.4) and (A.5) yield

c5 =
1

12
(16− 16α+ 4α2 − 8n+ 4αn+ n2)

and

c4 =
1

120
(−80 + 128α− 68α2 + 12α3 + 20n− 30αn+ 10α2n− 4n2 + 4αn2 + n3).

We can check that the inequality (A.6) implies again (n, α) ∈ R3.

Therefore, we conclude that the functional Fα(u) is dissipative for any classical solution u of
(1.1) if the couple (n, α) ∈ (R2 ∩ R2) ∪ R3. Now we are in position to derive a quick estimate
for n0.

Consider first the region R1 ∩ R2. In fact, we can resolve directly the polynomial in the
definition of R1. For any n ∈ R, we have four roots:

5− 3n

2
,
5− 2n

3
, −2n

3
, 5 + n.

On the other hand, we can see that (n, α) ∈ R2 if and only if n > 1
82

(√
15130− 40

)
≈ 1.012,

and 0 6= α ∈ (α−, α+), where α± are the two roots of the polynomial in the definition of R2, i.e.

α± =
1

178

[
335− 92n± 5

√
3(82n2 + 80n− 165)

]
.

To conclude, (n, α) ∈ R1 ∩R2 ⊂ Σ for α 6= 0 verifying

α1 < α ≤ 5− 2n

3
, if

14

11
< n ≤ 6; −2n

3
≤ α ≤ 5− 2n

3
if n > 6. (A.7)

We get immediately that n0 ≤ 14/11 ≈ 1.273, and Σ̊ ∩ ({n} ×R∗) 6= ∅ for n > 14/11.



Furthermore, with the help of the software Mathematica, we can also determine exactly the
region R3. Indeed, let n1 and n2 be the second and third real roots of the polynomial

1210x7 − 792x6 − 40256x5 − 40398x4 + 150211x3 + 27738x2 − 252855x+ 182520.

We have n1 < 1.18426 and n2 > 6. For n ∈ [n1, n2] fixed, let α1,n and α2,n be the first and
second real roots of the following polynomial (we can check that α1,n, α2,n exist):

212x4 + (448n− 1528)x3 + (324n2 − 2352n+ 4548)x2

+ (112n3 − 924n2 + 4752n− 6640)x+ 29n4 − 56n3 + 840n2 − 3680n+ 3920.

We get then

R3 = {(n, α) ∈ [n1, n2]×R
∗, α ∈ [α1,n, α2,n]} . (A.8)

We can conclude now n0 ≤ n1 and Σ̊ ∩ ({n} ×R∗) 6= ∅ for any n ≥ 1.18426, as α1,n < α2,n for
n ∈ (n1, n2).
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