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Revisit the biharmonic equation with negative exponent in lower dimensions

Introduction

Let B ⊂ R N (N ≥ 2) be the unit ball. We consider the biharmonic problem

(P λ )    ∆ 2 u = λ(1 -u) -p in B, 0 < u < 1 in B, u = ∂ ν u = 0 on ∂B,
where p, λ > 0, ν is the outward normal vector of ∂B. We say that u is a weak solution of (P λ ) if u ∈ H 2 0 (B), 0 ≤ u ≤ 1 a.e. in B, (1 -u) -p ∈ L 1 (B) and

B ∆u∆φdx = λ B φ (1 -u) p dx, ∀ φ ∈ L ∞ (B) ∩ H 2 0 (B).
A solution u of (P λ ) is said regular (resp. singular) if u ∞ < 1 (resp. u ∞ = 1). A solution is said stable if

B (∆φ) 2 - pλφ 2 (1 -u) p+1 dx > 0, ∀ φ ∈ H 2 0 (B) \ {0}.
In other words, the stability is equivalent to say that the operator L := ∆ 2 -pλ(1 -u) -p-1 is positive in H 2 0 (B).

The problem (P λ ) arises in the study of the deflection of charged plates in electrostatic actuators, see [START_REF] Pelesko | Modeling MEMS and NEMS[END_REF][START_REF] Lin | Nonlinear non-local elliptic equation modelling electrostatic actuation[END_REF][START_REF] Esposito | Mathematical analysis of partial differential equations modeling electrostatic MEMS[END_REF]. Recently, the so-called fourth order MEMS (micro-electromechanical systems) equation where T, D ≥ 0 and Ω is a bounded smooth domain in R N , has been studied by many authors, see for example [START_REF] Cowan | The critical dimension for a forth order elliptic problem with singular nonlineartiy[END_REF][START_REF] Cassani | On a fourth order elliptic problem with a singular nonlinearity[END_REF][START_REF] Esposito | Mathematical analysis of partial differential equations modeling electrostatic MEMS[END_REF][START_REF] Guo | On a fourth order nonlinear elliptic equation with negative exponent[END_REF][START_REF] Guo | Entire solutions and global bifurcations for a biharmonic equation with singular nonlinearity in R 3[END_REF][START_REF] Lin | Nonlinear non-local elliptic equation modelling electrostatic actuation[END_REF][START_REF] Moradifam | On the critical dimension of a fourth order elliptic problem with negative exponent[END_REF] and the references therein.

Take T = 0, up to changing the value of λ, we can assume D = 1. For p, λ > 0, changing H 2 0 by H 1 0 ∩ H 2 , we consider also weak solutions to the following equation:

(Q λ )    ∆ 2 u = λ(1 -u) -p in Ω, 0 < u < 1 in Ω, u = ∆u = 0 on ∂Ω.
For any bounded smooth domain Ω ⊂ R N , there exists 0 < λ c (Ω, p) < ∞ such that for λ ∈ (0, λ c ), (Q λ ) admits a minimal regular solution which is the unique stable solution, and it does not admit any weak solution for λ > λ c . It is well known that the minimal solution u λ is increasing with λ, and u c = lim λ→λc u λ is always a weak solution of the limiting problem (Q λc ). The regularity of u c has been studied by many authors and its issue depends on the domain Ω and the dimension N . For example, the critical dimension is determined when Ω = B and p = 2, see [START_REF] Moradifam | On the critical dimension of a fourth order elliptic problem with negative exponent[END_REF].

Unlike to the Navier boundary problem (Q λ ), the existence of solution under the Dirichlet boundary conditions heavily depends on the fact Ω = B. Indeed, the maximum principle which plays a crucial role in the analysis does not hold for general smooth domains Ω under the Dirichlet boundary conditions, but only on some special domains, as the balls, see [START_REF] Boggio | Sulle funzioni di Green d'ordine m[END_REF][START_REF] Gazzola | Polyharmonic boundary value problems, Positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF]. Since the maximum principle is valid on the ball, all the above qualitative properties for (Q λ ) as the existence of a critical value λ c , the existence of minimal solutions u λ for 0 < λ < λ c , the uniqueness of stable solution, or the nonexistence of weak solution when λ > λ c hold true for (P λ ). The critical dimension for the regularity of the extremal solution u c is also determined for (P λ ) when p = 2, see [START_REF] Cowan | The critical dimension for a forth order elliptic problem with singular nonlineartiy[END_REF].

The main purpose of the present paper is to study the structure of solutions to (P λ ) (also to (Q λ )) in dimensions two and three. In fact, the problems with N = 2, 3 are the most important cases in the applications of MEMS model.

The structure of solutions of (Q λ ) on general smooth domains in R 2 has been already studied in [START_REF] Guo | On a fourth order nonlinear elliptic equation with negative exponent[END_REF][START_REF] Guo | Further study of a fourth order elliptic equation with negative exponent[END_REF] with p > 1. They showed that for 0 < λ < λ c , (Q λ ) admits at least two regular solutions: the minimal solution u λ and a mountain-pass solution; while for λ = λ c , (Q λ ) admits a unique regular solution u c .

In contrast, the existence of the unstable solution is not true generally in higher dimensions. For N ≥ 5, any p > 0 and any convex domain Ω, it is proved recently in [START_REF] Khenissy | Nonexistence and uniqueness for biharmonic problems with supercritical growth and domain geometry[END_REF] that for λ > 0 small, we have only the minimal solution for (Q λ ). For (P λ ), the arguments of [START_REF] Khenissy | Nonexistence and uniqueness for biharmonic problems with supercritical growth and domain geometry[END_REF] work still (see also [START_REF] Cowan | Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter[END_REF]), we get again the uniqueness of solution for λ > 0 small if N ≥ 5 and p > 0.

We will consider here (P λ ) in dimension 2 or 3, and prove some similar results as for (Q λ ) in [START_REF] Guo | On a fourth order nonlinear elliptic equation with negative exponent[END_REF][START_REF] Guo | Further study of a fourth order elliptic equation with negative exponent[END_REF]. However, instead of the complex blow up analysis in [START_REF] Guo | On a fourth order nonlinear elliptic equation with negative exponent[END_REF][START_REF] Guo | Further study of a fourth order elliptic equation with negative exponent[END_REF] or the phase plane analysis in [START_REF] Dávila | Multiplicity of solutions for a fourth order equation with power-type nonlinearity[END_REF], we use the basic regularity theory in lower dimensions, which enable us simpler considerations. Moreover, we show the asymptotic behavior of the radial mountain pass solutions of (P λ ) and (Q λ ) when λ goes to zero.

The main results of this paper are the following:

Theorem 1.1. Let N = 2, p > 1 or N = 3, p > 3.
For any 0 < λ < λ c , the problem (P λ ) admits two solutions: the minimal solution u λ and a mountainpass solution u λ . For λ = λ c , problem (P λ ) admits a unique solution u c and for λ > λ c , problem (P λ ) admits no weak solution.

Theorem 1.2. Let u λ be the mountain-pass solution obtained in Theorem 1.1. Then

(1.2) lim λ→0 B λ (1 -u λ ) p dx = 1 G 0 (0) and (1.3) u λ → G 0 G 0 (0) in C(B) as λ → 0
where G 0 is the Green function:

∆ 2 G 0 = δ 0 in B, G 0 = ∂ ν G 0 = 0 on ∂B.
Similarly, we have Theorem 1.3. Let N = 2, p > 1 or N = 3, p > 3; and let Ω be a smooth bounded domain. For 0 < λ < λ c , the problem (Q λ ) admits a minimal solution u λ but also a unstable solution u λ . For λ = λ c , problem (Q λ ) admits a unique solution u c and for λ > λ c , problem

(Q λ ) admits no weak solution. Moreover, if Ω = B, u λ tends to G 1 /G 1 (0) in C(B) as λ → 0, where G 1 satisfies ∆ 2 G 1 = δ 0 in B and G 1 = ∆G 1 = 0 on ∂B.
The results in dimension 3 are new and somehow unexpected. It is interesting to compare with results in [START_REF] Guo | Entire solutions and global bifurcations for a biharmonic equation with singular nonlinearity in R 3[END_REF][START_REF] Dávila | Multiplicity of solutions for a fourth order equation with power-type nonlinearity[END_REF]. For Ω = B ⊂ R 3 , when p = 2, the solutions of (Q λ ) presents an infinite fold points structure (see [START_REF] Guo | Entire solutions and global bifurcations for a biharmonic equation with singular nonlinearity in R 3[END_REF]), and there is a unique solution for λ > 0 small. The same result holds for (P λ ) (see [START_REF] Dávila | Multiplicity of solutions for a fourth order equation with power-type nonlinearity[END_REF]) with

1.108 ∼ 5 -13 -3 √ 17 3 + 13 -3 √ 17 < p < 5 + 13 -3 √ 17 3 -13 -3 √ 17 ∼ 2.626.
Our results mean that different situations can occur in R 3 when p > 3.

However, it is not a real surprise, a rough argument is the following. For p > 1, near the singularity x = 0, a singular solution to ∆ 2 u = (1 -u) -p looks like formally W (x) = 1 -K|x| m with m = 4 p+1 and K > 0, see for instance Theorem 6 in [START_REF] Ferrero | On solutions of second and fourth order elliptic equations with power-type nonlinearities[END_REF]. We have ∆ 2 W = -KQ(m)|x| -pm in R N , where

Q(β) = β(β -2)(N -2 + β)(N -4 + β).
Therefore, the function W satisfies ∆ 2 u = (1 -u) -p if and only if Q(m) < 0 and -KQ(m) = 1. For p > 1, there holds

Q(m) < 0 if and only if N ≥ 4 or N = 3, 1 < p < 3.
This suggests that when N = 2, p > 1 or N = 3, p ≥ 3, the singular solution should not exist, hence the following regularity property.

Lemma 1.4. When N = 2, p > 1 or N = 3 and p > 3. Any weak solution of (P λ ) or any weak solution of (Q λ ) is regular.

Remark 1.5. Using the results in [START_REF] Berchio | Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems[END_REF][START_REF] Troy | Symmetry properties in systems of semilinear elliptic equations[END_REF] or [START_REF] Gazzola | Polyharmonic boundary value problems, Positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF], we know that any regular solution of (P λ ) is a radial function, and it is the same for (Q λ ) if Ω = B. We mention also that for unstable solutions u to (P λ ) with p = 2 verifying u ∞ → 1, some asymptotic expansions were showed in [START_REF] Lindsay | Asymptotics of some nonlinear eigenvalue problems modelling a MEMS capacitor. Part II: multiple solutions and singular asymptotics[END_REF].

Regularity of solutions

We will prove Lemma 1.4 only for (P λ ), since the study is local, the case (Q λ ) is completely similar. For a weak solution of (P λ ), ∆ 2 u ∈ L 1 (B) by definition, the standard regularity theory gives then

u W 3,q (B) ≤ C q λ(1 -u) -p 1 , ∀ 1 ≤ q < N N -1 .
In this paper, • q denotes always the standard L q norm. By Sobolev embedding, if N = 2, u ∈ C 1,α (B) for all α ∈ (0, 1). Suppose that u ∞ = 1 is realized by x 0 ∈ B (indeed, we should have x 0 = 0 by Boggio's maximum principle), as ∇u(x 0 ) = 0, we get

|u(x) -u(x 0 )| ≤ C α |x -x 0 | 1+α , hence 1 -u(x) ≤ C α |x -x 0 | 1+α (2.1)
for any α ∈ (0, 1). When p > 1, choosing α such that p(1 + α) ≥ 2, we have a contradiction with (1 -u) -p ∈ L 1 (B). So u ∞ < 1.

For N = 3, we get u ∈ C 0,α (B) for any α ∈ (0, 1) by Sobolev embedding. If p > 3, we reach again a contradiction with (1 -u) -p ∈ L 1 by choosing pα ≥ 3.

Existence of the mountain pass solution

Here we prove Theorem 1.1. Seeing well-known results on (P λ ), we need only to show the existence of mountain pass solutions to (P λ ) for λ ∈ (0, λ c ). The framework is similar to [START_REF] Guo | On a fourth order nonlinear elliptic equation with negative exponent[END_REF][START_REF] Guo | Further study of a fourth order elliptic equation with negative exponent[END_REF]. Since the nonlinearity g(s) := (1 -s) -p is singular at s = 1, we make a C 1 -regularization of g. Let 0 < < 1, define

(3.1) g (s) = (1 -s) -p , s ≤ 1 -, -p -p 2 -(p+1) (1 -) + p -(p+1)
2(1-) s 2 , s > 1 -.

Consider now the regularized elliptic problem

(3.2) ∆ 2 u = λg (u), in B, u = ∂ ν u = 0, on ∂B.
Denote H be the closed subspace in H 2 0 (B) of radial functions, endowed with the norm u H = ∆u 2 . Let

J ,λ (u) = 1 2 B (∆u) 2 dx -λ B G (u)dx, u ∈ H
where

G (u) = u -∞ g (s)ds.
Let u λ be the minimal solution to (P λ ). By Lemma 1.4, the extremal solution u c = lim λ→λc u λ is regular.

Fix now 0 < < 1-uc ∞ 2
. For λ ∈ (0, λ c ), as u λ ∞ ≤ u c ∞ , u λ is still a minimal and stable solution of (3.2), so it is a local minimizer of J ,λ (u). The subcritical growth 0 ≤ g (u) ≤ C (1 + |u| 2 ) and the inequality

(3.3) 3G (u) ≤ ug (u), ∀ u ≥ 3 p + 2 , < 1 3 ; 
yield that J ,λ satisfies the Palais-Smale condition for > 0 small. Using the well-known mountain pass lemma, we obtain a mountain pass solution u λ ∈ H for (3.2). Boggio's maximum principle implies that u λ > 0 in B as g is positive, and u λ is decreasing w.r.t. r.

Furthermore, using (3.3), similarly to the proof of Theorem 7.1 in [START_REF] Guo | On a fourth order nonlinear elliptic equation with negative exponent[END_REF], there is C > 0 independent of < 1 2 and λ ∈ (0, λ c ) such that u λ H ≤ C. By equation,

B u λ g (u λ )dx = 1 λ B (∆u λ ) 2 dx ≤ C λ := C λ . Consequently, for < 1 2 , B g (u λ )dx = {2u λ ≤1} g (u λ )dx + {2u λ ≥1} g (u λ )dx ≤ {2u λ ≤1} 2 p dx + 2 {2u λ ≥1} u λ g (u λ )dx ≤ 2 p |B| + 2C λ . (3.4) 
Now fix λ ∈ (0, λ c ), we claim that

u λ ∞ ≤ 1 - for > 0 small. (3.5)
Thus the mountain-pass solution u λ is actually a solution of (P λ ), so the proof is finished.

Suppose the contrary of (3.5), there exists a sequence

u k := u λ k verifying k → 0 and u k ∞ ≥ 1 -k . Notice that ∆ 2 u k = λg k (u k ) is uniformly bounded in L 1 (B)
. By regularity theory and Sobolev embedding as in the proof of Lemma 1.4, up to a subsequence (still denoted by u k ), u k converges to w in C 1,α (B) for any α ∈ (0, 1) if N = 2. Then w ∞ ≥ 1.

On the other hand, it is easy to see that as tends to 0, g converges increasingly to g, defined by

g(s) = (1 -s) -p if s < 1 and g(s) = ∞ if s ≥ 1.
Fatou's lemma implies then g(w) ∈ L 1 (B), which means max B w ≤ 1, hence max B w = 1. Using (2.1) to w with p > 1, we get g(w) ∈ L 1 (B), which is contradictory. So our claim is proved if N = 2, p > 1. Of course, the result for N = 3, p > 3 can be proved in the same way.

Remark 3.1. The existence of mountain pass solutions for (Q λ ) under the condition of Theorem 1.3 can be proved exactly in the same way, by changing H to H 1 0 (Ω) ∩ H 2 (Ω). So we omit it.

4. Asymptotic behavior of u λ as λ → 0 +

In this section we study the asymptotic behavior of the mountain-pass solution u λ obtained in Theorem 1.1 when λ → 0 and prove Theorem 1.2.

As the mountain pass solution is unstable, there holds pλ (1-u λ ) -p-1 ∞ > λ 1 , the first eigenvalue of ∆ 2 . Hence lim λ→0 u λ (0) = 1. By the previous section, there exists C > 0 independent of λ ∈ (0, λ c ) such that

B λ (1 -u λ ) p dx + u λ H ≤ C.
For N = 2 or 3, using regularity theory and Sobolev embedding, we get

1 ←-u λ ∞ ≤ C ∆ 2 u λ 1 . (4.1) As ∆ 2 u λ = λ(1 -u λ ) -p , we get lim inf λ→0 B λ (1 -u λ ) p dx > 0.
We claim the following asymptotic behavior. Lemma 4.1. Assume that lim k→∞ λ k (1 -u λ k ) -p 1 = µ > 0 with λ k → 0. There holds µ = G 0 (0) -1 and

lim k→∞ λ k [1 -u λ k (r)] p = 0, ∀ r > 0. (4.2)
Suppose (4.2) is valid, we will prove that u λ converges to w 0 . Indeed, using regularity theory and Sobolev embedding, we know that up to a subsequence, u λ k converges to f 0 in C(B) and weakly in H. Lemma 4.1 means just the λ k (1 -u λ k ) -p tends to µδ 0 in the distribution sense, since the convergence in (4.2) is uniform in any compact set of B \ {0}, by the monotonicity of u λ w.r.t. r. This implies just f 0 = µG 0 . As f 0 (0) = max B f 0 = lim k→∞ max B u k = 1, we get µG 0 (0) = 1. The uniqueness of the limit means that it works firstly for the whole sequence u λ k , then it works also for the whole family u λ , hence Theorem 1.2 holds true.

It remains to prove Lemma 4.1. As above, we consider only for N = 2. From the equation, it is clear that v k := ∆u λ k is increasing w.r.t. r. For simplicity, we denote u

k = u λ k . As B v k dx = B ∆u k dx = ∂B ∂ ν u k dσ = 0, v k changes just once the sign. Let v k (r k ) = 0.
Suppose first r k → 0. If (4.2) is not true for some r > 0, by equation ∆v k = ∆ 2 u k and monotonicity of u λ w.r.t. r,

v k (s) = 1 s s 0 λ k t [1 -u k (t)] p dt ≥ λ k s 2 [1 -u k (r)] p ≥ Cs, ∀ s ∈ (0, r). (4.3) Therefore, if r > s > r k (r > r k for large k), ∆u k (s) = v k (s) = v k (s) -v k (r k ) ≥ C(s 2 -r 2 k ) 2 .
Integrating the above estimate and using again the monotonicity of u k , there is C > 0 verifying that for any t ∈ r 4 , r 2 and large k,

tu k (t) ≤ ru k (r) - C 2 r t s(s 2 -r 2 k )ds ≤ - C 2 r t s(s 2 -r 2 k )ds ≤ -C
where C > 0 depends on r, but is independent on large k. Therefore, we obtain

1 -u k (r) ≥ 1 -u k r 2 ≥ u k r 4 -u k r 2 ≥ C ln 2 > 0.
This means that λ k [1 -u k (r)] -p tends to zero, which is a contradiction with the choice of r.

If now r k does not tend to 0, up to a subsequence, we can suppose r k ≥ r 0 > 0. Suppose again there exists r ∈ (0, r 0 ) which does not verify (4.2), we have (4.3) as above. Then there exists C > 0 independent on k large such that

v k r 2 = v k (r) - r r 2 v k (s)ds ≤ -C < 0.
Here we used v k (r) < v k (r k ) = 0. By the monotonicity of v k , we have ∆u k (s) = v k (s) ≤ -C for s ≤ r 2 . Consequently,

1 -u k (r) ≥ u k (0) -u k r 2 ≥ Cr 2 8 .
Again we get a contradiction with (4.2). The proof of Lemma 4.1 is completed, so is Theorem 1.2.

The proof of the convergence in Theorem 1.3 can be done exactly as for the above second case, since we have -∆u λ > 0 in B by the maximum principle, hence r k = 1. We leave the details for interested readers.

(1. 1 )

 1 -T ∆u + D∆ 2 u = λ(1 -u) -2 , 0 < u < 1 in Ω with clamped boundary condition (also called Dirichlet boundary condition): u = ∂ ν u = 0 on ∂Ω and pinned boundary condition (also called Navier boundary condition): u = ∆u = 0 on ∂Ω,
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