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We prove the nonexistence of smooth stable solution to the biharmonic problem ∆ 2 u = u p , u > 0 in R N for 1 < p < ∞ and N < 2(1 + x0), where x0 is the largest root of the equation:

.

Introduction

Consider the biharmonic equation

(1.1) ∆ 2 u = u p , u > 0 in R N
where N ≥ 5 and p > 1. Let

(1.2) Λ(φ) := R N |∆φ| 2 dx -p R N u p-1 φ 2 dx, ∀ φ ∈ H 2 (R N ).
A solution u is said stable if Λ(φ) ≥ 0 for any test function φ ∈ H 2 (R N ).

In this note, we prove the following classification result.

Theorem 1.1. Let N ≥ 5 and p > 1. The equation (1.1) has no classical stable solution, if N < 2 + 2x 0 where x 0 is the largest root of the polynomial H(x) = x 4 -32p(p + 1) (p -1) 2 x 2 + 32p(p + 1)(p + 3) (p -1) 3 x -64p(p + 1) 2 (p -1) 4 . (1.3) Moreover, we have x 0 > 5 for any p > 1. Consequently, if N ≤ 12, (1.1) has no classical stable solution for all p > 1.

For the corresponding second order problem: (1.4) ∆u + |u| p-1 u = 0 in R N , p > 1.

Farina has obtained the optimal Liouville type result for all finite Morse index solutions. He proved in [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF] that a smooth finite Morse index solution to (1.4) exists, if and only if p ≥ p JL and N ≥ 11, or p = N +2 N -2 and N ≥ 3. Here p JL is the so-called Joseph-Lundgren exponent, see (1.11) in [START_REF] Gui | On the stability and instability of positive steady states of a semilinear heat equation in R n[END_REF].

The nonexistence of positive solutions to (1.1) are showed if p < N +4 N -4 , and all entire solutions are classified if p = N +4 N -4 , see [START_REF] Lin | A classification of solutions to a conformally invariant equation in R 4[END_REF][START_REF] Wei | Classification of solutions of high order conformally invariant equations[END_REF]. On the other hand, the radially symmetric solutions to (1.1) are studied in [START_REF] Ferrero | Supercritical biharmonic equations with power-like nonlinearity[END_REF][START_REF] Gazzola | Radial entire solutions for supercritical biharmonic equations[END_REF][START_REF] Guo | Qualitative properties of entire radial solutions for a biharmonic equation with supcritical nonlinearity[END_REF][START_REF] Karageorgis | Stability and intersection properties of solutions to the nonlinear biharmonic equation[END_REF]. In particular, Karageorgis proved that the radial entire solution to (1.1) is stable if and only if p ≥ p JL 4 and N ≥ 13. Here p JL 4 stands for the corresponding Joseph-Lundgren exponent to ∆ 2 , see [START_REF] Karageorgis | Stability and intersection properties of solutions to the nonlinear biharmonic equation[END_REF].

The general fourth order case (1.1) is more delicate, since the integration by parts argument used by Farina cannot be adapted easily. The first nonexistence result for general stable solution was proved by Wei & Ye [START_REF] Wei | Liouville theorems for stable solutions of biharmonic problem[END_REF], they proposed to consider (1.1) as a system

-∆u = v, -∆v = u p in R N , (1.5)
and introduced the idea to use different test functions with u but also v. Using estimates in [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF] they showed that for N ≤ 8, (1.1) has no smooth stable solutions. For N ≥ 9, using a blow-up argument, they proved that the classification holds still for p < N N -8 + N with N > 0, but without any explicit value of N . This result was improved by Wei, Xu & Yang in [START_REF] Wei | On the classification of stable solution to biharmonic problems in large dimensions[END_REF] for N ≥ 20 with a more explicit bound.

Using the stability for system (1.5) and an interesting iteration argument, Cowan proved that, see Theorem 2 in [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF], there is no smooth stable solution to (1.1), if N < 2 + 4(p+1) p-1 t 0 , where

t 0 = 2p p + 1 + 2p p + 1 - 2p p + 1 , ∀ p > 1. (1.6)
In particular, if N ≤ 10, (1.1) has no stable solution for any p > 1.

However, the study for radial solutions in [START_REF] Karageorgis | Stability and intersection properties of solutions to the nonlinear biharmonic equation[END_REF] suggests the following conjecture:

A smooth stable solution to (1.1) exists if and only if p ≥ p JL 4 and N ≥ 13.

Consequently, the Liouville type result for stable solutions of (1.1) should hold true for N ≤ 12 with any p > 1, that's what we prove here. More precisely, by Theorem 1 in [START_REF] Karageorgis | Stability and intersection properties of solutions to the nonlinear biharmonic equation[END_REF], the radial entire solutions to (1.1) are unstable if and only if

N 2 (N -4) 2 16 < pQ 4 - 4 p -1 , where Q 4 (m) = m(m -2)(m + N -2)(m + N -4). (1.7)
The l.h.s. comes from the best constant of the Hardy-Rellich inequality (see [START_REF] Rellich | Perturbation theory of eigenvalue problems, Gordon and Breach Science Pulisher[END_REF]): Let N ≥ 5,

R N |∆ϕ| 2 dx ≥ N 2 (N -4) 2 16 R N ϕ 2 |x| 4 dx, ∀ ϕ ∈ H 2 (R N ).
The r.h.s. of (1.7) comes from the weak radial solution w(x) = |x|

-4 p-1 . When p > N +4 N -4 , we can check that w ∈ H 2 loc (R N ) and ∆ 2 w = Q 4 - 4 p -1 w p in D (R N ).
Since w p-1 (x) = |x| -4 , using the Hardy-Rellich inequality, the condition (1.7) means just that w is not a stable solution in R N , i.e.

∃ ϕ ∈ H 2 (R N ) such that Λ w (ϕ) := R N |∆ϕ| 2 dx -p R N Q 4 - 4 p -1 w p-1 ϕ 2 dx < 0.
If we denote N = 2 + 2x, a direct calculation shows that (1.7) is equivalent to H JL 4 (x) < 0, where

H JL 4 (x) := (x 2 -1) 2 - 32p(p + 1) (p -1) 2 x 2 + 32p(p + 1)(p + 3) (p -1) 3 x - 64p(p + 1) 2 (p -1) 4 .
By [START_REF] Gazzola | Radial entire solutions for supercritical biharmonic equations[END_REF], (1.7) is equivalent to N < 2+2x 1 if x 1 denotes the largest root of H JL 4 . We can remark the nearness between the polynomial H in Theorem 1.1 and

H JL 4 , since H(x) -H JL 4 (x) = 2x 2 -1.
Furthermore, Theorem 1.1 improves the bound given in [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF] for all p > 1. Indeed, there holds x 0 > 2(p+1) p-1 t 0 , see Lemmas 2.2 and 2.4 below.

Recall that to handle the equation (1.1), we prove in general that v = -∆u > 0 in R N using average functions on the sphere, see [START_REF] Wei | Classification of solutions of high order conformally invariant equations[END_REF]. Applying the blow up argument as in [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF][START_REF] Wei | Liouville theorems for stable solutions of biharmonic problem[END_REF], we can assume then u and v are uniformly bounded in R N . Therefore the following Souplet's estimate in [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF] holds true in R N , which was established for any bounded solution u of (1.1):

v ≥ 2 p + 1 u p+1 2 . (1.8)
Here we propose a new approach. Without assuming the boundedness of u or showing immediately the positivity of v, we prove first some integral estimates for stable solutions of (1.1), which will enable us the estimate (1.8). This idea permits us to handle more general biharmonic equations: Let N ≥ 5 and p > 1, and consider

(1.9) ∆ 2 u = u p , u > 0 in Σ ⊂ R N , u = ∆u = 0 on ∂Σ. Let E = H 2 (Σ) ∩ H 1 0 (Σ) and (1.10) Λ 0 (φ) := Σ |∆φ| 2 dx -p Σ u p-1 φ 2 dx, ∀ φ ∈ E.
A solution u of (1.9) is said to be stable if Λ 0 (φ) ≥ 0 for any φ ∈ E.

Proposition 1.2. Let u be a classical stable solution of (1.9) with Σ = R N , or the half space

Σ = R N + , or the exterior domain Σ = R N \ Ω, R N + \ Ω where Ω is a bounded smooth domain of R N . Then the inequality (1.8) holds in Σ, consequently v > 0 in Σ.
Using this, we obtain a Liouville type result for (1.9) in the half space situation, which improves the result in [START_REF] Wei | Liouville theorems for stable solutions of biharmonic problem[END_REF] for wider range of N , and without assuming the boundedness of u or v = -∆u.

Theorem 1.3. Let x 0 be defined as in Theorem 1.1. If N < 2 + 2x 0 , there exists no classical stable solution of (1.9) if Σ = R N + .

Our proof combines also many ideas coming from [START_REF] Wei | Liouville theorems for stable solutions of biharmonic problem[END_REF][START_REF] Cowan | Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains[END_REF][START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF]. Briefly, for (1.1), we apply different test functions to both equations of the system (1.5) and make use of the following inequality in [START_REF] Cowan | Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains[END_REF] (see also [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF][START_REF] Dupaigne | Regularity of the extremal solution for the Liouville system, Geometric Partial Differential Equations[END_REF]): If u is a stable solution of (1.1), then

R N √ pu p-1 2 ϕ 2 dx ≤ R N |∇ϕ| 2 dx, ∀ ϕ ∈ C 1 0 (R N ). (1.11)
This will enable us to make two estimates. By these two estimates, we prove that for any stable solution u to (1.1), φ ∈ C 2 0 (R N ) and s ≥ 1, there holds

L(s) < 0 ⇒ R N u p v s-1 φ 2 dx ≤ C R N v s |∆(φ 2 )| + |∇φ| 2 dx (1.12)
Here L is a polynomial of degree 4, see (2.9) below, and the constant C depends only on p and s. Applying then the iteration argument of Cowan in [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF], we show that u ≡ 0 if N < 2 + 2x 0 , which is a contradiction, since u is positive.

Using similar ideas, we consider the elliptic equation on bounded domains:

(P λ ) ∆ 2 u = λ(u + 1) p in a bounded smooth domain Ω ⊂ R N , N ≥ 1 u = ∆u = 0 on ∂Ω.
It is well known (see [START_REF] Berchio | Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities[END_REF][START_REF] Gazzola | Polyharmonic boundary value problems, Positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF]) that there exists a critical value λ * > 0 depending on p > 1 and Ω such that

• If λ ∈ (0, λ * ), (P λ ) has a minimal and classical solution u λ which is stable;

• If λ = λ * , u * = lim λ→λ * u λ is a weak solution to (P λ * ), u * is called the extremal solution.
• No solution of (P λ ) exists whenever λ > λ * .

In [START_REF] Cowan | Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains[END_REF][START_REF] Wei | Liouville theorems for stable solutions of biharmonic problem[END_REF], it was proved that if 1 < p < N -8

N -1
+ or equivalently when N < 8p p-1 , the extremal solution u * is smooth. Recently, Cowan & Ghoussoub improved the above result by showing that u * is smooth if N < 2 + 4(p+1) p-1 t 0 with t 0 in (1.6), so u * is smooth for any p > 1 when N ≤ 10. Our result is Theorem 1.4. The extremal solution u * is smooth if N < 2 + 2x 0 with x 0 given by Theorem 1.1. In particular, u * is smooth for any p > 1 if N ≤ 12.

We remark that our proof does not use the a priori estimate of v = -∆u as in [START_REF] Cowan | Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains[END_REF][START_REF] Cowan | Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains[END_REF].

The paper is organized as follows. We prove some preliminary results and Proposition 1.2 in section 2. The proofs of Theorems 1.1, 1.3 and 1.4 are given respectively in section 3 and 4.

Preliminaries

We show first how to obtain the estimate (1.8) for stable solutions of (1.9). Our idea is to use the stability condition (1.10) to get some decay estimate for stable solutions of (1.9). In the following, we denote by B r the ball of center 0 and radius r > 0.

Lemma 2.1. Let u be a stable solution to (1.9) and set v = -∆u, there holds

Σ∩B R v 2 + u p+1 dx ≤ CR N -4-8 p-1 , ∀ R > 0. (2.1)
Proof. We proceed similarly as in Step 1 of the proof for Theorem 1.1 in [START_REF] Wei | Liouville theorems for stable solutions of biharmonic problem[END_REF], but we do not assume here that v > 0 or u is bounded in Σ. For any ξ ∈ C 4 (Σ) verifying ξ = ∆ξ = 0 on ∂Σ and η ∈ C ∞ 0 (R N ), we have

Σ (∆ 2 ξ)ξη 2 dx = Σ [∆(ξη)] 2 dx + Σ -4(∇ξ • ∇η) 2 + 2ξ∆ξ|∇η| 2 dx + Σ ξ 2 2∇(∆η) • ∇η + (∆η) 2 dx.
(2.

2)

The proof is direct as for Lemma 2.3 in [START_REF] Wei | Liouville theorems for stable solutions of biharmonic problem[END_REF], noticing just that in the integrations by parts, all boundary integration terms on ∂Σ vanish under the Navier conditions for ξ.

Let u be a solution of (1.9). Take ξ = u in (2.2), there holds

Σ [∆(uη)] 2 dx - Σ u p+1 η 2 dx = 4 Σ (∇u∇η) 2 dx + 2 Σ uv|∇η| 2 dx - Σ u 2 2∇(∆η) • ∇η + (∆η) 2 dx
where v = -∆u. Using φ = uη in (1.10), we obtain easily

Σ (∆(uη)) 2 + u p+1 η 2 dx ≤ C 1 Σ |∇u| 2 |∇η| 2 + u 2 |∇ (∆η) • ∇η| + u 2 (∆η) 2 dx + C 2 Σ uv|∇η| 2 dx. (2.3) 
Here and below, C or C i denotes generic positive constants independent of u, which could be changed from one line to another. As ∆(uη) = 2∇u • ∇η + u∆η -vη, we get from (2.3),

Σ v 2 η 2 + u p+1 η 2 dx ≤ C 1 Σ |∇u| 2 |∇η| 2 + u 2 |∇ (∆η) • ∇η| + u 2 (∆η) 2 dx + C 2 Σ uv|∇η| 2 dx. (2.4) 
On the other hand, as u = 0 on ∂Σ,

2 Σ |∇u| 2 |∇η| 2 dx = Σ ∆(u 2 )|∇η| 2 dx + 2 Σ uv|∇η| 2 dx = Σ u 2 ∆(|∇η| 2 )dx + 2 Σ uv|∇η| 2 dx.
Input this into (2.4), we can conclude that

Σ v 2 η 2 + u p+1 η 2 dx ≤ C 1 Σ u 2 |∇ (∆η) • ∇η| + (∆η) 2 + ∆(|∇η| 2 ) dx + C 2 Σ uv|∇η| 2 dx.
(2.5)

Take η = ϕ m with m > 2 and ϕ ∈ C ∞ 0 (R N ), ϕ ≥ 0, it follows that Σ uv|∇η| 2 dx = m 2 Σ uvϕ 2(m-1) |∇ϕ| 2 dx ≤ 1 2C Σ (vϕ m ) 2 dx + C Σ u 2 ϕ 2(m-2) |∇ϕ| 4 dx. Now choose ϕ 0 a cut-off function in C ∞ 0 (B 2 ) satisfying 0 ≤ ϕ 0 ≤ 1, ϕ 0 = 1 for |x| < 1.
Inputting the above inequality into (2.5) with ϕ = ϕ 0 (R -1 x) for R > 0, η = ϕ m and m = 2p+2 p-1 > 2, we arrive at

Σ v 2 + u p+1 ϕ 2m dx ≤ C R 4 Σ u 2 ϕ 2m-4 dx ≤ C R 4 Σ u p+1 ϕ (p+1)(m-2) dx 2 p+1 R N (p-1) p+1 = C R 4 Σ u p+1 ϕ 2m dx 2 p+1 R N (p-1) p+1 . (2.6) Hence Σ u p+1 ϕ 2m dx ≤ CR N - 4(p+1) p-1 .
Combining with (2.6), as

ϕ 2m = 1 for x ∈ B R := {x ∈ R N , |x| ≤ R}, (2.1) is proved. Proof of Proposition 1.2. Let ζ = βu p+1 2 -v, where β = 2 p + 1 .
Then a direct computation shows that ∆ζ We remark that ∃ R 0 > 0 verifying

≥ β -1 u p-1 2 ζ in Σ. Consider ζ + := max(ζ, 0), there holds, for any R > 0 Σ∩B R |∇ζ + | 2 dx = - Σ∩B R ζ + ∆ζdx + ∂(Σ∩B R ) ζ + ∂ζ ∂ν dσ ≤ Σ∩∂B R ζ + ∂ζ ∂ν dσ. (2.
Σ∩∂Br ζ + ∂ζ ∂ν dσ = r N -1 2 e (r), ∀ r ≥ R 0 . (2.8) Moreover, for R ≥ R 0 , we deduce from (2.1) that R R 0 r N -1 e(r)dr ≤ B R ∩Σ ζ 2 + dx ≤ C B R ∩Σ v 2 + u p+1 dx ≤ CR N -4-8 p-1 = o R N .
This means that the function e cannot be nondecreasing at infinity, so that there exists R j → ∞ satisfying e (R j ) ≤ 0. Combining (2.7) and (2.8) with R = R j → ∞, there holds

Σ |∇ζ + | 2 dx = 0.
Using ζ = 0 on ∂Σ, we have ζ + ≡ 0 in Σ, or equivalently (1.8) holds true in Σ. Clearly v > 0 in Σ by (1.8).

In the following, we show some properties of the polynomials L and H, useful for our proofs. Let

L(s) = s 4 -32 p p + 1 s 2 + 32 p(p + 3) (p + 1) 2 s -64 p (p + 1) 2 , s ∈ R.
(2.9) Lemma 2.2. L(2t 0 ) < 0 and L has a unique root s 0 in the interval (2t 0 , ∞). [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF]), there holds t 4 0 = 2p p+1 (2t 0 -1) 2 . A direct computation yields

Proof. Obviously

L(2t 0 ) = 16t 4 0 -128 p p + 1 t 2 0 + 64 p(p + 3) (p + 1) 2 t 0 -64 p (p + 1) 2 By t 2 0 2t 0 -1 = 2p p+1 (see
(p + 1) 2 L(2t 0 ) 32p = (p + 1)(2t 0 -1) 2 -4(p + 1)t 2 0 + 2(p + 3)t 0 -2 = (p -1)(1 -2t 0 ).
As t 0 > 1 for any p > 1, we have L(2t 0 ) < 0. Furthermore, ∀ p > 1, s ≥ 2t 0 , we have

(p + 1)L (s) = 12(p + 1)s 2 -64p ≥ 48(p + 1)t 2 0 -64p ≥ 48(p + 1) 2p p + 1 -64p = 32p > 0 in [2t 0 , ∞)
, where we used t 2 0 ≥ 2p p+1 which holds by (1.6). Therefore L is convex in [2t 0 , ∞). Since lim s→∞ L(s) = ∞ and L(2t 0 ) < 0, it's clear that L admits a unique root in (2t 0 , ∞).

Remark 2.3. After the change of variable x = p+1 p-1 s, a direct calculation gives

H(x) = p + 1 p -1 4 L(s), hence H(x) < 0 if and only if L(s) < 0.
Using the above Lemma, x 0 = p+1 p-1 s 0 is the largest root of the polynomial H, and x 0 is the unique root of H for x ≥ 2(p+1) p-1 t 0 .

Lemma 2.4. Let x 0 = p+1 p-1 s 0 be the largest root of H. Then x 0 > 5 for any p > 1.

Proof. As x 0 is the largest root of H, to have x 0 > 5, it suffices to show H(5) < 0. Let J(p) = (p -1) 4 H(5), then J(p) = -15p 4 -1284p 3 + 4262p 2 -3844p + 625. Therefore,

J (p) = -60p 3 -3852p 2 + 8524p -3844, J (p) = -180p 2 -7704p + 8524.
We see that J < 0 in [2, ∞). Consequently J (p) < 0 and J(p) < 0 for p ≥ 2. Hence x 0 > 5 if p ≥ 2. For p ∈ (1, 2), there holds x 0 > 2(p+1) p-1 t 0 ≥ 6t 0 which exceeds 5 as t 0 > 1.

3. Proof of Theorems 1.1 and 1.3

We will prove only Theorem 1.1, since the proof of Theorem 1.3 is completely similar, where we just change B r by B r ∩ R N + .

The following result generalizes Lemma 4 in [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF], which is a crucial argument for our proof. As above, the constant C always denotes a positive number which may change term by term, but does not depend on the solution u. For k ∈ N, let R k := 2 k R with R > 0.

Lemma 3.1. Assume that u is a classical stable solution of (1.1). Then for all 2 ≤ s < s 0 , there is C < ∞ such that

(3.1) B R k u p v s-1 dx ≤ C R 2 B R k+1 v s dx, ∀ R > 0. R N u q vφ 2 dx + C R N u q+1 |∆(φ 2 )| + |∇φ| 2 dx (3.5)
where

a 1 = 4q √ p (q+1) 2 . Choose now φ(x) = h(R -1 k x) where h ∈ C ∞ 0 (B 2 ) such that h ≡ 1 in B 1 , there holds then R N u p-1 2 u q+1 φ 2 dx ≤ 1 a 1 R N u q vφ 2 dx + C R 2 B R k+1 u q+1 dx (3.6)
Now, apply the stability inequality (1.11) 

with ϕ = v r+1 2 φ, r ≥ 1, to obtain √ p R N u p-1 2 v r+1 φ 2 ≤ R N v r+1 |∇φ| 2 + R N |∇v r+1 2 | 2 φ 2 + (r + 1) R N v r φ∇v∇φ
By a very similar computation (recalling that -∆v = u p ), we have

R N u p-1 2 v r+1 φ 2 dx ≤ 1 a 2 R N u p v r φ 2 dx + C R 2 B R k+1 v r+1 dx (3.7) where a 2 = 4r √ p (r+1) 2 .
Using (3.6) and (3.7), there holds

I 1 + a r+1 2 I 2 := R N u p-1 2 u q+1 φ 2 dx + a r+1 2 R N u p-1 2 v r+1 φ 2 dx ≤ 1 a 1 R N u q vφ 2 dx + a r 2 R N u p v r φ 2 dx + C R 2 B R k+1 u q+1 + v r+1 dx. (3.8) 
Fix now 2q = (p + 1)r + p -1, or equivalently q + 1 = (p + 1)(r + 1) 2 . (3.9) Now we are in position to complete the proof of Theorem 1.1. Let u be a smooth stable solution to (1.1), applying Corollary 3.2 and (2.1): For any 2 ≤ β < N N -2 s 0 , there exists C > 0 such that

B R v β dx 1 β ≤ CR N 2 ( 2 β -1)+ N 2 -2-4 p-1 , ∀ R > 0. Note that N 2 2 β -1 + N 2 -2 - 4 p -1 < 0 ⇔ N < 2(p + 1) p -1 β.
Considering the allowable range of β given in Corollary 3.2, if N < 2 + 2(p+1) p-1 s 0 , after sending R → ∞ we get then v L β (R N ) = 0, which is impossible since v is positive. To conclude, the equation (1.1) has no classical stable solution if N < 2 + 2x 0 where x 0 = p+1 p-1 s 0 . Moreover, by Lemma 2.4, x 0 > 5 for any p > 1, which means that if N ≤ 12, (1.1) has no classical stable solution for all p > 1.

Proof of Theorem 1.4

In this section, we consider the elliptic problem (P λ ). Let u λ be the minimal solution of (P λ ), it is well known that u λ is stable. To simplify the presentation, we erase the index λ. By [START_REF] Cowan | Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains[END_REF][START_REF] Dupaigne | Regularity of the extremal solution for the Liouville system, Geometric Partial Differential Equations[END_REF], there holds Here we do not need a cut-off function φ, because all boundary terms appearing in the integrations by parts vanish under the Navier boundary conditions, hence the calculations are even easier. We can use the Young's inequality as for Theorem 1.1, but we show here a proof inspired by [START_REF] Dupaigne | The Gel'fand problem for the biharmonic operator[END_REF].

Similarly as for (3.7), using ϕ = v .

7 )

 7 Here we used ζ + ∆ζ ≥ 0 in Σ and ζ = 0 on ∂Σ. Denote now S N -1 the unit sphere in R N and e(r) = S N -1 ∩(r -1 Σ) ζ 2 + (rσ)dσ for r > 0.

Using ϕ = u q+1 2 as

 2 test function in (3.2), by similar computation as for (3.5) in section 3

2 v(r + 1) 2 .

 22 r+1 dx ≤ Ω λ(u + 1) p v r dx, where a 2 = 4r √ p Take always 2q = (p + 1)r + p -1. Applying Hölder's inequality, there hold Ω 1) p v r dx ≤ Ω (u + 1)
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Proof. Let u be a classical stable solution of (1.1). Let φ ∈ C 2 0 (R N ) and ϕ = u q+1 2 φ with q ≥ 1. Take ϕ into the stability inequality (1.11), we obtain

Integrating by parts, we get

and (q + 1)

and similarly

Combining the above two inequalities and (3.8), we deduce then

1 (r + 1)

From (1.8) and (3.9), we get u q+1 ≤ Cv r+1 . Denote s = r + 1, we can conclude that if a 1 a 2 > 1,

On the other hand, a simple verification shows that

By Lemma 2.2, for s ∈ [2t 0 , s 0 ), there holds L(s) < 0. So the inequality (3.10), i.e. (3.1) holds true for any 2t 0 ≤ s < s 0 . On the other hand, by Lemma 4 of [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF], the estimate (3.1) is valid for 2 ≤ s < 2t 0 , hence for 2 ≤ s < s 0 .

We can follow then the iteration process in [START_REF] Cowan | Liouville theorems for stable Lane-Emden systems with biharmonic problems[END_REF] (see Proposition 1 or Corollary 2 there) to obtain this consequence: Corollary 3.2. Suppose u is a classical stable solution of (1.1). For all 2 ≤ β < N N -2 s 0 , there are ∈ N and C < ∞ such that

Multiplying (4.2) with (4.3), using (4.4) and (4.5), we get immediately (4. 6)

.

On the other hand, for any ε > 0 there exists C ε > 0 such that (u + 1)

If a 1 a 2 > 1, there exists ε 0 > 0 satisfying 1 + ε 0 < (a 1 a 2 ) r+1 . We deduce from (4.6) that

Therefore, when L(s) < 0, i.e. when a 1 a 2 > 1, there is C > 0 such that

As u * = lim λ→λ * u λ , we conclude, using Lemma 2.2,

(Ω), for all q satisifying 2(q + 1)

Furthermore, by [START_REF] Gazzola | Polyharmonic boundary value problems, Positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF], we know that u * ∈ H 2 (Ω). As u * ≥ 0 verifies ∆ 2 u * = λ * (u * + 1) p ≤ C(u * ) p-1 u * + C with u * = ∆u * = 0 on ∂Ω, by standard elliptic estimate, we know that u * is smooth if

Therefore, u * is smooth if N < 2+2x 0 . By Lemma 2.4, u * is smooth for any p > 1 if N ≤ 12.