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Using the entropy estimates in [14], we establish the global existence and uniqueness of solutions to a fourth order equation related to image processing. Some numerical results on the Lena image are also presented to show the effectiveness of the equation for noise removal.

Introduction

We study here the following fourth order initial boundary value problem:

     u t + g(u)u xx xx = 0, x ∈ Ω ⊂ R, t > 0, u x = u xxx = 0, x ∈ ∂Ω, t > 0, u(x, 0) = u 0 (x), x ∈ Ω, (1.1) 
where g(u) = u -n with n > 0, Ω is a bounded interval and u 0 is a positive function in H 1 (Ω).

The problem can be used to denoise in image processing and it was considered in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF]. As mentioned in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF], the diffusivity function g(u) = u -n corresponds to the TV diffusivity in image processing if n = 1 [START_REF] Didas | Properties of higher order nonlinear diffusion filtering[END_REF][START_REF] Wang | A new alternating minimization algorithm for total variation image reconstruction[END_REF], while it is the BFB diffusivity if n = 2 [START_REF] Didas | Properties of higher order nonlinear diffusion filtering[END_REF][START_REF] Keeling | Nonlinear anisotropic diffusion filters for wide range edge sharpening[END_REF].

In the past decade, many nonlinear PDEs are proposed to deal with the tradeoff between noise removal and edge preservation, the fourth-order parabolic PDEs are introduced by many scholars with the hope that these equations would perform better than their second order analogues [START_REF] Wei | Generalized Perona-Malik equation for image processing[END_REF][START_REF] Tumblin | LCIS: a boundary hierarchy for detail-preserving contrast reduction[END_REF][START_REF] You | Fourth-order partial differential equations for noise removal[END_REF][START_REF] Lysaker | Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[END_REF][START_REF] Bertozzi | Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes[END_REF][START_REF] Osher | Image decomposition and restoration using total variation minimization and the H -1 norm[END_REF]. Especially, You and Kaveh in [START_REF] You | Fourth-order partial differential equations for noise removal[END_REF] proposed the following fourth order PDE associated with a second energy functional u t + △ g 1 (△u)△u = 0 (1.2) for noise removal, where

g 1 (s) = 1 1 + ( s k ) 2
, k > 0 is the contrast parameter. The paper [START_REF] Bertozzi | Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes[END_REF] described some reasons to consider the fourth order PDEs in image processing. Numerical experiments, for example in [START_REF] Didas | Stability and local feature enhancement of higher order nonlinear diffusion filtering[END_REF][START_REF] You | Fourth-order partial differential equations for noise removal[END_REF][START_REF] Lysaker | Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[END_REF] showed that fourth-order models are able to avoid the staircasing and cartoonish effects of second order PDEs while still removing noise and preserving edges.

However, theoretical analysis of these fourth-order nonlinear PDEs is much less-developed. Because such equations often do not possess the maximum principle or comparison principle, we need some different theoretic techniques in order to obtain a priori estimates and the nonnegativity or positivity of solutions. Other substantial difficulties are often due to the strong degeneracy or singularity.

Bertozzi and Greer studied in [START_REF] Bertozzi | Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes[END_REF] the following fourth order model:

u t + ∇ • g 1 (△u)∇△u = 0 (1.3)
which was designed to simplify an image based on its curvature. They made a key change of variables to obtain the existence and uniqueness of global smooth solutions to (1.3) in dimension one. Their work relies heavily on the special structure of g 1 (s), so the idea is difficult to be applied in our case. We also refer to [START_REF] Liu | Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal[END_REF] for the existence and uniqueness of entropy solutions to a fourth-order nonlinear degenerate parabolic equation for noise removal.

In [START_REF] Jin | Strong solutions for the generalized Perona-Malik equation for image restoration[END_REF], Jin and Yang considered the following fourth order problem for image restoration:

   u t + (g 1 (u x )u xxx ) x = 0, x ∈ Ω ⊂ R, t ≥ 0, u x = u xxx = 0, x ∈ ∂Ω, t ≥ 0, u(x, 0) = u 0 (x), x ∈ Ω.
Applying the Schauder fixed point method, they proved the local existence of solutions u ∈ C([0, T ]; H 2 (Ω)) under the assumption that u 0 H 2 (Ω) is small enough.

Two fourth order models for noise removal with fractional derivatives as an edge detection

u t + △ g 1 (|∇ 1-ǫ u|)△u = 0 and u t + ∇ • g 1 ((-△) 1-ǫ u)∇△u = 0
were also investigated by Guidotti and Longo [START_REF] Guidotti | Well-posedness for a Class of Fourth Order Diffusions of Image Processing[END_REF] recently. Using the theory of maximal regularity, they proved the local existence of solutions u ∈ W 1,p (0, T ; L p (Ω)) to the above two equations with periodic boundary conditions.

In the previous work [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF], under the assumption of the existence of classical solutions to the equation, we discussed the large time behavior of solutions to (1.1) using some entropy estimates via the algebraic approach. In particular, we showed that problem (1.1) possesses some "first order" entropies.

Here we investigate the well-posedness theory of problem (1.1), i.e. the global existence and uniqueness of classical solution for suitable u 0 . Throughout this paper, by a classical solution u in Ω × (0, T ), we mean

u ∈ C 4,1 (Ω × (0, T )) ∩ C([0, T ), H 1 (Ω)).
Here and after, by H k (Ω), we mean the classical Sobolev spaces W k,2 (Ω) for all k ≥ 1. As g(u) = u -n , any classical solution is clearly positive. Note that constant functions are trivial solutions to (1.1) and the total mass of any solution u to (1.1) is conserved in time, that is

1 |Ω| Ω u(x, t) dx = 1 |Ω| Ω u 0 (x) dx := m, t > 0, (1.4) 
where |Ω| denotes the length of Ω. Due to the singularity of g(u) at u = 0, as we want to find classical solutions, we consider initial data u 0 which is small perturbation near the average m. Indeed, we will use the entropy estimates obtained in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF] to get appropriate estimations, and we use also an approximation process to handle the initial data u 0 ∈ H 1 (Ω). The entropy estimate is widely used to handle fourth order nonlinear parabolic equations, see for example [START_REF] Bernis | Higher-order nonlinear degenerate parabolic equations[END_REF] for thin film and [START_REF] Bleher | Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations[END_REF] for interface fluctuation modeling.

More precisely, it was shown in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF] that for suitable couple (n, α), F α (u) is dissipative for any classical solution u of (1.1), i.e.

F α u(x, t) ≤ F α (u 0 ), ∀ t ≥ 0, (1.5) 
where

F α (u) = 2 α 2 Ω (u α 2 ) 2 x dx = 1 2 Ω u α-2 u 2
x dx, α ∈ R * := R \ {0}.

(1.6) More precisely, it was shown numerically that for n ≥ 1.18426 (see Fig. 1 in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF]), we can always find α ∈ R * such that F α is dissipative. Define n 0 = inf {s > 0 s.t. for any n ≥ s, ∃ α ∈ R * making F α dissipative} .

(1.7)

In this paper we will give a rigorous derivation for n 0 < ∞ in Appendix, where we show also a rigorous upper bound estimate for n 0 . Moreover, for n = 2, it was showed in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF] that any global classical solution u to (1.1) converges uniformly to the average of the initial data u 0 , with an order like t -1 4 for t → ∞. Here we generalize this fact for any n ≥ 1.18426. Our main result is Theorem 1.1. Assume that n > n 0 and m > 0. There exist σ 0 > 0 small, β 0 , γ 0 > 0 and C 0 > 0 such that for any positive u 0 ∈ H 1 (Ω) with u 0,x 2 ≤ σ 0 and the given average m, the initial-boundary value problem (1.1) admits a unique global classical solution in the following sense:

u ∈ C 4,1 loc (Ω × (0, ∞)) ∩ C(R + , H 1 (Ω)). (1.8)
The solution u satisfies 0

< β 0 ≤ u(x, t) ≤ γ 0 < ∞ in Ω × [0, ∞) and u x (•, t) 2 ≤ C 0 u 0,x 2
for any t ≥ 0. Furthermore, for n ≥ 1.18426, there holds u(•, t) → m in C(Ω) when t goes to infinity.

Here and in the following, n 0 is defined by (1.7), and • p denotes the standard norm in L p (Ω) for p ∈ [1, ∞]. For simplicity, we introduce several notations. Define Q T := Ω × (0, T ) for T > 0, and

Q := Q ∞ . For k = 2, 3, let Ḣk (Ω) := v ∈ H k (Ω) : v x | ∂Ω = 0 and Ω v(x)dx = 0 , with the norm v Ḣk (Ω) = ∇ k v 2 . Indeed, it is easy to check that the norm ∇ k v 2 is equivalent to the norm v H k (Ω) in Ḣk (Ω) for k = 2, 3.
Our approach can also be used to handle the the corresponding Dirichlet boundary problem

     u t + g(u)u xx xx = 0, x ∈ Ω ⊂ R, t > 0, u = m ′ , u x = 0, x ∈ ∂Ω, t > 0, u(x, 0) = u 0 (x), x ∈ Ω, (1.9) 
where m ′ > 0 is a given constant, g(u) = u -n with n > n 0 , and Ω is a bounded interval.

Theorem 1.2. Suppose the initial data u 0 satisfies u 0m ′ ∈ H 1 0 (Ω) and u 0,x 2 ≤ σ for σ > 0 small enough, then there exists a unique global classical solution u to problem (1.9). Moreover for n ≥ 1.18426, the solution satisfies

u(x, t) → m ′ uniformly in x ∈ Ω, as t → ∞.
(1.10)

The rest of the paper is organized as follows. Sec. 2 is devoted to the proof of our main results. We give some numerical results to show that the model (1.1) can be effectively applied in image processing, and we make some comparison with the second order PM equation and YK equation in Sec. 3. The detailed derivation of the existence of n 0 and its estimates is given in the Appendix. Throughout the paper, we denote by C (sometimes C i ) some generic positive constants, which may differ from line to line.

Existence and uniqueness of classical solution

Here we prove Theorem 1.1. Our main idea is the approximation method combined with the entropy estimate.

Firstly, we have the following local existence of classical solutions to problem (1.1), provided that u 0 is more regular and u 0,x 2 is sufficiently small.

Theorem 2.1. Let u 0 ∈ C 4+µ (Ω), µ ∈ (0, 1) with fixed average m > 0. Assuming that u 0,x 2 < σ 1 < |Ω| -1 2 m, problem (1.1) admits a classical solution u ∈ C 4+µ,1+ µ 4 x, t (Q δ ) for some δ > 0.
Proof. Using Hölder's inequality, we have |u 0 (x)-u 0 (y)| < |Ω| 1 2 σ 1 for all x, y ∈ Ω. In particular, there hold max

x∈Ω u 0 (x) -m < |Ω| 1 2 σ 1 , m -min x∈Ω u 0 (x) < |Ω| 1 2 σ 1 .
Since 0 < σ 1 < |Ω| -1 2 m, there exist two positive constants β 1 , γ 1 depending only on σ 1 , Ω and

m such that 0 < β 1 ≤ u 0 (x) ≤ γ 1 , ∀ x ∈ Ω. (2.1)
By standard parabolic Schauder theory (see Theorem 6.3 in [START_REF] Eidel'man | Parabolic systems, Translated from the Russian by Scripta Technica[END_REF], see also [START_REF] Friedman | Interior estimates for parabolic systems of partial differential equations[END_REF]), problem (1.1)

admits a unique classical solution u ∈ C 4+µ,1+ µ 4 x, t (Q δ ) for some δ > 0.
The next lemma is the key estimate for our approach.

Lemma 2.2. Given n > n 0 and m > 0, there exist σ 2 , C 1 > 0 such that for any classical solution of (1.1) in Q T with some T > 0, u 0 of average m and u 0,x 2 ≤ σ 2 < |Ω| -1 2 m, there holds u x (•, t) 2 < C 1 u 0,x 2 , for all t ∈ (0, T ).

(2.2)

Proof. As n > n 0 , by (1.7), we can fix α ∈ R * such that the estimate (1.5) holds true. Let

u 0,x 2 < σ 1 < |Ω| -1 2 m. Using (2.1
), there holds

F α (u 0 ) = 1 2 Ω u α-2 0 u 2 0,x dx < C u 0,x 2 2 . 
Combining with (1.5),

Ω u α 2 (x, t) 2 x dx = α 2 2 F α (u(x, t)) ≤ α 2 2 F α (u 0 ) < α 2 C 2 u 0,x 2 2 . 
Using (1.4), there exists x ∈ Ω satisfying u

α 2 (x, t) = m α 2 .
Similarly as the deduction of (2.1), we get max

x∈Ω u α 2 (x, t) -m α 2 < C 2 u 0,x 2 , m α 2 -min x∈Ω u α 2 (x, t) < C 2 u 0,x 2 . Now fix 0 < σ 2 < min m α/2 2C 2 , σ 1 .
There exist then two positive constants β, γ independent of T verifying that 0

< β ≤ u(x, t) ≤ γ in Q T , if u 0,x 2 ≤ σ 2 . (2.3) Hence when u 0,x 2 ≤ σ 2 , Ω u 2 x dx ≤ CF α (u) < C u 0,x 2 
2 , ∀ t ∈ (0, T ).

So we are done.

Using the above lemma, we can get now some uniform estimates for u in suitable Sobolev spaces or uniform Hölder estimates locally in t-variable.

Lemma 2.3. Let T 0 > 0. Assume u 0,x 2 < σ 2 as above. Let u be a classical solution of (1.1) in Q T for some T ∈ (0, T 0 ). Then there exists a constant M > 0 independent of T such that

u -m L 2 (0,T ; Ḣ3 (Ω)) ≤ M, (2.4 
)

and |u(x, t 1 ) -u(x, t 2 )| ≤ M |t 1 -t 2 | 1/8 , ∀ x ∈ Ω, t 1 , t 2 ∈ [0, T ]. (2.5) Proof. Let v(x, t) := u(x, t) -m, then v verifies      v t + g(v + m)v xx xx = 0, x ∈ Ω, t ∈ (0, T ], v x = v xxx = 0, x ∈ ∂Ω, t ∈ (0, T ], v(x, 0) = v 0 (x) = u 0 (x) -m, x ∈ Ω. (2.6)
Due to (2.3), there holds

g(v + m) ≥ λ > 0 in Q T .
(2.7)

Multiplying the equation (2.6) by v and integrating over Ω, we have for any t ∈ (0, T ), 1 2

d dt Ω v 2 dx + Ω g(v + m)|v xx | 2 dx = 0,
and so 1 2

d dt Ω v 2 dx + λ Ω |v xx | 2 dx ≤ 0, which implies readily v C([0,T ],L 2 (Ω)) + v L 2 (0,T ; Ḣ2 (Ω)) ≤ C v 0 2 . (2.8)
Similarly, multiplying the equation in (2.6) by v xx , we deduce that 1 2

d dt Ω v 2 x dx + Ω g(v + m)|v xxx | 2 dx = Ω g ′ (v + m)v x v xx x v xx dx.
(2.9) Fix 1 2 < ǫ < 1 and θ = 2+ǫ 3 < 1, by the interpolation inequality,

v xx ∞ ≤ C v H 2+ǫ (Ω) ≤ C v 1-θ 2 v θ H 3 (Ω) ≤ C ′ v 1-θ 2 v xxx θ 2 .
(2.10) Recalling (2.3) and (2.8), we get then

Ω g ′ (v + m)v x v xx x v xx dx ≤ g ′ (v + m) ∞ v x 2 v xx ∞ v xxx 2 ≤ C v x 2 v 0 1-θ 2 v xxx 1+θ 2 ≤ λ 2 v xxx 2 2 + C v x 2 1-θ 2 v 0 2 2 .
We deduce from (2.9) that

d dt Ω v 2 x dx + λ Ω |v xxx | 2 dx ≤ C v x 2 1-θ 2 v 0 2 2 . Using now (2.2), v C([0,T ];H 1 (Ω)) + v L 2 (0,T ; Ḣ3 (Ω)) ≤ C v 0,x 1 1-θ 2 v 0 2 T 0 + v 0,x 2 .
Back to u, we obtain (2.4) for large enough M .

Setting h(u) = g(u)u xxx + g ′ (u)u x u xx , we have h L 2 (Q T ) ≤ C(T 0 ) according to (2.3) and Lemma 2.3. Then except the fact that the constant M depends on T 0 , the proof of (2.5) is completely similar to that of Lemma 2.1 in [START_REF] Bernis | Higher-order nonlinear degenerate parabolic equations[END_REF]. So we omit the details. Now we are ready to prove the main result.

Proof of Theorem 1.1. We divide the proof into three steps.

Step 1: Global existence.

Let u 0 ∈ H 1 (Ω) with the fixed average m and u 0,x 2 ≤ σ 0 ∈ (0, σ 2 ) where σ 2 is the constant given by Lemma 2.2. Take functions u 0,ε ∈ C 4+µ (Ω) with the given average m, µ ∈ (0, 1) and which approximate u 0 in H 1 (Ω) as ε → 0. We can assume that (u 0,ε ) x 2 < σ 2 .

Given T 0 > 0, apply Theorem 2.1, the initial boundary problem

     u t + g(u)u xx xx = 0, x ∈ Ω, t > 0, u x = u xxx = 0, x ∈ ∂Ω, t > 0, u(x, 0) = u 0,ε (x),
x ∈ Ω, (2.11) admits locally a unique classical solution u ε (x, t) ∈ C 4+µ,1+ µ 4 (Q δε ) for some 0 < δ ε ≤ T 0 . Moreover, using Lemmas 2.2 and 2.3, we have

u ε C 1 2 , 1 8 
x, t (Q δε ) ≤ C,
where the constant C is independent of ε and δ ε . These a priori estimate bounds will allow us to extend the solution u ε step-by-step and to obtain a classical solution of (2.11) over Q T 0 for any given T 0 > 0. So we get a global classical solution to (2.11). Moreover, combining the estimates in Lemmas 2.2 and 2.3, there hold

u ε C(R + ,H 1 (Ω)) ≤ C and u ε C 1 2 , 1 8 (Q T ) + u ε -m L 2 (0,T ; Ḣ3 (Ω)) ≤ M (T ) < ∞, ∀ T > 0.
(2.12)

By the Arzelà-Ascoli theorem, up to a subsequence, we have

u ε → u in C loc (Q)
for some function u. Obviously, there holds u ∈ C

1 2 , 1 8 loc (Q) ∩ L 2 loc (R + , Ḣ3 (Ω)
) by (2.12). Using (2.3), (2.2) and (2.4), we obtain also

u x C(R + ,L 2 (Ω)) ≤ C u 0,x 2 , 0 < β ≤ u ≤ γ < ∞ in Q.
On the other hand, by regularity theory for uniformly parabolic equations, we can conclude that u is a global classical solution to (1.1).

Step 2. Uniqueness For any T > 0, assume u and u are two classical solutions of problem (1.1) in Q T . Therefore u and u verify

u x C([0,T ),L 2 (Ω)) + u x C([0,T ),L 2 (Ω)) ≤ C u 0,x 2 , 0 < β ≤ u, u ≤ γ < ∞ in Q T .
Let ω = uu. By the Sobolev embedding, for any t ∈ [0, T ), 

g(u) -g( u) ∞ + g ′ (u) -g ′ ( u) ∞ ≤ C ω x 2 , (2.13) and      ω t + g(u)u xx -g( u) u xx xx = 0, in Q T , ω x = ω xxx = 0, on ∂Ω × (0, T ), ω(x, 0) = 0, in Ω. ( 2 
d dt Ω ω 2 x dx + Ω g( u)ω 2 xxx dx = Ω g ′ (u)u x u xx -g ′ ( u) u x u xx x ω xx dx + Ω g( u) -g(u) u xxx ω xxx dx.
Applying (2.7), (2.13), Young's inequality and interpolation inequality (2.10), we deduce 1 2

d dt Ω ω 2 x dx + λ Ω ω 2 xxx dx ≤ Ω g ′ (u) -g ′ ( u) u x u xx ω xxx dx + Ω g ′ ( u)ω x u xx ω xxx dx + Ω g ′ ( u) u x ω xx ω xxx dx + Ω g(u) -g( u) u xxx ω xxx dx := I 1 + I 2 + I 3 + I 4 .
Therefore,

I 1 ≤ C ω x 2 u x 2 u xx ∞ ω xxx 2 ≤ λ 8 ω xxx 2 2 + C(λ) ω x 2 2 u x 2 2 u xx 2 ∞ , I 2 ≤ C ω x 2 u xx ∞ ω xxx 2 ≤ λ 8 ω xxx 2 2 + C(λ) ω x 2 2 u xx 2 ∞ , I 4 ≤ C ω x 2 u xxx 2 ω xxx 2 ≤ λ 8 ω xxx 2 2 + C(λ) ω x 2 2 u xxx 2 2
and

I 3 ≤ C u x 2 ω xx ∞ ω xxx 2 ≤ C u x 2 ω x 1-θ 2 ω xxx 1+θ 2 ≤ λ 8 ω xxx 2 2 + C(λ) u x 2 1-θ 2 ω x 2 2 .
We conclude then

d dt ω x 2 2 + ω xxx 2 2 ≤ C(λ)η(t) w x 2 2 in (0, T ),
where

η(t) = u x 2 2 u xx 2 ∞ + u xx 2 ∞ + u x 2 1-θ 2 + u xxx 2 2
is a nonnegative function in L 1 (0, T ), because u, u ∈ L 2 (0, T ; H 3 (Ω)) by (2.4). As ω(x, 0) ≡ 0, Gronwall's inequality yields that ω x 2 = 0 in (0, T ), that is u = u a.e. in Ω × [0, T ]. So we obtain the uniqueness of the solution.

Step 3. Large-time behavior

The case for n = 2 has been shown in Theorem 2.3 of [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF]. We can even simplify the arguments in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF] with our uniform estimate. For the sake of completeness, we give the sketches of proof. Assume first there exists α ∈ R * such that (n, α) lies in the interior of the special entropy region (R1 ∩ R2) ∪ R3 given in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF], see also the Appendix below. By the proof of Theorem 2.2 (especially the equality (3.12)) in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF], we get ε 1 > 0 such that

d dt F α (u) ≤ -ε 1 Ω u α-n u x u 2 u xx u 2 dx = -ε 1 Ω u α-n-4 u 2 x u 2 xx dx.
Replacing now G(u) in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF] by F α (u), similarly as in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF], we have

d dt F α (u) ≤ -CF α (u) 3 , hence F α u(x, t) ≤ 2Ct + F α (u 0 ) -2 -1 2 in (0, ∞). (2.15) Let h = W (u) with W (s) = √ 2 α s α 2 in (0, ∞). So for any t ∈ R + , there exists x t ∈ Ω verifying h(x t , t) = W (m). As h x 2 2 = F α (u), we get h(•, t) -W (m) ∞ ≤ C F α (u).
Since h is uniformly bounded by (2.3), using the mean value theorem, we conclude that

u -m ∞ = W -1 (h) -m ∞ ≤ C h -W (m) ∞ ≤ C ′ F α (u), ∀ t ∈ R * .
(2.16) Obviously, (2.16) and (2.15) 

yield that u(x, t) -m ∞ ≤ Ct -1 4 for t → ∞.
It remains to verify that for any n ≥ 1.18426, there exists α ∈ R * such that (n, α) lies in the interior of (R1 ∩ R2) ∪ R3. Indeed, by (A.7) and (A.8) below, it is clear that such α exist for n > 14 11 but also for n ∈ (n 1 , n 2 ). Proof of Theorem 1.2. Using the ideas in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF], it is easy to check that entropy estimate (1.5) also holds true if u is a classical solution to problem (1.9) in the sense of (1.8). As the proof of Theorem 1.2 is totally similar to that of Theorem 1.1, we leave the details for interested readers.

Numerical Results

In this section, we show the efficiency for noise removal of the proposed model

u t + △ k n |u| -n △u = 0 (3.1)
by comparing with famous PM model [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF] For the evaluated experiments, we use a peak signal-to-noise ratio (PSNR), a signal-to-noise ratio (SNR) and a mean structural similarity (MSSIM) index defined in [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] to measure the overall image quality. The PSNR and SNR used here are calculated as , where I(i, j), I * (i, j) and M, N are the original image, the image to be evaluated and the size of the image, respectively. Obviously, the higher of all the three evaluation indexes, the better of the image. For all the denoising models in this paper, we choose the time step size ∆t = 0.25 and space grid size h = 1 in iterative approach:

u t = ∇ • g 1 (|∇u|)
P SN R = 10 log 10 255 × 255 1 M ×N M i=1 N j=1 [I(i, j) -I * (i, j)]
t = m∆t, m = 0, 1, 2, ... x = ih, i = 0, 1, 2, • • • M, y = jh, j = 0, 1, 2, • • • N.
Furthermore, the parameters k are set to self-adaptive, 20 and 2 in (3.2), (1.2) and (3.1) respectively. Here the only parameter to tune is the number m of iterations. In order to characterize the effectiveness of the model for multiplicative noise removal quantitatively, we show the PSNR, SNR and MSSIM of the noisy image and the restored image with three models when m = 50 in Table 1, and the cases for m = 100 and m = 200 are presented in Table 2 andTable 3. It is clear that our model has a higher PSNR and SNR, but a lower MSSIM than the PM model for the simulated images when m = 50 and m = 100. 
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Figure 1 :

 1 Figure 1: The original image and the noisy image

Figure 2 :

 2 Figure 2: The restoration results by three models when m = 50. Left: PM equation (3.2); Middle: YK equation (1.2); Right: our model (3.1).

Fig. 1

 1 Fig. 1 shows the original Lena image and noisy image used in our experiments. The numerical results by using (3.1), (3.2) and YK equation (1.2) to denoise when m = 50 are presented in Fig. 2. In Fig. 3 and Fig. 4, we compare the restoration results of the Lena image by three models if m = 100 and m = 200 respectively. We see from the Fig. 2-Fig. 4 that the restoration results by the proposed model are visually much better than the PM equation and YK equation.

Figure 3 :

 3 Figure 3: The restoration results by three models when m = 100. Left: PM equation (3.2); Middle: YK equation (1.2); Right: our model (3.1).

Figure 4 :

 4 Figure 4: The restoration results by three models when m = 50. Left: PM equation (3.2); Middle: YK equation (1.2); Right: our model (3.1).

Table 1 :

 1 The value of evaluation indexes when m = 50

	Lena (256*256)	PSNR	SNR	MSSIM
	noisy image	18.6927 12.9683	0.3688
	denoising with PM 24.3143 18.5899	0.6985
	denoising with YK 24.5533 18.8289	0.5527
	denoising with (3.1) 25.3279 19.6035	0.6288

Table 2 :

 2 The value of evaluation indexes when m = 100

	Lena (256*256)	PSNR	SNR	MSSIM
	noisy image	18.6927 12.9683	0.3688
	denoising with PM 23.5350 17.8106	0.6732
	denoising with YK 24.2683 18.5438	0.5407
	denoising with (3.1) 25.7491 20.0247	0.6641

Table 3 :

 3 The value of evaluation indexes when m = 200

	Lena (256*256)	PSNR	SNR	MSSIM
	noisy image	18.6927 12.9683	0.3688
	denoising with PM 22.8605 17.1361	0.6535
	denoising with YK 23.7784 18.0539	0.5185
	denoising with (3.1) 25.7147 19.9903	0.6865
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A Derivation of n 0

In this appendix, we give a rigorous derivation of the existence of n 0 defined by (1.7) and the structure of the following entropy region for F α : Σ = {(n, α) ∈ (0, ∞) × R * s.t. F α (u) is dissipative for any classical solution to (1.1)} . (A. [START_REF] Bernis | Higher-order nonlinear degenerate parabolic equations[END_REF] In [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF], the fact that n 0 < ∞ was observed numerically by using (R1 ∩ R2) ∪ R3 ⊂ Σ, where

For completeness, we first recall some calculations for the entropy region using the following two lemmas in [START_REF] Jüngel | An algorithmic construction of entropies in higher-order nonlinear PDEs[END_REF].

Lemma A.1. Let the real polynomial be

Then P (ξ 1 , ξ 2 , ξ 3 ) ≥ 0 in R 3 is equivalent to have either 4a 4a 2 5 > 0 and 4a 1 a 4a 1 a 2 5a 2 2a 2 3 a 4 + a 2 a 3 a 5 ≥ 0; or 4a 4a 2 5 = 2a 2a 3 a 5 = 0 and 4a 1a 2 3 ≥ 0.

Lemma A.2. Let P (x) = a 0 + a 1 x + a 2 x 2 with a 2 > 0. For any x ∈ R, then inf x>x P (x) < 0 is equivalent to have either P (x) < 0 or 4a 0 a 2a 2 1 ≤ 0 and 2a 2 x + a 1 < 0.

Recall the proof of Theorem 2.2 in [START_REF] Min | Entropy estimates and large time behavior of solutions to a fourth-order nonlinear degenerate equation[END_REF]: F α is a dissipative entropy if there exist constants c 4 and c 5 ∈ R, making

First, we solve the case (A.2)-(A.3). The inequality (A.2) gives readily

Moreover, for fixed c 5 , p(c 4 , c 5 ) is a quadratic polynomial in c 4 with a strictly negative leading coefficient. Therefore, there exists c 4 ∈ R such that p(c 4 , c 5 ) ≥ 0 if and only if p(c 4 , c 5 ) has a nonnegative discriminant: 0 ≤ ∆ := -3(c 5c 5 )∆ 1 (c 5 ) where

So, we need only to determine those values of α, for which there exists c 5 > c 5 making ∆ 1 (c 5 ) ≤ 0.

By direct verifications, we can check that 4a 0 a 2a 2 1 ≤ 0 gives exactly the region R1, and 2a 2 c 5 + a 1 < 0 gives exactly the region R2; while the condition a 0 + a 1 c 5 + a 2 c 5 2 < 0 corresponds exactly to the region R3. Applying Lemma A.2, we have already

For the case (A.4)-(A.6), we can remark that conditions (A.4) and (A.5) yield

and

We can check that the inequality (A.6) implies again (n, α) ∈ R3.

Therefore, we conclude that the functional F α (u) is dissipative for any classical solution u of (1.1) if the couple (n, α) ∈ (R2 ∩ R2) ∪ R3. Now we are in position to derive a quick estimate for n 0 .

Consider first the region R1 ∩ R2. In fact, we can resolve directly the polynomial in the definition of R1. For any n ∈ R, we have four roots: To conclude, (n, α) ∈ R1 ∩ R2 ⊂ Σ for α = 0 verifying

We get immediately that n 0 ≤ 14/11 ≈ 1.273, and Σ ∩ ({n} × R * ) = ∅ for n > 14/11.

Furthermore, with the help of the software Mathematica, we can also determine exactly the region R3. Indeed, let n 1 and n 2 be the second and third real roots of the polynomial 1210x 7 -792x 6 -40256x 5 -40398x 4 + 150211x 3 + 27738x 2 -252855x + 182520.

We have n 1 < 1.18426 and n 2 > 6. For n ∈ [n 1 , n 2 ] fixed, let α 1,n and α 2,n be the first and second real roots of the following polynomial (we can check that α 1,n , α 2,n exist): 212x 4 + (448n -1528)x 3 + (324n 2 -2352n + 4548)x 2 + (112n 3 -924n 2 + 4752n -6640)x + 29n 4 -56n 3 + 840n 2 -3680n + 3920.

We get then

We can conclude now n 0 ≤ n 1 and Σ ∩ ({n} × R * ) = ∅ for any n ≥ 1.18426, as α 1,n < α 2,n for n ∈ (n 1 , n 2 ).