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In this note, we consider the following equations involving negative exponent:

where p > 0. Under optimal conditions on the parameters α > -2 and p > 0, we prove the nonexistence of finite Morse index solution on exterior domains or near the origin. We prove also an optimal regularity result for solutions with finite Morse index and isolated rupture at 0.

Introduction

Recently, many authors have studied solutions with finite Morse index for elliptic equations. For example, Farina has classified in [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF] all finite Morse index classical solutions of -∆u = |u| p-1 u in R n for 1 < p < p JL , where p JL is the Joseph-Lundgren exponent. Motivated by some models arising in engineering and physics, such as MEMS (Micro-electromechanical system) or thin films, elliptic equations with nonlinearities of negative exponent, for example f (x)u -p (p > 0), have also drawn the attention of many works, see for instance [START_REF] Esposito | Mathematical analysis of partial differential equations modeling electrostatic MEMS[END_REF][START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF][START_REF] Guo | Finite Morse index steady states of van der Waals force driven thin film equations[END_REF] and the references therein.

In this short note, we improve some results in [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF][START_REF] Guo | Finite Morse index steady states of van der Waals force driven thin film equations[END_REF] by simple arguments, which can be also applied to similar problems with negative exponent.

In [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF]Theorem 1.2], the authors proved that there are no solutions with finite Morse index of

∆u = |x| α u -p , u > 0 in Ω = R n \ B(0, R) (1.1)
for any n ≥ 2, α > -2, p > p c (α -) and R > 0. Here α -= min(α, 0) and B(x, r) denotes the ball of radius r > 0 centered at x. Moreover, for any α > -2, the exponent p c (α) is given by

p c (α) =    α+n- √ (α+2)(α+2n-2) α-n+4+ √ (α+2)(α+2n-2) if 2 ≤ n < 10 + 4α +∞ if n ≥ 10 + 4α.
For simplicity, we consider always classical solutions, i.e. u ∈ C 2 . Let us recall that the Morse index of a solution u to (1.1) is defined as the maximal dimension of all subspaces

X of C 1 c (Ω) such that Ω |∇ϕ| 2 dx -p Ω |x| α u -p-1 ϕ 2 dx < 0, for all ϕ ∈ X \ {0}. (1.2)
We say that u is a stable solution to (1.1) if the Morse index is just 0.

Going back to [1, Theorem 1.2], it is well known that u 0 (x) = Λ|x|

2+α p+1 with Λ = 2 + α p + 1 n -2 + 2 + α p + 1 -1 p+1
is a stable solution of (1.1) in R n \ {0}, if α > -2 and 0 < p ≤ p c (α). So the situation for α > 0 and p c (α) < p ≤ p c (0) was left open in [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF]. Our first result is to give an answer for that.

Theorem 1.1 Assume n ≥ 2, α > -2, p > p c (α) and R > 0, then there is no solution of (1.1) with finite Morse index.

Theorem 1.1 here completes Theorems 1.1 and 1.2 in [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF]. By the same idea, we get also the optimal nonexistence result for finite Morse solution of (1.1) near the origin. Theorem 1.2 Assume n ≥ 2, α > -2, p > p c (α) and R > 0, then there is no solution of ∆u = |x| α u -p , u > 0 in B(0, R) \ {0} with finite Morse index that has an isolated rupture at 0. This optimal result completes Theorem 1.3 in [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF], again for the case α > 0 and p c (α) < p ≤ p c (0). The solution u has isolated rupture at the origin means that lim x→0 u(x) = 0. We define the Morse index as for (1.1), replacing just Ω by {0 < |x| < R}.

As a corollary, we obtain also the following regularity result which generalizes Theorem 1.4 in [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF].

Theorem 1.3 Assume n ≥ 2, α > -2 and p > 0. If u is a classical solution of ∆u = |x| α u -p in B(0, R)\{0} with finite Morse index and an isolated rupture at 0, then u is Hölder continuous at 0. More precisely, defining u(0) = 0, we have

u ∈ C 2+α p+1 (B(0, R)).
In [START_REF] Guo | Finite Morse index steady states of van der Waals force driven thin film equations[END_REF], the authors considered the equation

∆u = u -p -1, u > 0 in R n \ B(0, R) (1.3)
with p > 0. In particular, they proved that when p > p c (0), no solution with finite Morse index of (1.3) exists. More precisely, p > max p c (0), (n-2) 2 8n

was required, but we can check easily that the maximum is just p c (0). Consequently, Theorem 1.3 in [START_REF] Guo | Finite Morse index steady states of van der Waals force driven thin film equations[END_REF] had sense only for n < 10 since p c (0) = ∞ if n ≥ 10.

Here we want to point out that the problem (1.3) is of very different nature compared to (1.1). It was proved (see [START_REF] Guo | Existence of singular positive solutions for some semilinear elliptic equations[END_REF]) that any nontrivial radial solution to ∆u = u -p -1 in R n oscillates infinitely many times around the value 1 as r → ∞ whenever p > 0 and n ≥ 2. This suggests that all solutions to (1.3) have infinite Morse index, which is confirmed as follows.

Theorem 1.4 For any n ≥ 2, p > 0 and R > 0, there are no solutions of (1.3) with finite Morse index.

The notion of finite Morse index for a solution u of (1.3) is similar as for (1.1), more precisely, it is required that there is only a finite dimensional vector space

X ⊂ C 1 c (R n \ B(0, R)) such that R n \B(0,R) |∇ϕ| 2 dx -p R n \B(0,R) u -p-1 ϕ 2 dx < 0, for all ϕ ∈ X \ {0}.
Theorem 1.4 here generalizes Theorems 1.1 and 1.3 in [START_REF] Guo | Finite Morse index steady states of van der Waals force driven thin film equations[END_REF].

In the following, the symbol C or C i , C means always a generic positive constant.

2 Proof of Theorem 1.1

Suppose that u, a solution with finite Morse index to (1.1) exists with some R > 0. So it is stable outside a compact set, from the stability and (1.1), it is known by Proposition 1 in [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF] that

R n \B(0,R 0 ) |x| α u γ-p ψ 2m ≤ C R n \B(0,R 0 ) |x| (γ+1)α p+1 |∇ψ| 2 + |ψ∆ψ| p-γ p+1 (2.1) for all ψ ∈ C ∞ c (B(0, R 0 ) c ) verifying |ψ| ≤ 1.
Here m ≥ max 2, p-γ p+1 , γ ∈ (γ p , -1] and

γ p = -1 -2p -2 p(p + 1), the radius R 0 > R is chosen such that the solution u is stable outside B(0, R 0 ).
Let |y| ≥ 4R 0 and R 1 = |y| 4 , as B(y, 2R 1 ) ⊂ B(0, R 0 ) c , using (2.1) with standard cut-off function, we have

|y| α B(y,R 1 ) u γ-p ≤ C|y| (γ+1)α p+1 R n-2 p-γ p+1 1 hence B y, |y| 4 u γ-p ≤ C|y| n- (2+α)(p-γ) p+1 , ∀ |y| ≥ 4R 0 , γ ∈ (γ p , -1]. (2.2) 
We write now the equation (1.1) in polar variables

u rr + n -1 r u r + 1 r 2 ∆ S n-1 u = r α u -p
and integrate on S n-1 to obtain

r 1-n (r n-1 ū ) = r α g(r)
where ū(r) =

S n-1 u(r, σ) dσ, g(r) = S n-1 u(r, σ) -p dσ.
Integration yields, for all r > r 1 > R,

ū(r) = ū(r 1 ) + r n-1 1 ū (r 1 ) r r 1 t 1-n dt + r r 1 t 1-n t r 1 s n-1+α g(s) ds dt. (2.3)
From (2.2) and Hölder's inequality, there holds, for |y| ≥ 4R 0 , B y,

|y| 4 u -p ≤ C|y| n- (2+α)p p+1 .
By a covering argument, this implies B(0,2r)\B(0,r)

u -p ≤ Cr n- (2+α)p p+1 for r ≥ 4R 0 , (2.4) 
or equivalently

2r r s n-1 g(s) ds ≤ Cr n- (2+α)p p+1 , ∀ r ≥ 4R 0 .
The dyadic decomposition of the interval [4R 0 , r) gives the following estimate

r 4R 0 s n-1+α g(s) ds ≤ Cr n- (2+α)p p+1 +α for all r ≥ 4R 0 , (2.5) 
where we used

n - (2 + α)p p + 1 + α = n -2 + 2 + α p + 1 > 0.
Remark that for n ≥ 2, This implies, for any γ < 0,

u γ-p (y) ≥ C 1 |y| 2+α p+1 (γ-p) , ∀ |y| ≥ 8R 0 . (2.6)
where C 1 > 0 is a fixed constant depending on γ.

Furthermore, we know that (see [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF]) the unique solution γ to

n + α + 2 + α p + 1 (γ -p) = n + (γ + 1)α p + 1 -2 p -γ p + 1 = 0 (2.7)
belongs to (γ p , -1] if and only if p > p c (α). Let γ satisfy (2.7). We deduce that, thanks to (2.6),

B(0,r)\B(0,8R 0 ) |x| α u γ-p ≥ C r 8R 0 ds s ≥ C ln r -C 2 for all r ≥ 8R 0 . (2.8)
However, (2.1) with an appropriate test function (see [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF][START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF]) gives that, for γ verifying (2.7),

B(0,r)\B(0,8R 0 ) |x| α u γ-p ≤ R n \B(0,R 0 ) |x| α u γ-p ψ 2m ≤ C 3 1 + r n+ (γ+1)α p+1 - 2(p-γ) p+1 = 2C 3 < ∞ (2.9)
with C 3 independent of r. The estimates (2.8) and (2.9) are clearly in contradiction and show that u cannot be stable outside any compact set.

3 Proof of Theorem 1.2 and 1.3

The main idea is very similar to the previous proof, so we just show the essential arguments and omit some details. Suppose that u > 0 satisfying ∆u = |x| α u -p in B(0, R) \ {0} has finite Morse index and a rupture at the origin. There exists then R 0 > 0 small such that u is stable in B(0, 4R 0 ) \ {0}. We can claim

{0<|x|<4R 0 } |x| α u γ-p ψ 2m ≤ C {0<|x|<4R 0 } |x| (γ+1)α p+1 |∇ψ| 2 + |ψ∆ψ| p-γ p+1 (3.1) for all ψ ∈ C ∞ c (B(0, 4R 0 ) \ {0}) verifying |ψ| ≤ 1, γ ∈ (γ p , -1]
where γ p = -1 -2p -2 p(p + 1) and m large enough.

Taking suitable cut-off function, there holds, by estimates (2.2) and (2.3) in [START_REF] Du | Positive solutions of an elliptic equation with negative exponent: stability and critical power[END_REF],

{r≤|x|≤2R 0 } |x| α u γ-p ≤ C 1 + r n+α+ 2+α p+1 (γ-p) , ∀ r ∈ (0, 2R 0 ), γ ∈ (γ p , -1] (3.2) 
and B y,

|y| 4 u γ-p ≤ C|y| n- (2+α)(p-γ) p+1 , ∀ 0 < |y| ≤ 2R 0 , γ ∈ (γ p , -1]. (3.3) 
Define ū and g(r) as above, the estimate (3.3) associated to the covering argument gives

2r r s n-1 g(s)ds = B(0,2r)\B(0,r) u -p ≤ Cr n- (2+α)p p+1 for 0 < r ≤ R 0 .
Using dyadic decomposition of (0, r), we have Indeed, ∈ [-∞, ∞) exists by monotonicity of r n-1 ū . As lim s→0 ū(s) = 0 by the rupture assumption on u, = 0 will lead to a contradiction, since r 1-n is not integrable at 0 for n ≥ 2.

Integrating (r n-1 ū ) = r n-1+α g(r), by (3.4) and (3.5), there holds

r n-1 ū (r) ≤ Cr n- (2+α)p p+1 +α , if 0 < r ≤ 2R 0 ,
Then, for any r > 0, we see that

lim s→0 s n-1 ū (s) r s t 1-n dt = 0, because 2 + α - (2 + α)p p + 1 = 2 + α p + 1 > 0.
Combining with lim s→0 ū(s) = 0 and (3.4), tending r 1 to 0 in (2.3), we get ū(r) ≤ Cr 2+α p+1 , for all 0 < r < 2R 0 .

Using the fact that u is subharmonic, we can conclude then u(y) ≤ C|y| 

{0<|x|≤2R 0 } |x| α u γ-p = 2R 0 0 s n-1+α g(s)ds < ∞.
However, by estimate (3.6), we see that

{0<|x|≤2R 0 } |x| α u γ-p = 2R 0 0 s n-1+α g(s)ds ≥ C 1 2R 0 0 ds s = ∞,
this is absurd. So such a solution with the rupture at zero cannot exist whenever p > p c (α), the proof of Theorem 1.2 is completed.

Finally, Theorem 1.3 is just a direct consequence of the estimate (3.6) to finite Morse index solution with isolated rupture at 0, which is valid for any p > 0 and α > -2.

Proof of Theorem 1.4

We argue always by contradiction. Suppose that a solution u with finite Morse index to (1.3) exists. By very similar argument for (2.1), it is showed that (see estimate (2.1) in [START_REF] Guo | Finite Morse index steady states of van der Waals force driven thin film equations[END_REF])

R n \B(0,R 0 ) u γ-p ψ 2m ≤ C R n \B(0,R 0 ) |∇ψ| 2 + |ψ∆ψ| p-γ p+1 (4.1) for all ψ ∈ C ∞ c (B(0, R 0 ) c ) satisfying |ψ| ≤ 1, γ ∈ (γ p , -1].
Here again, γ p = -1-2p-2 p(p + 1) and R 0 > R is chosen such that the solution u is stable outside B(0, R 0 ). We can proceed as above to get the corresponding estimates of (2.1), (2.4) with α = 0, that is, B(0,2r)\B(0,r) u -p ≤ Cr Combining the above two formula, for s large enough, ū (s) ≤ Cs s -n + s -2p

p+1 -C 4 ≤ -C 5 s, which implies then lim r→∞ ū(r) = -∞. This is just impossible since ū > 0.

r r 1 t 1 - 2 s

 112 n dt = o r 2+α p+1 as r → ∞. Combining (2.5) with (2.3), we have ū(r) ≤ Cr 2+α p+1 for all r ≥ 4R 0 , n-1 ū(s)ds ≤ C|y| n+ 2+α p+1 for all |y| ≥ 8R 0 . Since u is subharmonic, we get directly u(y) ≤ C|y| 2+α p+1 , ∀ |y| ≥ 8R 0 .

r 0 s

 0 n-1+α g(s) ds ≤ Cr n-(2+α)p p+1 +α for all r ≤ 2R 0 .(3.4)As r 1-n (r n-1 ū ) = r α g(r) ≥ 0, r n-1 ū (r) is nondecreasing in r, we claim that = lim r→0 r n-1 ū (r) = 0. (3.5)

2+αp+1,

  for all 0 < |y| < R 0 . (3.6) If p > p c (α), fix γ ∈ (γ p , -1] verify (2.7). The inequality (3.2) implies (tending r to 0)

  for r ≥ 4R 0 .As n -2p p+1 > 0 for n ≥ 2 and p > 0, the dyadic decomposition argument leads to the following estimate:B(0,r)\B(0,4R 0 ) u -p ≤ C 1 + r n-2p p+1 ≤ C r n-2p p+1 for any r ≥ 4R 0 .(4.2)On the other hand, integrating equation (1.3) over B(0, r) \ B(0, 4R 0 ), we have∂B(0,r) ∂u ∂ν dσ -C = B(0,r)\B(0,4R 0 ) u -p -1 , ∀ r ≥ 4R 0 .Applying (4.2), there holds∂B(0,r) ∂u ∂ν dσ ≤ Cr n r -n + r -2p p+1 -C 4 , ∀ r ≥ 4R 0 .

* J.D. is supported by Fondecyt 1090167, CAPDE-Anillo ACT-125 and Fondo Basal CMM. † D.Y. is supported by the French ANR project referenced ANR-08-BLAN-0335-01. The work was initiated when we both visited the East China Normal University. We would like thank the Department of Mathematics for its kind hospitality.