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We prove some Liouville type results for stable solutions to the biharmonic problem ∆ 2 u = u q , u > 0 in R n where 1 < q < ∞. For example, for n ≥ 5, we show that there are no stable classical solution in R n when n+4 n-4 < q ≤ n-8 n -1

+ .

Introduction

Consider classical solutions to the following biharmonic equation

(1.1) ∆ 2 u = u q , u > 0 in R n
where n ≥ 5 and q > 1. Define

(1.2) Λ u (φ) := R n |∆φ| 2 dx -q R n u q-1 φ 2 dx, ∀ φ ∈ H 2 (R n ).
The Morse index of a classical solution to (1.1), ind(u) is defined as the maximal dimension of all subspaces of E R n := H 2 (R n ) such that Λ u (φ) < 0 in E R n \ {0}. Similarly, we consider also classical solutions ∆ 2 u = u q on a proper domain Ω = R n with the Navier boundary conditions, and define its Morse index with Λ u,Ω (φ) := Ω |∆φ| 2 dx -q Ω u q-1 φ 2 dx, ∀ φ ∈ E Ω := H 2 (Ω) ∩ H 1 0 (Ω). (1.3) A solution u is said stable if Λ u (φ) ≥ 0 for any test function φ ∈ E Ω . Clearly, u is stable if and only if its Morse index is equal to zero.

In this paper, we prove the following classification results. Theorem 1.1. Let n ≥ 5.

(i) For n ≤ 8 and any 1 < q < ∞, the equation (1.1) has no stable solution.

(ii) For n ≥ 9, there exists n > 0 such that for any 1 < q < n n-8 + n , the equation (1.1) has no stable solution.

In the second order case, the finite Morse index solutions to the corresponding nonlinear problem (1.4) ∆u + |u| q-1 u = 0 in R n , q > 1 have been completely classified by Farina [START_REF] Farina | On the classification of solutions of the Lane-Emden equaation on unbouned domains of R N[END_REF]. One main result of [START_REF] Farina | On the classification of solutions of the Lane-Emden equaation on unbouned domains of R N[END_REF] is that nontrivial finite Morse index solutions to (1.4) exist if and only if q ≥ p JL and n ≥ 11, or q = n+2 n-2 and n ≥ 3. Here p JL is the so-called Joseph-Lundgren exponent, see [START_REF] Gui | On the stability and instability of positive steady states of a semilinear heat equation in R n[END_REF].

In the fourth order case, the nonexistence of positive solutions to (1.1) are showed if q < n+4 n-4 , and all entire solutions are classified if q = n+4 n-4 , see [START_REF] Lin | A classification of solutions to a conformally invariant equation in R 4[END_REF][START_REF] Wei | Classification of solutions of high order conformally invariant equations[END_REF]. More precisely, when q = n+4 n-4 and n ≥ 5, any classical solution to (1.1) is in the form

u(x) = c n λ n-4 2 (1 + λ 2 |x -x 0 | 2 ) n-4 2 , with x 0 ∈ R n , λ > 0.
It was proved by Rozenblum (see [START_REF] Levin | On an analogue of the Rozenblum-Lieb-Cwikel inequality for the biharmonic operator on a Riemannian manifold[END_REF][START_REF] Rozenblum | The distribution of the discrete spectrum for singular differential operators[END_REF]) that when n ≥ 5, the number of negative eigenvalues with multiplicity for the operator (∆ 2 -V ) is bounded by

C n R n |V (x)| n 4 dx.
Using this, it is easy to check that u is a finite Morse index solution of (1.1) with the critical exponent.

So our results concern essentially the supercritical case, n ≥ 5 and q > n+4 n-4 . As far as we know, there are no results on the classification of entire solutions to (1.1) with finite Morse index and supercritical exponent q. Therefore Theorem 1.1 is a first step towards the understanding of stable solutions of fourth order problems. We note that only recently the radially symmetric solutions to (1.1) are studied in [START_REF] Ferrero | Supercritical biharmonic equations with power-like nonlinearity[END_REF][START_REF] Gazzola | Radial entire solutions for supercritical biharmonic equations[END_REF][START_REF] Guo | Qualitative properties of entire radial solutions for a biharmonic equation with supcritical nonlinearity[END_REF]. The radial entire solutions are shown to have the layer structure if and only if q ≥ p 4 JL and n ≥ 13 where p 4 JL stands for the corresponding Joseph-Lundgren exponent to ∆ 2 (see [START_REF] Ferrero | Supercritical biharmonic equations with power-like nonlinearity[END_REF][START_REF] Gazzola | Radial entire solutions for supercritical biharmonic equations[END_REF]). Theorem 1.1 classifies stable solutions to (1.1) in dimensions n ≤ 8 and shows the nonexistence of stable solution for some special cases with n ≥ 9. There is still a big gap to fill in towards a complete classification.

Our proof borrows crucially an idea from Cowan-Esposito-Ghoussoub [START_REF] Cowan | Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains[END_REF], who proved the regularity of extremal solutions for fourth order problems in bounded domains. They made a key observation by using a nice result of Souplet [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF]. Here we also rely crucially on some results of Souplet [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF]. The key argument is to use two different test functions: the first one is u itself, and the other one is v = -∆u. We believe that further exploration of this idea may help to give the complete classification of stable solutions to (1.1).

At the end, we show some classification results on the half space or compactness results for stable solutions to ∆ 2 u = λ(u + 1) p on bounded domain (see section 3).
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Proof of Theorem 1.1

We organize our proof into three steps.

• Step 1. Non existence of stable solution with 1 < q < n-8 n -1

+ . • Step 2.
Non existence of stable solution with q = n n-8 for n ≥ 9. • Step 3. Non existence of stable solution with q slightly larger than n n-8 with n ≥ 9.

2.1.

Step 1. According to Theorem 3.1 of [START_REF] Wei | Classification of solutions of high order conformally invariant equations[END_REF], v := -∆u > 0 in R n since q > 1. Rewrite then (1.1) as a system

(2.1) ∆u + v = 0, ∆v + u q = 0, u > 0, v > 0 in R n .
We recall several crucial estimates. First, following the idea in [START_REF] Polácik | Singularity and decay estimates in superlinear problems via Liouvilletype theorems[END_REF][START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF], we have Lemma 2.1. If there exists a stable positive solution to (1.1) or (2.1), there exists a bounded stable positive solution u to (1.1) such that v = -∆u is also bounded in R n .

We can prove this lemma by contradiction and proceed exactly as for Theorem 4.3 in [START_REF] Polácik | Singularity and decay estimates in superlinear problems via Liouvilletype theorems[END_REF] (see also Remark 1.1 in [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF]). Indeed, if no bounded stable positive solution exists for (2.1), we have the estimate u(x) ≤ C n,q d(x, ∂Ω) -α for any stable solution ∆ 2 u = u q in Ω = R n , here α = 4 q-1 and C n,q depends only on n and q > 1. Therefore no stable entire solution to (1.1) could exist in R n , which contradicts the hypothesis.

The main reason for the estimate u(x) ≤ C n,q d(x, ∂Ω) -α comes from the following fact: The scaling argument used in [START_REF] Polácik | Singularity and decay estimates in superlinear problems via Liouvilletype theorems[END_REF] does not affect the stability of solutions. Let

u λ (x) := λ α u(λx+x 0 ) with λ > 0, x 0 ∈ Ω, there hold ∆ 2 u λ = u q λ in Ω λ and Λ u λ ,Ω λ (φ) = λ 4-n Λ u,Ω (ψ) where Ω λ = Ω -x 0 λ , ψ(y) = φ y -x 0 λ .
Let α = 4 q-1 . By Lemma 2.4 of [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF], for any solution of (2.1), there exists C > 0 such that

(2.2) B R udx ≤ CR n-α , B R u q dx ≤ CR n-qα , ∀ R > 0.
Here and in the following, B R stands for the ball of radius R centered at the origin. Another important estimate is the following comparison between u and v (see Lemma 2.7 in [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF]):

(2.3) As u is bounded, v 2 ≥ 2 q + 1 u q+1 in R n .
We need also the following identities:

Lemma 2.2. For any ξ, η ∈ C 4 (R n ), we have ∆ξ∆(ξη 2 ) -[∆(ξη)] 2 = -4(∇ξ • ∇η) 2 -ξ 2 (∆η) 2 + 2ξ∆ξ|∇η| 2 -4ξ∆η∇ξ • ∇η. and Lemma 2.3. For any ξ ∈ C 4 (R n ) and η ∈ C ∞ 0 (R n ), there hold R n (∆ 2 ξ)ξη 2 dx = R n [∆(ξη)] 2 dx + R n -4(∇ξ • ∇η) 2 + 2ξ∆ξ|∇η| 2 dx + R n ξ 2 2∇(∆η) • ∇η + (∆η) 2 dx, (2.4) 
(2.5)

R n |∇ξ| 2 |∇η| 2 dx = R n ξ(-∆ξ)|∇η| 2 + 1 2 ξ 2 ∆(|∇η| 2 ) dx.
Proof. The proof of Lemma 2.2 is done by direct verification. The equality (2.5) follows from

1 2 ∆(ξ 2 ) = ξ∆ξ + |∇ξ| 2 .
On the other hand, a simple integration by parts yields 2

R n ξ∇ξ • ∇η∆ηdx = - R n ξ 2 div (∆η∇η) dx = - R n ξ 2 (∆η) 2 + ∇η • ∇(∆η) dx.
(2.6)

By Lemma 2.2, R n (∆ 2 ξ)ξη 2 dx = R n ∆ξ∆ ξη 2 dx = R n [∆(ξη)] 2 dx -4 R n (∇ξ • ∇η) 2 dx - R n ξ 2 (∆η) 2 + 2ξ∆ξ|∇η| 2 dx -4 R n ξ∇ξ • ∇η∆ηdx
The equality (2.4) is straightforward using (2.6).

From (2.4) and (1.1), for any η ∈ C ∞ 0 (R n ), there holds

R n [∆(uη)] 2 dx - R n u q-1 (uη) 2 dx = 4 R n (∇u∇η) 2 dx -2 R n u∆u|∇η| 2 dx - R n u 2 2∇(∆η) • ∇η + (∆η) 2 dx.
In the following, we denote C, C as various generic positive constants which are independent on u, they could be changed from one line to another. Using stability condition Λ u (φ) ≥ 0 with φ = uη, we obtain the following estimate.

R n (∆(uη)) 2 + u q+1 η 2 dx ≤ C R n |∇u| 2 |∇η| 2 + u|∆u||∇η| 2 + u 2 |∇ (∆η) • ∇η| + u 2 (∆η) 2 dx.
(2.7)

Moreover, as

∆(uη) = -vη + 2∇u • ∇η + u∆η, by (2.7) and Young's inequality (recalling that v = -∆u > 0 in R n ), R n v 2 η 2 + u q+1 η 2 dx ≤ C R n uv|∇η| 2 + |∇u| 2 |∇η| 2 + u 2 |∇ (∆η) • ∇η| + u 2 (∆η) 2 dx.
Applying (2.5) with ξ = u, we obtain

R n (v 2 η 2 + u q+1 η 2 dx ≤ C R n uv|∇η| 2 dx + C R n u 2 |∇(∆η) • ∇η| + ∆ |∇η| 2 + (∆η) 2 dx.
(2.8)

Take η = ϕ m with m > 2, it follows that R n uv|∇η| 2 dx = m 2 R n uvϕ 2(m-1) |∇ϕ| 2 dx ≤ 1 2C R n (vϕ m ) 2 dx + C R n u 2 ϕ 2(m-2) |∇ϕ| 4 dx.
Now let us choose ϕ 1 a cut-off function verifying 0 ≤ ϕ 1 ≤ 1, ϕ 1 = 1 for |x| < 1 and ϕ 1 = 0 for |x| > 2. Substituting the above inequality into (2.8) with ϕ = ϕ 1 (x/R) for R > 0 and η = ϕ m , we arrive at (2.9)

R n (vϕ m ) 2 dx + R n u q+1 ϕ 2m dx ≤ CR -4 R n u 2 ϕ 2(m-2) dx.
We claim:

(2.10)

B R u 2 dx ≤ CR n-2α , ∀ R > 0.
When q > 2, the above estimate follows from Hölder's inequality using (2.2) while for q = 2, it is just the second estimate in (2.2). If q ∈ (1, 2), fix m > 2 q-1 , by Hölder's inequality and (2.9), we obtain

R n u 2 ϕ 2(m-2) dx ≤ R n u q ϕ 2m-4 q-1 dx q-1 R n u q+1 ϕ 2m dx 2-q ≤ C B 2R u q dx q-1 R -4 R n u 2 ϕ 2(m-2) dx 2-q , hence R n u 2 ϕ 2(m-2) dx ≤ CR - 4(2-q) q-1 B 2R u q dx.
Using (2.2), there holds

B R u 2 dx ≤ R n u 2 ϕ 2(m-2) dx ≤ CR - 4(2-q) q-1 B 2R u q dx ≤ C R n-qα R - 4(2-q) q-1 = C R n-2α ,
so the claim (2.10) is proved. Combining (2.9) and (2.10),

(2.11)

R n v 2 + u q+1 ϕ 2m dx ≤ CR n-4-2α .
Next we make use of the stability condition again, but this time with the test function φ = vη. By equations (2.1), we have (2.12) ∆ 2 v = -∆(u q ) = qu q-1 v -q(q -1)u q-2 |∇u| 2 .

Multiplying (2.12) by vη 2 , similarly as for (2.7), by (2.4) and (2.5),

0 ≤ R n (∆(vη)) 2 -qu q-1 (vη) 2 dx ≤ -q(q -1) R n u q-2 |∇u| 2 vη 2 dx + C R n v|∆v||∇η| 2 dx + C R n v 2 |∇(∆η) • ∇η| + ∆ |∇η| 2 + |∆η| 2 dx ≤ -q(q -1) R n u q-2 |∇u| 2 vη 2 dx + C R n vu q |∇η| 2 dx + C R n v 2 |∇(∆η) • ∇η| + ∆ |∇η| 2 + |∆η| 2 dx. Hence R n u q-2 |∇u| 2 vη 2 dx ≤ C R n vu q |∇η| 2 dx + C R n v 2 |∇(∆η) • ∇η| + ∆ |∇η| 2 + |∆η| 2 dx.
(2.13) Furthermore, for any C 1 function H, integration by parts yields

(2.14) R n H(u)(-∆u)η 2 dx = R n H (u)|∇u| 2 η 2 dx + R n H(u)∇u • ∇(η 2 )dx.
Following an idea of Cowan-Esposito-Ghoussoub [START_REF] Cowan | Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains[END_REF], set

H(u) = u 3q-1 2 , then R n u 3q-1 2 vη 2 dx ≤ C R n u 3q-3 2 |∇u| 2 η 2 dx + C R n u 3q+1 2 ∆(η 2 ) dx.
Recall that v ≥ Cu q+1 2 , we conclude, using (2.13) and (2.14),

R n u 2q η 2 dx ≤ C R n u 3q-1 2 vη 2 dx ≤ C R n u 3q-3 2 |∇u| 2 η 2 dx + C R n u 3q+1 2 ∆(η 2 ) dx ≤ C R n u q-2 |∇u| 2 vη 2 dx + C R n vu q ∆(η 2 ) dx ≤ C R n vu q |∇η| 2 + ∆(η 2 ) dx + C R n v 2 |∇(∆η) • ∇η| + ∆ |∇η| 2 + |∆η| 2 dx.
(2.15)

As before, let η = ϕ m with large m and ϕ = ϕ 1 (x/R) for R > 0. Similarly to the derivation of inequality (2.9), we get from (2.15) and (2.11), (2.16) (2.16). This proves the nonexistence of stable solution to (1.1) for 1 < q < n-8 n -1

R n (u q ϕ m ) 2 dx ≤ CR -4 B 2R \B R v 2 dx ≤ CR n-8-2α . If 1 < q < n-8 n -1 + , n -8 -2α < 0. So when u is stable, letting R → ∞, we deduce u ≡ 0 in R n by
+ . 2.2.
Step 2. Here we show the nonexistence of stable solutions with q = n n-8 for n ≥ 9. Our proof is based on the nonexistence of fast decay solutions with supercritical exponent. Proposition 2.4. Let n ≥ 5, q > n+4 n-4 and α = 4 q-1 . Then the system (2.1) has no classical solution verifying

u(x) = o |x| -α , v(x) = o |x| -2-α as |x| → ∞. (2.17)
Proof. Suppose that such a solution u exists. Let w be the Emden-Fowler transformation of u, i.e. w(t, σ) = r α u(rσ) for any t = ln r ∈ R, and σ ∈ S n-1 the standard unit sphere of R n . Direct calculation yields

r 2+α ∆u = w tt + (n -2 -2α)w t -α(n -2 -α)w + ∆ S n-1 w
where ∆ S n-1 denotes the Laplace-Beltrami operator on S n-1 . Applying again this formula,

w q = r 4+α u q = r 4+α ∆ 2 u = w tttt + K 3 w ttt + K 2 w tt + K 1 w t + K 0 w + ∆ 2 S n-1 w + 2∆ S n-1 w tt + K 5 ∆ S n-1 w t + K 6 ∆ S n-1 w (2.18)
where K i are constants depending on α and n, for example

K 5 = K 3 = (2n -8 -4α), K 6 = -(α + 2)(n -4 -α) + α(n -2 -α) .
In particular, we have (see [START_REF] Gazzola | Radial entire solutions for supercritical biharmonic equations[END_REF] for K i , 0 ≤ i ≤ 4)

K 1 < 0, K 3 = K 5 > 0, ∀ n ≥ 5, q > n + 4 n -4 . (2.19) Set E(w) = S n-1 w q+1 q + 1 - K 0 2 w 2 - K 2 2 w 2 t -K 3 w tt w t + w 2 tt 2 -w ttt w t dσ + S n-1 K 6 2 |∇ S n-1 w| 2 + |∇ S n-1 w t | 2 - 1 2 |∆ S n-1 w| 2 dσ.
Multiplying the equation (2.18) with w t , we get from (2.19)

d dt E(w)(t) = S n-1 K 1 w 2 t -K 5 |∇ S n-1 w t | 2 -K 3 w 2 tt dσ ≤ 0.
By the decay conditions (2.17),

-∆u = v, -∆v = u q = o |x| -4-α as |x| → ∞.
The standard elliptic estimates imply then

lim |x|→+∞ |x| k+α |∇ k u(x)| = 0, for 1 ≤ k ≤ 4 so that lim t→∞ w(t, •) C 3 (S n-1 ) = 0. (2.20)
Therefore lim t→∞ E(w) = 0. We have also lim t→-∞ E(w) = 0 because u is regular at the origin. Finally we conclude

R S n-1 K 1 w 2 t -K 5 |∇ S n-1 w t | 2 -K 3 w 2 tt dσdt = 0.
So w t ≡ 0, hence w ≡ 0 as lim t→-∞ w = 0, but this contradicts the positivity of u.

Back to Theorem 1.1. Suppose that u is a stable solution of (1.1), we may assume again u is bounded, recall (2.11) and (2.16).

(2.21)

B R v 2 dx ≤ CR n-4-2α , B R u 2q dx ≤ CR n-8-2α , ∀ R > 0.
Applying now the Sobolev embedding of H 2 ,

v 2 L p * (B R ) ≤ C(n) ∆v 2 L 2 (B R ) + R -4 v 2 L 2 (B R )
, where p * = 2n n -4 .

Combining with (2.21), there exists C > 0 such that for any R > 0,

v 2 L p * (B R ) ≤ CR n-8-2α . (2.

22)

As q = n n-8 , we have n -8 -2α = 0. The above estimate means just

R n v 2n n-4 dx < ∞. (2.23)
Now we are ready to prove the fast decay of u and v. Instead to use the Harnack argument in [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF] (see [START_REF] Farina | On the classification of solutions of the Lane-Emden equaation on unbouned domains of R N[END_REF]), let us recall a special case of Theorem 4.4 in [START_REF] Han | Elliptic Partial Differential Equations[END_REF]: For any p ∈ [2, ∞), there exists (p) > 0 such that if ∆w + ρw = 0 in B 2 with ρ L n 2 (B 2 ) ≤ (p), we have (2.24)

w L p (B 1 ) ≤ C w L 2 (B 2 )
where the constant C depending only on p and n.

Let x 0 ∈ R n with |x 0 | > 4R 0 and R = |x 0 | 4 , consider the function w(y) = v(x 0 + Ry). Then w satisfies ∆w + ρw = 0 where ρ(y) = R 2 u q v (x 0 + Ry).

Some applications

As we have mentioned yet, the nonexistence result of entire stable solution yields immediately (with blow-up and scaling argument as in [START_REF] Polácik | Singularity and decay estimates in superlinear problems via Liouvilletype theorems[END_REF][START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF]) Corollary 3.1. Assume that Ω is a proper subdomain of R n and u is a classical, positive and stable solution of ∆ 2 u = u q in Ω where

1 < q < ∞ if n ≤ 8; or 1 < q < n n-8 + n if n ≥ 9 with n in Theorem 1.1. Then u(x) ≤ C n,q d(x, ∂Ω) -α , |∆u(x)| ≤ C n,q d(x, ∂Ω) -α-2 where α = 4 q -1 ,
the constant C depends only on q and n.

Consider now

(3.1)    ∆ 2 u = u q in R n + = R + × R n-1 , n ≥ 2 u > 0, -∆u > 0 in R n + u = -∆u = 0 on {0} × R n-1 .
The following result is due to Dancer (Theorem 2 in [START_REF] Dancer | Moving plane methods for systems on half spaces[END_REF], see also Theorem 10 in [START_REF] Sirakov | Existence results and a priori bounds for higher order elliptic equations and systems[END_REF]).

Lemma 3.2. Suppose that u is a classical solution of (3.1) such that u and -∆u are bounded in R n + , then

∂ x 1 u > 0 and -∂ x 1 ∆u > 0 in R n + .
Therefore, under the condition of this lemma, w(y

) = lim x 1 →∞ u(x 1 , y) exists for all y ∈ R n-1 ∆ 2 w = w p in R n-1 . It is not difficult to see that if w is unstable, then ind(u) is infinite. Indeed, let ψ ∈ C ∞ 0 (R n-1 ) verify Λ w,R n-1 (ψ) < 0, we choose ζ ∈ C ∞ (R), supp(ζ) ⊂ [1, 2] and denote φ R (x) = ζ(x 1 /R)ψ( x) where x = (x 2 , . . . , x n ) and R > 0. Obviously φ R ∈ C ∞ 0 (R n )
. By the locally uniform convergence w.r.t. x of u to w when x 1 → ∞, we check readily that Λ u (φ R ) < 0 for R large enough, and similarly Λ u (φ R (x + µe 1 )) < 0 for any µ > 0. Therefore, taking a suitable sequence µ k → ∞ with R fixed, we observe easily that ind(u) = ∞. In other words, if ind(u) < ∞, then w must be stable. This enable us the following classification result. Theorem 3.3. Let u be a classical solution of (3.1) with n ≥ 2. Assume moreover u and -∆u are bounded. Then ind(u) = ∞, when q > 1 and n ≤ 9; or 1 < q < n-1 n-9 + n-1 and n ≥ 10. Here k > 0 are given by Theorem 1.1.

Finally, Consider the bounded domain situation with polynomial growth: (P λ ) ∆ 2 u = λ(u + 1) q in a bounded smooth domain Ω ⊂ R n , n ≥ 1 u = ∆u = 0 on ∂Ω.

It is well known by [START_REF] Berchio | Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities[END_REF][START_REF] Gazzola | Polyharmonic boundary value problems, Positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF] that there exists a critical value λ * > 0 depending on q > 1 and Ω such that

• If λ ∈ (0, λ * ), (P λ ) has a minimal and classical solution which is stable;

• If λ = λ * , u * = lim λ→λ * u λ is a weak solution to (P λ * ), u * is called the extremal solution.

• No solution of (P λ ) exists whenever λ > λ * .

In the same spirit of Corollary 3.1, we can prove Theorem 3.4. There exists n > 0 such that the extremal solution u * , the unique solution of (P λ * ) is bounded provided that n ≤ 8, q > 1 or n ≥ 9, 1 < q < n n -8

+ n .

Here we need just to consider stable minimal solutions u λ to (P λ ) since u * = lim λ→λ * u λ , so the conclusion comes from contradiction with (ii) of Theorem 1.1 or Theorem 3.3, whenever the blow up occurs, we omit the detail. The case 1 < q < n-8 n -1 + was proved in [START_REF] Cowan | Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains[END_REF] by different approach.

Using (2.3), 0 < ρ(y) ≤ CR 2 u q-1 2 (x 0 +Ry) ≤ C R 2 v q-1 q+1 (x 0 +Ry). As q = n n-8 , n 2+α = q-1 q+1 × n 2 = p * . Therefore, by (2.23)

From (2.24) and Hölder's inequality, we derive that for any p ≥ 2, as

(2.25) Using classical elliptic estimates (see Theorem 8.17 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]), there exists C > 0 such that

It is clear that q = 2nq q+1 ≥ 2 and

Substituting the above estimate into (2.26), applying (2.25) with p = 2, we conclude then

We get also u(x) = o (|x| -α ) at infinity by (2.3), hence the decay estimate (2.17) holds, we reach then a contradiction seeing Proposition 2.4.

2.3.

Step 3. Here we will prove that no stable solution exists for exponent q slightly higher than n n-8 if n ≥ 9. The main idea is a blow up argument.

Suppose that the claim (ii) of Theorem 1.1 does not hold, there exist then a sequence δ j > 0, δ j → 0 and a sequence of stable solutions u j to (1.1) with q j = n n-8 + δ j . Lemma 2.1 permits to assume that u j and v j = -∆u j are bounded in R n . Choose λ j > 0 such that

3) to u j , we have also u j ∞ ≤ C.

By standard elliptic theory, there is a subsequence still denoted by u j which tends to a bounded nonnegative function u * in C k loc (R n ) for any k ∈ N, so ∆ 2 u * = u n n-8 * in R n . As u j are stable, it is easy to see that u * is stable (taking the limit in (1.2) with u j and q j ). Finally, since -∆u * ≥ 0 in R n and -∆u * (0) = lim v j (0) > 0, u * is nontrivial, hence positive in R n . This is impossible by the previous step, the claim (ii) is then proved.
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