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Introduction

In this article, we consider the 2-dimensional (open) Toda system for SU (n + 1):

         u i + n j=1 a ij e uj = 4π m j=1 γ ij δ Pj in R 2 R 2
e ui dx < +∞ (1.1) for i = 1, 2, . . . , n, where γ ij > -1, P j are distinct points and A = (a ij ) is the Cartan matrix for SU (n+1), given by

A := (a ij ) =          2 -1 0 . . . 0 -1 2 -1 . . . 0 0 -1 2 0 . . . . . . . . . 0 . . . -1 2 -1 0 . . . -1 2          . (1.2)
Here δ P denotes the Dirac measure at P . For n = 1, system (1.1) is reduced to the Liouville equation

u + 2e u = 4π m j=1 γ j δ Pj (1.3)
which has been extensively studied for the past three decades. The Toda system (1.1) and the Liouville equation (1.3) arise in many physical and geometric problems. For example, in the Chern-Simons theory, the Liouville equation is related to abelian gauge field theory, while the Toda system is related to nonabelian gauge, see [START_REF] Dunne | Self-dual Chern-Simons solitons and two dimensional nonlinear equations[END_REF], [START_REF] Dunne | Self-dual Chern-Simons theories[END_REF], [START_REF] Ganoulis | Self-dual monopoles and Toda molecules[END_REF], [START_REF] Leznov | On the complete integrability of a nonlinear system of partial differential equations in two-diemensional space[END_REF], [START_REF] Leznov | Group-theoretical methods for integration of nonlinear dynamical systems[END_REF], [START_REF] Mansfield | Solutions of Toda systems[END_REF], [START_REF] Nolasco | Double vortex condensates in the Chern-Simons theory[END_REF], [START_REF] Nolasco | Vortex condensates for the SU (3) Chern-Simons theory[END_REF], [START_REF] Yang | The realtivistic non-abelian Chern-Simons equation[END_REF], [START_REF] Yang | Solitons in field theory and nonlinear analysis[END_REF] and references therein. On the geometric side, the Liouville equation with or without singular sources is related to the problem of prescribing Gaussian curvature proposed by Nirenberg, or related to the existence of the metrics with conic singularities. As for the Toda system, there have been a vast literature to discuss the relationship to holomorphic curves in CP n , flat SU (n + 1) connection, complete integrability and harmonic sequences. For example, see [START_REF] Bolton | On conformal minimal immersions of S 2 into CP n[END_REF], [START_REF] Bolton | Some geometrical aspects of the 2-dimensional Toda equations[END_REF], [START_REF] Calabi | Isometric imbedding of complex manifolds[END_REF], [START_REF] Chern | Harmonic maps of the two-sphere into a complex Grassmann manifold[END_REF], [START_REF] Doliwa | Holomorphic curves and Toda systems[END_REF], [START_REF] Guest | Harmonic Maps, Loop Groups, and Integrable Systems[END_REF], [START_REF] Leznov | Group-theoretical methods for integration of nonlinear dynamical systems[END_REF]. In this paper, we want to study the Toda system from the analytic viewpoint. For the past thirty years, the Liouville equation has been extensively studied by the method of nonlinear partial differential equations, see [START_REF] Brezis | Uniform estimates and blow-up behavior for solutions of -∆u = V (x)e u in two dimensions[END_REF], [START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surface[END_REF], [START_REF] Chen | Topological degree for a mean field equation on Riemann surfaces[END_REF], [START_REF] Chen | Mean field equations of Liouville type with singular data: Sharper estimates[END_REF], [START_REF] Li | Harnack type inequality: the method of moving planes[END_REF], [START_REF] Lin | Bubbling solutions for relativistic Abelian Chern-Simons model on a torus[END_REF], [START_REF] Nolasco | Double vortex condensates in the Chern-Simons theory[END_REF], [START_REF] Nolasco | Vortex condensates for the SU (3) Chern-Simons theory[END_REF], [START_REF] Prajapat | On a class of elliptic problems in R 2 : symmetry and uniqueness resluts[END_REF] and references therein. Recently, the analytic studies of the Toda system can be found in [START_REF] Jost | Analytic aspects of Toda system: II. Bubbling behavior and existence of solutions[END_REF], [START_REF] Jost | Analytic aspects of the Toda system: I. A Moser-Trudinger inequality[END_REF], [START_REF] Jost | Classification of solutions of a Toda system in R 2[END_REF], [START_REF] Li | Solutions for Toda systems on Riemann surfaces[END_REF], [START_REF] Malchiodi | Some existence results for the Toda system on closed surfaces[END_REF], [START_REF] Nolasco | Vortex condensates for the SU (3) Chern-Simons theory[END_REF], [START_REF] Ohtsuka | Blow-up analysis for SU (3) Toda system[END_REF], [START_REF] Wei | On Non-degeneracy of solutions to SU (3) Toda system[END_REF], [START_REF] Yang | The realtivistic non-abelian Chern-Simons equation[END_REF]. For the generalized Liouville system, see [START_REF] Lin | Profile of bubbling solutions to a Liouville system[END_REF] and [START_REF] Lin | A topological degree counting for some Liouville systems of mean field equations[END_REF].

From the viewpoint of PDE, we are interested not only in the Toda system itself, but also in the situation with non-constant coefficients. One of such examples is the Toda system of mean field type:

∆u i (x) + n j=1 a ij ρ j     h j e uj Σ h j e uj - 1 |Σ|     = 4π m j=1 γ ij δ Pj - 1 |Σ| , (1.4) 
where P j are distinct points, γ ij > -1 and h j are positive smooth functions in a compact Riemann surface Σ. When n = 1, the equation becomes the following mean field equation:

∆u(x) + ρ     he u Σ he u - 1 Σ     = 4π m j=1 γ j δ Pj - 1 |Σ| in Σ. (1.5)
This type of equations has many applications in different areas of research, and has been extensively investigated. One of main issues for (1.5) is to determine the set of parameter ρ (non-critical parameters) such that the a priori estimate exists for solutions of equation (1.5). After establishing a priori estimate, we then go to compute the topological degree of (1.5) for those non-critical parameters. In this way, we are able to solve the equation (1.5) and understand the structure of the solution set. For the past ten years, those projects have been successfully carried out for (1.5). See [START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surface[END_REF], [START_REF] Chen | Topological degree for a mean field equation on Riemann surfaces[END_REF], [START_REF] Chen | Mean field equations of Liouville type with singular data: Sharper estimates[END_REF], [START_REF] Li | Harnack type inequality: the method of moving planes[END_REF]. While carrying out those projects for (1.4), there often appears a sequence of bubbling solutions and the difficult issue is how to understand the behavior of bubbling solutions near blowup points. For that purpose, the fundamental question is to completely classify all entire solutions of the Toda system with a single singular source:

u i + n j=1 a ij e uj = 4πγ i δ 0 in R 2 , R 2 e ui dx < ∞, 1 ≤ i ≤ n (1.6)
where δ 0 is the Dirac measure at 0, and γ i > -1. When all γ i are zero, the classification has been done by Jost-Wang [START_REF] Jost | Classification of solutions of a Toda system in R 2[END_REF]. However, when γ i = 0 for some i, the classification has not been proved and has remained a long-standing open problem for many years. It is the purpose of this article to settle this open problem.

To state our result, we should introduce some notations. For any solution u = (u 1 , • • • , u n ) of (1.6), we define U = (U 1 , U 2 , • • • , U n ) by

U i = n j=1 a ij u j (1.7)
where (a ij ) is the inverse matrix of A. By (1.7), U satisfies

U i + e ui = 4πα i δ 0 in R 2 , where α i = n j=1
a ij γ j .

(1.8)

By direct computations, we have

a ij = j(n + 1 -i) n + 1 , ∀ n ≥ i ≥ j ≥ 1 and u i = n j=1 a ij U j .
Our first result is the following classification theorem.

Theorem 1.1. Let γ i > -1 for 1 ≤ i ≤ n and U = (U 1 , • • • , U n ) be defined by (1.7) via a solution u of (1.6).
Then U 1 can be expressed by

e -U1 = |z| -2α1 λ 0 + n i=1 λ i |P i (z)| 2 (1.9) 
where

P i (z) = z µ1+•••+µi + i-1 j=0 c ij z µ1+•••µj , (1.10) 
µ i = 1 + γ i > 0, c ij are complex numbers and λ i > 0, 0 ≤ i ≤ n, satisfy λ 0 • • • λ n = 2 -n(n+1) 1≤i≤j≤n j k=i µ k -2
.

(1.11)

Furthermore, if µ j+1 + • • • + µ i / ∈ N for some j < i, then c ij = 0.
In particular, we have the following theorem, generalizing a result by Prajapat-Tarantello [START_REF] Prajapat | On a class of elliptic problems in R 2 : symmetry and uniqueness resluts[END_REF] for the singular Liouville equation, n = 1.

Corollary 1.2. Suppose µ j + • • • + µ i / ∈ N for all 1 ≤ j ≤ i ≤ n.
Then any solution of (1.6) is radially symmetric with respect to the origin.

We note that once U 1 is known, U 2 can be determined uniquely by (1.8), i.e., e -U2 = e -2U1 U 1 . In general, U i+1 can be solved via the equation (1.8) by the induction on i. See the formula (5.16). In the appendix, we shall apply Theorem 1.1 to give all the explicit solutions in the case of n = 2. Conversely, in section 5, we will prove any expression of (1.9) satisfying (1.11) can generate a solution of (1.6). See Theorem 5.3. Thus, the number of free parameters depends on all the Dirac masses γ j . For example if all µ j ∈ N, then the number of free parameters is n(n + 2). And if all µ i + • • • + µ j / ∈ N for 1 ≤ i ≤ j ≤ n, thus the number of free parameters is n only. We let N (γ) denote the real dimension of the solution set of the system (1.6).

Next, we will show the quantization of the integral of e ui over R 2 and the non-degeneracy of the linearized system. For the Liouville equation with single singular source:

u + e u = 4πγδ 0 , R 2 e u dx < +∞, γ > -1,
it was proved in [START_REF] Prajapat | On a class of elliptic problems in R 2 : symmetry and uniqueness resluts[END_REF] that any solution u satisfies the following quantization:

R 2 e u dx = 8π(1 + γ), and in [START_REF] Esposito | Nondegeneracy of entire solutions of a singular Liouville equation[END_REF] that for any γ ∈ N, the linearized operator around any solution u is nondegenerate. Both the quantization and the non-degeneracy are important when we come to study the Toda system of mean field type. In particular, this nondegeneracy plays a fundamental role as far as sharp estimates of bubbling solutions are concerned. See [START_REF] Bartolucci | Profile of blow-up solutions to mean field equations with singular data[END_REF] and [START_REF] Chen | Mean field equations of Liouville type with singular data: Sharper estimates[END_REF]. (1.6). Then the followings hold:

Theorem 1.3. Suppose u = (u 1 , • • • , u n ) is a solution of
(i) Quantization: we have, for any

1 ≤ i ≤ n, n j=1 a ij R 2 e uj dx = 4π(2 + γ i + γ n+1-i ) and u i (z) = -(4 + 2γ n+1-i ) log |z| + O(1) as |z| → ∞.
(ii) Nondegeneracy: The dimension of the null space of the linearized operator at u is equal to N (γ).

In the absence of singular sources, i.e., γ i = 0 for all i, Theorem 1.1 was obtained by Jost and Wang [START_REF] Jost | Classification of solutions of a Toda system in R 2[END_REF]. By applying the holonomy theory, and identifying S 2 = C ∪ {∞}, they could prove that any solution u can be extended to be a totally unramified holomorphic curve from S 2 to CP n , and then Theorem 1.1 can be obtained via a classic result in algebraic geometry, which says that any totally unramified holomorphic curve of S 2 into CP n is a rational normal curve. Our proof does not use the classical result from algebraic geometry. As a consequence, we give a proof of this classic theorem in algebraic geometry by using nonlinear partial differential equations. In fact, our analytic method can be used to prove a generalization of this classic theorem.

For a holomorphic curve f of S 2 into CP n , we recall the k-th associated curve

f k : S 2 → GL(k, n + 1) for k = 1, 2, • • • , n with f 1 = f and f k = [f ∧ • • • ∧ f (k-1) ]. A point p ∈ S 2 is called a ramificated point if the pull-back metric f * k (ω k ) = |z -p| 2γ k h(z)dz ∧ dz with h > 0 at p for some γ k > 0 where ω k is the Fubini-Study metric on GL(k, n + 1) ⊆ CP N k , N k = n + 1 k .
(1.12)

The positive integer γ k (p) is called the ramification index of f k at p. See [START_REF] Griffiths | Principles of Algebraic Geometry[END_REF].

Corollary 1.4. Let f be a holomorphic curve of S 2 into CP n . Suppose f has exactly two ramificated points P 1 and P 2 and γ j (P i ) are the ramification index of f j at P i , where f j is the j-th associated curve for 1 ≤ j ≤ n. Then γ j (P 1 ) = γ n+1-j (P 2 ). Furthermore, if f and g are two such curves with the same ramificated points and ramification index, then g can be obtained via f by a linear map of CP n .

It is well-known that the Liouville equation as well as the Toda system are completely integrable system, a fact known since Liouville [START_REF] Liouville | Surl'équation aux différences partielles d 2 dudv log λ ± λ 2a 2 = 0[END_REF]. Roughly speaking, any solution of (1.1) without singular sources in a simply connected domain Ω arises from a holomorphic map from Ω into CP n . See [START_REF] Bolton | On conformal minimal immersions of S 2 into CP n[END_REF], [START_REF] Bolton | Some geometrical aspects of the 2-dimensional Toda equations[END_REF], [START_REF] Calabi | Isometric imbedding of complex manifolds[END_REF], [START_REF] Chern | Harmonic maps of the two-sphere into a complex Grassmann manifold[END_REF], [START_REF] Doliwa | Holomorphic curves and Toda systems[END_REF], [START_REF] Guest | Harmonic Maps, Loop Groups, and Integrable Systems[END_REF], [START_REF] Leznov | Group-theoretical methods for integration of nonlinear dynamical systems[END_REF], [START_REF] Zhiber | Integrals, solutions, and existence of the Laplace transform for a linear hyperbolic system of equations[END_REF]. For n = 1, The classic Liouville theorem says that if a smooth solution u satisfies ∆u + e u = 0 in a simply connected domain Ω ⊂ R 2 , then u(z) can be expressed in terms of a holomorphic function f in Ω:

u(z) = log 8|f (z)| 2 (1 + |f (z)| 2 ) 2 in Ω (1.13)
Similarly, system (1.1) has a very close relationship with holomorphic curves in CP n . Let f be a holomorphic curve from Ω into CP n . Lift locally f to C n+1 and denote the lift by ν = (ν 0 , ν 1 , . . . , ν n ). The k-th associated curve of f is defined by

f k : Ω → G(k, n + 1) ⊂ CP N k -1 , f k (z) = ν(z) ∧ ν (z) ∧ • • • ν (k-1) (z) , (1.14) 
where N k is given by (1.12), ν (j) stands for the j-th derivative of ν w.r.t. z.

Let Λ k = ν(z) ∧ • • • ν (k-1) (z),
then the well-known infinitesimal Plücker formulas (see [START_REF] Griffiths | Principles of Algebraic Geometry[END_REF]) is

∂ 2 ∂z∂ z log Λ k 2 = Λ k-1 2 Λ k+1 2 Λ k 4 for k = 1, 2, • • • , n. (1.15) 
where conventionally we put Λ 0 2 = 1. Of course, this formula holds only for Λ k > 0, i.e. for all unramificated points. By normalizing Λ n+1 = 1, and letting

U k (z) = -log Λ k (z) 2 + k(n -k + 1) log 2, 1 ≤ k ≤ n (1.16)
at an unramificated point z. Since 1≤k≤n a ik k(n -k + 1) = 2, (1.15) gives

-∆U i = exp   n j=1 a ij U j   in Ω \ {P 1 , • • • , P m }
where {P 1 , • • • , P m } are the set of ramificated points of f in Ω. Since f is smooth at P j , we have

U i = -2α ij log |z -P j | + O(1) near P j . Thus, U i satisfies ∆U i + exp   n j=1 a ij U j   = 4π n j=1 α ij δ Pj in Ω.
The constants α ij can be expressed by the total ramification index at P j by the following arguments.

By the Plücker formulas (1.15), we have

f * i (ω i ) = √ -1 2 exp   n j=1 a ij U j   dz ∧ dz.
Thus, the ramification index γ ij at f i at P j is

γ ij = n k=1
a ik α kj .

(1.17)

Set

u i = n j=1 a ij U j (1.18)
Then it is easy to see that u i satisfies (1.1) with γ ij the total ramification index of f i at P j .

Conversely, suppose u = (u 1 , • • • , u n ) is a smooth solution of (1.1) in a simply connected domain Ω. We introduce w j (0 ≤ j ≤ n) by

u i = 2(w i -w i-1 ), n i=0 w i = 0 (1.19)
Obviously, w i can be uniquely determined by u and satisfies

        w 0 . . . w i . . . w n         z z = 1 8        
e 2(w1-w0) . . . e 2(wi+1-wi) -e 2(wi-wi-1) . . .

-e 2(wn-wn-1)

        (1.20)
For a solution (w i ), we set 

U =      w 0,z 0 
Φ z = ΦU, Φ z = ΦV (1.21) or equivalently, Φ satisfies Φ -1 dΦ = U dz + V dz. Let Φ = (Φ 0 , Φ 1 . . . , Φ n ). By (1.21),
dΦ 0 = w 0,z Φ 0 + 1 2 e w1-w0 Φ 1 dz -w 0,z Φ 0 dz, which implies d(e w0 Φ 0 ) = e w0 dΦ 0 + e w0 Φ 0 dw 0 = 2w 0,z e w0 Φ 0 + 1 2 e w1 Φ 1 dz.

(1.22)

Therefore, e w0 Φ 0 is a holomorphic map from Ω to C n+1 . We let ν(z) = 2 n 2 e w0 Φ 0 . By using (1.21), we have ν

(k) (z) = 2 n 2 -k e w k Φ k for k = 1, 2, . . . , n. Since w 0 + • • • + w n = 0, we have ν ∧ ν ∧ • • • ν (n) (z) = 1. Note that w 0 = - 1 2 n j=1 (n -j + 1) n + 1 u j = - U 1 2 ,
hence we have e -U1 = e 2w0 = 2 -n ν 2 . Thus, (1.16) implies U 1 is identical to the solution deriving from the holomorphic curve ν(z). Therefore, the space of smooth solutions of the system (1.1) (without singular sources) in a simply connected domain Ω is identical to the space of unramificated holomorphic curves from Ω into CP n .

However, if the system (1.1) has singular sources, then R 2 \ {P 1 , • • • , P m } is not simply connected. So, it is natural to ask whether in the case γ ij ∈ N, the space of solutions u of (1.1) can be identical to the space of holomorphic curves of R 2 into CP n which ramificates at P 1 , • • • , P m , with the given ramification index γ ij at P j . The following theorem answers this question affirmatively.

Theorem 1.5. Let γ ij ∈ N and P j ∈ R 2 . Then for any solution u of (1.1), there exists a holomorphic curve f of C into CP n with ramificated points P j and the total ramification index γ ij at P j such that for

1 ≤ k ≤ n, e -U k = 2 -k(n+1-k) ν(z) ∧ • • • ∧ ν (k-1) (z) 2 in C \ {P 1 , • • • , P m } where ν(z) is a lift of f in C n+1 satisfying ν(z) ∧ • • • ∧ ν (n) (z) = 1.
Furthermore, f can be extended smoothly to a holomorphic curve of S 2 into CP n .

We note that if equation (1.1) is defined in a Riemann surface rather than C or S 2 , then the identity of the solution space of (1.1) with holomorphic curves in CP n generally does not hold. For example, if the equation (1.1) is defined on a torus, then even for n = 1, a solution of (1.1) would be not necessarily associated with a holomorphic curve from the torus into CP 1 . See [START_REF] Lin | Elliptic functions, Green functions and the mean field equations on tori[END_REF].

The paper is organized as follows. In section 2, we will show some invariants associated with a solution of the Toda system. Those invariants allow us to classify all the solutions of (1.6) without singular sources, thus it gives another proof of the classification due to Jost and Wang. In section 5, those invariants can be extended to be meromorphic invariants for the case with singular sources. By using those invariants, we can prove e -U1 satisfies an ODE in C * := C \ {0}, the proof will be given in section 5. In section 4 and section 6, we will prove the quantization and the non-degeneracy of the linearized equation of (1.6) for the case without or with singular sources. In the final section, we give a proof of Theorem 1.5. Explicits solutions in the case of SU (3) are given in the appendix.
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Invariants for solutions of Toda system

In this section, we derive some invariants for the Toda system. Denote A -1 = (a jk ), the inverse matrix of A. Let

U j = n k=1 a jk u k , ∀ 1 ≤ j ≤ n.
(2.1)

Since ∆ = 4∂ z z , it is easy to see that the system (1.6) is equivalent to for all 1 ≤ i ≤ n,

-4U i,z z = exp   n j=1 a ij U j   -4πα i δ 0 in R 2 , R 2 exp   n j=1 a ij U j   dx < ∞.
where

α i = 1≤j≤n a ij γ j for 1 ≤ i ≤ n. Define W j 1 = -e U1 e -U1 (j+1) for 1 ≤ j ≤ n and W j k+1 = - W j k,z U k,z z for 1 ≤ k ≤ j -1. (2.2)
We will prove that all these quantities W j k , 1 ≤ k ≤ j ≤ n, are invariants for solutions of SU (n + 1), more precisely, W j k are a part of some specific holomorphic or meromorphic functions, which are determined explicitly by the Toda system. Lemma 2.1. For any classical solution of (1.1), there holds:

W k k = k i=1 (U i,zz -U 2 i,z ) + k-1 i=1 U i,z U i+1,z for 1 ≤ k ≤ n, (2.3) 
W k k,z = -U k,z z U k+1,z for 1 ≤ k ≤ n -1, (2.4) 
W j k = (U k-1,z -U k,z )W j-1 k + W j-1 k,z + W j-1 k-1 for 1 ≤ k < j ≤ n. (2.5)
where for convenience U 0 = 0 and W j 0 = 0 for all j. Proof. First, we show that (2.3) implies (2.4). By the equation for U j ,

U j,z zz = U j,z z (2U j,z -U j+1,z -U j-1,z ), ∀ 1 ≤ j ≤ n, (2.6) 
where for the convenience, U n+1 = 0 is also used. Thus,

-U j,z z U j+1,z + U j-1,z z U j,z = U j,z zz -U j,z z (2U j,z -U j-1,z ) + U j-1,z z U j,z = U j,zz -U 2 j,z + U j,z U j-1,z z .
(2.7)

Taking the sum of (2.7) for j from 1 to k, we get

-U k,z z U k+1,z = k j=1 U j,zz -U 2 j,z + U j,z U j-1,z z = W k k,z
where (2.3) is used.

Next, we will prove (2.3)-(2.5) by the induction on k. Obviously, (2.3) holds for k = 1. By the definition of W j 1 , for j ≥ 2, we have

W j 1 = -e U1 (e -U1 ) (j+1) = e U1 e -U1 W j-1 1 z = W j-1 1,z -W j-1 1 U 1,z , which is (2.5) for k = 1. To compute W k+1 k+1 , (2.5) with index k implies -U k,z z W k+1 k+1 = W k+1 k,z = (U k-1,z z -U k,z z )W k k + (U k-1,z -U k,z )W k k,z + W k k,z z + W k k-1,z , Since U k-1,z z W k k + W k k-1,z = 0, the above identity leads by (2.4) with index k, W k+1 k,z = -U k,z z W k k -(U k-1,z -U k,z )U k,z z U k+1,z -(U k,z z U k+1,z ) z = -U k,z z W k k -(U k-1,z -U k,z )U k,z z U k+1,z -U k,z z (2U k,z -U k+1,z -U k-1,z )U k+1,z -U k,z z U k+1,zz = -U k,z z W k k + U k+1,zz -U 2 k+1,z + U k+1,z U k,z where (2.6) is used. Hence W k+1 k+1 = W k k + U k+1,zz -U 2 k+1,z + U k+1,z U k,z , and then (2.3) is proved for k + 1.
To compute W j k+1 for j ≥ k + 2, we have j -1 ≥ k + 1 and by similar calculations:

W j k,z = (U k-1,z z -U k,z z )W j-1 k + (U k-1,z -U k,z )W j-1 k,z + W j-1 k,z z + W j-1 k-1,z = -U k,z z W j-1 k -(U k-1,z -U k,z )U k,z z W j-1 k+1 -U k,z z W j-1 k+1 z = -U k,z z W j-1 k -(U k-1,z -U k,z )U k,z z W j-1 k+1 -U k,z z (2U k,z -U k+1,z -U k-1,z )W j-1 k -U k,z z W j-1 k+1,z = -U k,z z (U k,z -U k+1,z )W j-1 k+1 + W j-1 k+1,z W j-1 k , which leads to W j k+1 = (U k,z -U k+1,z )W j-1 k+1 + W j-1 k+1,z + W j-1 k
Therefore, Lemma 2.1 is proved.

3 Classification of solutions of SU (n + 1) with m = 0

Here we show a new proof of the classification result of Jost-Wang [START_REF] Jost | Classification of solutions of a Toda system in R 2[END_REF]. That is, all classical solutions of (1.1) with m = 0 is given by a n(n + 2) manifold M. Our idea is to use the invariants W n j for solutions of SU (n + 1). Consider

-∆u i = n j=1 a ij e uj in R 2 , R 2 e ui dx < ∞, ∀ 1 ≤ i ≤ n.
(3.1)

Theorem 3.1. For any classical solution of (3.1), let U j , W n j be defined by (2.1) and (2.2), then

W n j ≡ 0 in R 2 , ∀ 1 ≤ j ≤ n.
Remark 3.2. The fact W n n = 0 has been proved by Jost and Wang in an equivalent form, which is just the function f in the proof of Proposition 2.2 in [START_REF] Jost | Classification of solutions of a Toda system in R 2[END_REF].

Proof. The proof is based on the following observation:

W n n,z = 0 in R 2 for any solution of (3.1). (3.2)
In fact, using formula (2.3) and the equations of U i ,

W n n,z = n i=1 (U i,z z ) z -2 n i=1 U i,z U i,z z + n-1 i=1 (U i,z z U i+1,z + U i,z U i+1,z z ) = n i=1 U i,z z   n j=1 (a ij U j,z ) -2U i,z + U i+1,z + U i-1,z   = 0. (3.3) 
Here we used again the convention U 0 = U n+1 = 0 for SU (n + 1).

Furthermore, e ui ∈ L 1 (R 2 ) implies that for any > 0, there exists R > 0 such that

R 2 \B R e ui dz ≤ , 1 ≤ i ≤ n
For sufficient small > 0, applying Brezis-Merle's argument [START_REF] Brezis | Uniform estimates and blow-up behavior for solutions of -∆u = V (x)e u in two dimensions[END_REF] to the system u i , we can prove u i (z) ≤ C for |z| ≥ R , i.e. u i is bounded from the above over C. Thus, u i can be represented by the following integral formulas:

u i (z) = 1 2π R 2 log |z | |z -z | n j=1 a ij e uj (z ) dz + c i , ∀ 1 ≤ i ≤ n, (3.4) 
for some real constants c i .

This gives us the asymptotic behaviour of u i and their derivatives at infinity. In particular, for any

k ≥ 1, ∇ k u i = O |z| -k as |z| goes to ∞. So ∇ k U i = O |z| -k as |z| → ∞, for k ≥ 1. Therefore, W n n
is a entire holomorphic function, which tends to zero at infinity, so

W n n ≡ 0 in R 2 by classical Liouville theorem. As W n n-1,z = -U n-1,z z W n n , we obtain W n n-1,z = 0 in R 2 . By (2.
3) and (2.5), it is not difficult to see that for 1 ≤ i ≤ n -1, W n i are also polynomials of ∇ k U i with k ≥ 1, so they tend to 0 at infinity, hence W n n-1 = 0 in R 2 . We can complete the proof of Theorem 3.1 by induction.

Furthermore, we know that e -U1 can be computed as a square of some holomorphic curves in CP n , see the Introduction. Thus, there is a holomorphic map ν

(z) = (ν 0 (z), . . . , ν n (z)) from C into C n+1 satisfying ν ∧ ν • • • ∧ ν (n) (z) = 1 and e -U1(z) = n i=0 |ν i (z)| 2 in C. Since W n 1 ≡ 0 in R 2 yields (e -U1 ) (n+1) = 0, we have ν (n+1) i (z) = 0.
By the asymptotic behaviour of u i , we know that e -U1 is of polynomial growth as |z| → ∞. Hence ν i (z) is a polynomial and ν 0 , • • • , ν n is a set of fundamental holomorphic solutions of f (n+1) = 0. Thus

ν i (z) = n j=0 c ij z j with det(c ij ) = 0. (3.5)
By a linear transformation, we have

ν(z) = λ(1, z, z 2 , • • • , z n ), λ ∈ C
and [ν] is the rational normal curve of S 2 into CP n . Hence we have proved the classification theorem of Jost and Wang.

Remark 3.3. Here we use the integrability of the Toda system. In section 5, we actually prove the classification theorem without use of the integrability.

Remark 3.4. The invariants W n j are called W -symmetries or conservation laws, see [START_REF] Leznov | Group-theoretical methods for integration of nonlinear dynamical systems[END_REF]. It is claimed that for the Cartan matrix there are n linearly independent W -symmetries, see [START_REF] Zhiber | Integrals, solutions, and existence of the Laplace transform for a linear hyperbolic system of equations[END_REF]. However, as far as we are aware, we cannot find the explicit formulas in the literature (except for n = 2 [START_REF] Wei | On Non-degeneracy of solutions to SU (3) Toda system[END_REF]). Here we give explicit formula for the n invariants.

Nondegeneracy of solutions of SU (n + 1) without sources

Let M be the collection of entire solutions of (3.1). In the previous section, we know that M is a smooth manifold of n(n + 2) dimension. Fixing a solution u = (u 1 , • • • , u n ) of (3.1), we consider LSU (n + 1), the linearized system of (3.1) at u:

φ i + n j=1 a ij e uj φ j = 0 in R 2 . ( 4.1) 
Let s ∈ R be any parameter appearing in (3.5) and u(z; s) be a solution of (3.1) continuously depending on s such that u(z;

0) = u(z). Thus φ(z) = ∂ ∂s u(z; s)| s=0 is a solution of (4.1) satisfying φ ∈ L ∞ (R 2
). Let T u M denote the tangent space of M at u. The nondegeneracy of the linearized system is equivalent to showing that any bounded solution φ = (φ 1 , • • • , φ n ) of (4.1) belongs to this space. Theorem 4.1. Suppose u is a solution of (3.1) and φ is a bounded solution of (4.1). Then φ ∈ T u M.

Proof. For any solution φ = (φ 1 , . . . , φ n ) of (4.1), we define

Φ j = n k=1 a jk φ k , ∀ 1 ≤ j ≤ n. (4.2)
We have readily that bounded (φ i ) solves (4.1) if and only if (Φ i ) is a solution of

-4Φ i,z z = exp   n j=1 a ij U j   × n j=1 a ij Φ j in R 2 , Φ i ∈ L ∞ (R 2 ) ∀ 1 ≤ i ≤ n. (4.3)
Our idea is also to find some invariants which characterize all solutions of (4.3). Indeed, we find them by linearizing the above quantities W n k for U i . Let

Y n 1 = e U1 e -U1 Φ 1 (n+1) -e -U1 (n+1) Φ 1
and

Y n k+1 = - Y n k,z + W n k+1 Φ k,z z U k,z z for 1 ≤ k ≤ n -1.
The quantities Y n k are well defined and we can prove by induction the following formula: With any solution of LSU (n + 1), there hold

Y n 1 = Y n-1 1,z -Y n-1 1 U 1,z -W n-1 1 Φ 1,z , Y n k = (U k-1,z -U k,z ) Y n-1 k + Y n-1 k,z + Y n-1 k-1 + (Φ k-1,z -Φ k,z ) W n-1 k , for 2 ≤ k ≤ n.
Moreover, for any solution of (4.3), we have

Y n n = n i=1 Φ i,zz -2 n i=1 U i,z Φ i,z + n-1 i=1 (Φ i,z U i+1,z + U i,z Φ i+1,z ) . (4.4)
The proof is very similar as above for W n j , since each quantity Y n j is just the linearized version of W n j with respect to (U i ), as well as the involved equations, so we leave the details for interested readers.

Applying the equations (4.3), it can be checked easily that Y n n,z = 0 in R 2 , for any solution of LSU (n + 1) (4.1).

Using the classification of u i in section 3 (see also [START_REF] Jost | Classification of solutions of a Toda system in R 2[END_REF]), we know that e ui = O z -4 at ∞. Since φ i ∈ L ∞ (R 2 ), the function 1≤j≤n a ij e uj φ j ∈ L 1 (R 2 ). As before, we can express φ i by integral representation and prove that lim |z|→∞ ∇ k φ i = 0 for any k ≥ 1. Hence lim |z|→∞ ∇ k Φ i = 0 for any k ≥ 1.

By similar argument as above, this implies that Y n n = 0 in R 2 for any solution of (4.3), and we get successively

Y n k = 0 in R 2 for 1 ≤ k ≤ n -1, recalling just Y n k,z = -U k,z z Y n k+1 -Φ k,z z W n k+1 and W n j = 0 in R 2 for any classical solution of (3.1). Since 0 = Y n 1 = e U1 e -U1 Φ 1 (n+1) + W n 1 Φ 1 = e U1 e -U1 Φ 1 (n+1) ,
we conclude then e -U1 Φ 1 (n+1) = 0 in R 2 . As e -U1 Φ 1 is a real smooth function, we get

e -U1 Φ 1 = n i,j=0 b ij z i zj with b ij = b ji for all 0 ≤ i, j ≤ n. This yields Φ 1 ∈ L =    e U1   n i,j=0 b ij z i zj   , b ij ∈ C, b ij = b ji , ∀ 0 ≤ i, j ≤ n    , a linear space of dimension (n + 1) 2 . Once Φ 1 is fixed, as -∆Φ 1 = e u1 (2Φ 1 -Φ 2 ) in R 2 , Φ 2 
is uniquely determined, successively all Φ i are uniquely determined, so is φ i .

Moreover, the expression of e -U1 given by the last section yields that the constant functions belong to L. If Φ 1 ≡ 1 ∈ R, by equations (4.3), successively we obtain Φ i ≡ i ∈ R for all 2 ≤ i ≤ n. Using again the system (4.3), we must have n j=1 a ij j = 0, ∀ 1 ≤ i ≤ n, which implies j = 0 for any 1 ≤ j ≤ n, hence (Φ i ) can only be the trivial solution. Therefore, we need only to consider Φ 1 belonging to the algebraic complementary of R in L, a linear subspace of dimension n(n + 2).

Finally, it is known that T u M, the tangent space of u = (u i ) to the solution manifold M provides us a n(n + 2) dimensional family of bounded solutions to LSU (n + 1), so we can conclude that all the solutions of (4.1) form exactly a linear space of dimension n(n + 2). Theorem 4.1 is then proved. Remark 4.2. We note by the proof that Theorem 4.1 remains valid if we relax the condition φ i ∈ L ∞ (R 2 ) to the growth condition φ i (z) = O(|z| 1+α ) at infinity with α ∈ (0, 1).

Classification of singular Toda system with one source

For the Toda system SU (n + 1) with one singular source (1.6), denote A -1 = (a jk ), the inverse matrix of A and define as before

U j = n k=1 a jk u k , α j = n k=1 a jk γ k ∀ 1 ≤ j ≤ n. (5.1) 
where u = (u 1 , ..., u n ) is a solution of (1.6). So

-∆U i = exp   n j=1 a ij U j   -4πα i δ 0 in R 2 (5.2) with R 2 exp   n j=1 a ij U j   dx = R 2 e ui dx < ∞, ∀ i.
In this section, we will completely classify all the solutions of equation (1.6), and prove in the next section the nondegenerency of the corresponding linearized system. Here is the classification result.

Theorem 5.1. Suppose that γ i > -1 for 1 ≤ i ≤ n, and U = (U 1 , ..., U n ) is a solution of (5.2), then we have

|z| 2α1 e -U1 = λ 0 + 1≤i≤n λ i |P i (z)| 2 in C * (5.3)
where

P i (z) = c i0 + i-1 j=1 c ij z µ1+µ2+...+µj + z µ1+µ2+...+µi , c ij ∈ C, (5.4) 
µ i = γ i + 1, and λ i ∈ R satisfies λ i > 0, λ 0 λ 1 • • • λ n = 2 -n(n+1) × 1≤i≤j≤n j k=i µ k -2
.

(5.5)

Conversely, U 1 defined by (5.3)-(5.5) generates a solution (U i ) of (5.2).

The proof of Theorem 5.1 is divided in several steps. Suppose U = (U 1 , ..., U n ) is a solution of (5.2).

Step 1

We will prove that e -U1 = f verifies the differential equation as follows:

f (n+1) + n-1 k=0 w k z n+1-k f (k) = 0 in C * , (5.6) 
where w k are real constants only depending on all γ i and f (i) denotes the i-th order derivative of f w.r.t. z.

Lemma 5.2. Let (U j ) be given by (5.1), with (u i ) a solution of (1.6). Define Z n = W n n and by iteration

Z k = W n k + U k,z Z k+1 + n-2 j=k W j k Z j+2 , ∀ k = n -1, n -2, . . . , 1.
(5.7)

Then Z k are holomorphic in C * . More precisely, there exist w k ∈ C such that

Z k = w k z n+2-k in C * , for any 1 ≤ k ≤ n,
where w k only depends on γ j .

Here W j k (1 ≤ k ≤ j ≤ n), considered as functional of (U 1 , U 2 , . . . U n ) and their derivatives, are the invariants constructed in section 2 for Toda system SU (n + 1).

Proof. First, we recall that

W m 1 = -e U1 e -U1 (m+1) for 1 ≤ m ≤ n, W m k+1 = - W m k,z U k,z z for 1 ≤ k ≤ m -1.
(5.8) Using (3.3), Z n is holomorphic in C * and by Lemma 2.1

W k k,z = -U k,z z U k+1,z , for any 1 ≤ k ≤ n -1.
Consequently, in C * there holds by (5.8),

0 = W n n-1,z + U n-1,z z W n = W n n-1,z + U n-1,z z Z n = W n n-1 + U n-1,z Z n z = Z n-1,z , So Z n-1 is also holomorphic in C * . Suppose that Z +1 are holomorphic in C * for k ≤ ≤ n -2, then we have in C * , Z k,z =   W n k + U k,z Z k+1 + n-2 j=k W j k Z j+2   z = W n k,z + U k,z z Z k+1 + W k k,z Z k+2 + n-2 j=k+1 W j k,z Z j+2 = -U k,z z W n k+1 + U k,z z Z k+1 -U k,z z U k+1,z Z k+2 - n-2 j=k+1 U k,z z W j k+1 Z j+2 = U k,z z   Z k+1 -W n k+1 -U k+1,z Z k+2 - n-2 j=k+1 W j k+1 Z j+2   = 0.
The last line comes from the definition of Z k+1 . Thus, Z k is holomorphic in C * for all 1 ≤ k ≤ n.

Next, we want to show that

Z k = w k z n+2-k
(5.9)

for some real constant w k depending on γ j . Define

V j = U j -2α j log |z|, ∀ 1 ≤ j ≤ n. (5.10) So -∆V i = -4U i,z z + 4πα i δ 0 = exp   n j=1 a ij U j   + 4πα i δ 0 -4π n j=1 a ij γ j δ 0 = |z| 2γi exp   n j=1 a ij V j   with R 2 |z| 2γi exp   n j=1 a ij V j   dx = R 2 exp   n j=1 a ij U j   dx = R 2 e ui dx < ∞, ∀ 1 ≤ i ≤ n.
As γ i > -1, applying Brezis-Merle's argument in [START_REF] Brezis | Uniform estimates and blow-up behavior for solutions of -∆u = V (x)e u in two dimensions[END_REF] to the system of V i , we have V i ∈ C 0,α in C for some α ∈ (0, 1) and they are upper bounded over C. This implies that we can express V i by the integral representation formula. Moreover, by scaling argument and elliptic estimates, we have for all 1 ≤ i ≤ n,

∇ k V i (z) = O 1 + |z| 2+2γi-k near 0 and ∇ k V i (z) = O z -k near ∞, ∀ k ≥ 1.
(5.11) By (2.3) and (5.11), it is obvious that

W k k (z) = C k + o(1) z 2 near 0 and W k k (z) = O z -2 near ∞.
where C k are real constants depending on γ j only. Thus considering z 2 W k k , we get

W k k (z) = C k z 2 in C.
(5.12)

In particular, Z n is determined uniquely. To determine Z k for k < n, we can do the induction step on k. By using (5.7), the definition of W j k , (2.5) and (5.11), we obtain

Z k = w k + o(1) z n+2-k near 0 and Z k = O 1 z n+2-k at ∞,
where w k is a real constant and depends only on γ j . By the Liouville theorem, (5.9) is proved.

Proof of (5.6) . To prove that f satisfies the ODE, we use (5.9) with k = 1. By the above lemma, for k = 1,

w 1 z n+1 = Z 1 = W n 1 + U 1,z Z 2 + n-2 j=1 W j 1 Z j+2 = W n 1 + w 2 z n U 1,z + n-2 j=1 w j+2 z n-j W j 1 .
As f = e -U1 , we have -U 1,z f = f and W j 1 f = -f (j+1) by definition for all 1 ≤ j ≤ n. Multiplying the above equation with f , we get

w 1 z n+1 f = -f (n+1) - w 2 z n f - n-2 j=1 w j+2 z n-j f (j+1) ,
or equivalently

f (n+1) + n-1 k=0 Z k+1 f (k) = f (n+1) + n-1 k=0 w k+1 z n+1-k f (k) = 0.
Up to change the definition of w k , we are done.

Step 2

We will prove that the fundamental solutions for (5.6) are just given by f i (z) = z βi with

β 0 = -α 1 , β i = α i -α i+1 + i for 1 ≤ i ≤ n -1, β n = α n + n.
(5.13)

or equivalently we have P (β i ) = 0 where

P (β) = β(β -1) . . . (β -n) + n-1 i=0 w k β(β -1) . . . (β -k + 1).
By (5.13), β i satisfies

β i -β i-1 = γ i + 1 > 0 for all 1 ≤ i ≤ n. (5.14) Let f = λ 0 |z| -2α1 + n i=1 λ i |P i (z)| 2 , (5.15) 
with

P i (z) = z (µ1+µ2+•••+µi-α1) + i-1 j=0 c ij z µ1+•••+µj -α1 ,
where

µ i = 1 + γ i > 0. Note that |P i (z)| |z| µ1+•••+µi-α1 = 1 + i-1 j=0 c ij z -µj+1-•••-µi in C * . Since |P i (z)| is a single-valued function, we have c ij = 0 if µ j+1 + • • • + µ i / ∈ N.
In the following, we let f (p,q) denote ∂ q z ∂ p z f . For any f of (5.15), we define, if possible,

U = (U 1 , • • • , U n ) by e -U1 = f and e -U k = 2 k(k-1) det k (f ) for 2 ≤ k ≤ n, (5.16) 
where

det k (f ) = det f (p,q) 0≤p,q≤k-1 for 1 ≤ k ≤ n + 1.
(5.17)

Theorem 5.3. Let det k (f ) be defined by (5.17) with f given by (5.15) and λ i > 0 for all 0 ≤ i ≤ n.

Then we have det k (f ) > 0 in C * , ∀ 1 ≤ k ≤ n. Furthermore, U = (U 1 , ..., U n ) defined by (5.16) satisfies (5.2) if and only if (5.5) holds.

Before going into the details of proof of Theorem 5.3, we first explain how to construct solutions of Toda system from f via the formula (5.16). Here we follow the procedure from [START_REF] Yang | Solitons in field theory and nonlinear analysis[END_REF]. For any function f , we define det k (f ) by (5.17). Then we have

det k+1 (f ) = det k (f )∂ z z det k (f ) -∂ z det k (f )∂ z det k (f ) det k-1 (f ) for k ≥ 1.
(5.18)

The above formula comes from a general formula for the determinant of a (k + 1) × (k + 1) matrix. We explain it in the following. Let N = (c i,j ) be a (k + 1) × (k + 1) matrix:

N =   M 1 - → u - → v - → s c k,k c k,k+1 - → t c k+1,k c k+1,k+1  
where -→ u and -→ v stands for the column vectors consisting of first (k -1) entries of the k-th column and

(k + 1)-th column respectively, and -→ s and -→ t stand for row vectors consisting of the first (k -1) entries of the k-th row and (k + 1)-th row respectively. We let

N 1 = M 1 - → u - → s c k,k , N 2 = M 1 - → v - → t c k+1,k+1 N * 1 = M 1 - → u - → t c k+1,k , N * 2 = M 1 - → v - → s c k,k+1
.

Then we have det(N )det(M 1 ) = det(N 1 )det(N 2 ) -det(N * 1 )det(N * 2 )
. Since the proof is elementary, we omit it. Clearly, (5.18) follows from the above formula immediately.

Suppose that det

k (f ) > 0 for 1 ≤ k ≤ n and det n+1 (f ) = 2 -n(n+1) . Define U 1 by f = e -U1 . As -e -2U1 U 1,z z = f f z z -f z f z , then -4U 1,z z = e 2U1-U2 if and only if e -U2 = 4(f f z z -f z f z ) = 4det 2 (f ).
By the induction on k, 2 ≤ k ≤ n, we have

-4e -2U k U k,z z = 4e -2U k log det k (f ) z z = 4 • 2 2k(k-1) det k (f )∂ z z det k (f ) -∂ z det k (f )∂ z det k (f ) = 2 2k(k-1)+2 det k+1 (f ) det k-1 (f ) = 2 (k+1)k e -U k-1 det k+1 (f ). Thus, U k satisfies U k + e 2U k -U k+1 -U k-1 = 0 in C * if and only if e -U k+1 = 2 (k+1)k det k+1 (f ). For the last equation k = n, we have -4e -2Un U n,z z = 2 (n+1)n e -Un-1 det n+1 (f ). Thus, U n satisfies U n + e 2Un-Un-1 = 0 in C * if and only if det n+1 (f ) = 2 -n(n+1) .
Therefore, assume that U = (U k ) given by (5.16), (5.17) and (5.15) is a solution of the Toda system (5.2), to get the equality in (5.5), it is equivalent to show

det n+1 (f ) = λ 0 λ 1 • • • λ n × Π 1≤i≤j≤n j k=i µ k 2 (5.19)
for f given by (5.15). We have first Lemma 5.4. Let g = |z| 2β f with β ∈ R, and f be a complex analytic function in C * , there holds

det k (g) = |z| 2kβ det k (f ) in C * , ∀ k ∈ N * .
(5.20)

Proof. This is obviously true for k = 1, we can check also easily for k = 2. Suppose that the above formula holds for 1 ≤ ≤ k, then by formula (5.18),

det k+1 (g) = det k (g)∂ z z det k (g) -∂ z det k (g)∂ z det k (g) det k-1 (g) = det 2 (det k (g)) det k-1 (g) = det 2 |z| 2kβ det k (f ) |z| 2(k-1)β det k-1 (f ) = |z| 2(k+1)β det 2 (det k (f )) det k-1 (f ) = |z| 2(k+1)β det k+1 (f ).
The equality (5.20) holds when det k-1 (f ) = 0.

Thanks to (5.20), to prove (5.19), it is enough to prove the following: Let

f = λ 0 + n i=1 λ i |P i (z)| 2 in C (5.21) 
with P i given by (5.4), then

det n+1 ( f ) = λ 0 λ 1 • • • λ n × 1≤i≤j≤n j k=i µ k 2 × |z| 2nγ1+2(n-1)γ2+...+2γn . (5.22) 
Here we used (n + 1)α 1 = nγ 1 + (n -1)γ 2 + . . . + γ n for SU (n + 1).

Proof of (5.22). We proceed by induction. Let n = 1, we have

P 1 = c 0 + z µ1 , so det 2 ( f ) = det 2 λ 0 + λ 1 |P 1 | 2 = |z| -4α1 λ 0 λ 1 |P 1 | 2 = λ 0 λ 1 µ 2 1 |z| 2(µ1-1) = λ 0 λ 1 µ 2 1 |z| 2γ1 .
since µ 1 -1 = γ 1 . Then (5.22) holds true for n = 1.

Suppose that (5.22) is true for some (n-1) ∈ N * , we will prove (5.22) for the range n. Define L k (P ) to be the vertical vector (P, ∂ z P, . . . , ∂ k z P ) ∈ C k+1 for any smooth function P and k ∈ N * . Denote P 0 ≡ 1, there holds

det n+1 ( f ) = 0≤i k ≤n,ip =iq λ i0 λ i1 • • • λ in det P i0 L n (P i0 ), ∂ z P i1 L n (P i1 ), • • • , ∂ n z P in L n (P in ) = λ 0 λ 1 • • • λ n 1≤i k ≤n,ip =iq det P 0 L n (P 0 ), ∂ z P i1 L n (P i1 ), • • • , ∂ n z P in L n (P in ) .
The last line is due to P 0 ≡ 1. Let e 1 be the vertical vector (1, 0, . . . , 0), we have

det P 0 L n (P 0 ), ∂ z P i1 L n (P i1 ), • • • , ∂ n z P in L n (P in ) = det e 1 , ∂ z P i1 L n (P i1 ), • • • , ∂ n z P in L n (P in ) = det P i1 L n-1 (P i1 ), • • • , P in L n-1 (P in ) . Therefore det n+1 ( f ) = λ 0 λ 1 • • • λ n det n (h) with h = 1≤i≤n |P i | 2 .
Moreover, for i ≥ 1,

P i = i-1 k=1 (µ 1 + µ 2 + . . . + µ k )c ik z µ1+µ2+...+µ k -1 + (µ 1 + µ 2 + . . . + µ i )z µ1+µ2+...+µi-1 = (µ 1 + µ 2 + . . . + µ i )z µ1-1 P i
where

P i = z µ2+...+µi + i-1 k=1 c ik z µ2+...+µ k with c ij ∈ C.
This means that

h = |z| 2γ1 n i=1 (µ 1 + µ 2 + . . . + µ i ) 2 | P i | 2 = |z| 2γ1 µ 2 1 + n-1 i=1 (µ 1 + µ 2 + . . . + µ i+1 ) 2 | P i+1 | 2 := |z| 2γ1 h,
hence h is in the form of (5.21) with (n -1). Consequently, by the induction hypothesis, we get

det n+1 ( f ) = λ 0 λ 1 • • • λ n det n (h) = λ 0 λ 1 • • • λ n |z| 2nγ1 det n ( h) = λ 0 λ 1 • • • λ n |z| 2nγ1 × 1≤k≤n (µ 1 + µ 2 + . . . µ k ) 2 × 2≤i≤j≤n j k=i µ k 2 × |z| 2(n-1)γ2+...+2γn ,
which yields clearly the equality (5.22).

On the other hand, assume that (5.5) holds true, using the above analysis and (5. [START_REF] Jost | Classification of solutions of a Toda system in R 2[END_REF]), we see that U defined by (5.16) and (5.15) is a solution of (5.2) in C * provided that det k (f ) > 0 in C * .

First we make a general calculus of det k (g) with

g = n i,j=0 m ij f i f j , where m ij = m ji for all 0 ≤ i, j ≤ n, (5.23) 
where f i (z) = z βi . Let M = (m ij ) 0≤i,j≤n and J = (z ij ) 0≤i,j≤n with z ij = z βj (i) . Let N j1,...,j k i1,...,i k be the k × k sub matrix (b ij ) i=i1,...,i k ,j=j1,...,j k , for any matrix N = (b ij ), we denote also N i1,...,i k the k × (n + 1) sub matrix by taking the rows i 1 , . . . , i k of N , and N t means the transposed matrix of N .

As

g (p,q) = m ij f (p) i f (q) j . For 1 ≤ k ≤ n, we can check easily that g (p,q) 0≤p,q≤k = J 0,1,...,k M J 0,1,...,k t ,
and det J 0,1,...,k M J 0,1,...,k t = 0≤i0<i1<...<i k ≤n,0≤j0<j1...<j k ≤n det J i0,i1,...i k 0,1,...,k M j0,j1...,j k i0,i1,...i k J j0,j1...,j k 0,1,...,k t = 0≤i0<i1<...<i k ≤n,0≤j0<j1...<j k ≤n det M j0,j1...,j k i0,i1,...i k det J i0,i1,...i k 0,1,...,k det J j0,j1...,j k 0,1,...,k .

(

Moreover, exactly as for (5.22), by induction, we can prove that det J i0,i1,...i k 0,1,...,k

= 0≤p<q≤k β iq -β ip × z (k+1)βi 0 +k(βi 1 -βi 0 -1)+...+(βi k -βi k-1 -1) = 0≤p<q≤k β iq -β ip × z βi 0 +βi 1 +...+βi k -k(k+1) 2 .
(5.25)

Given f by (5.15) with λ i satisfying (5.5), we will prove that det

k (f ) > 0 in C * . Clearly, f > 0 in C * and f = 0≤i,j≤n m ij f i f j where M = (m ij ) = BB t , B = (b ij ) with b ii = λ i , b ij = λ i c ji for j > i, b ij = 0 for j < i. For 1 ≤ k ≤ n, denote B = J 0,1,...,k B, we can check that det k+1 (f ) = det J 0,1,...,k M J 0,1,...,k t = det BB t = 0≤i0<i1<...<i k ≤n det B i0,i1,...i k 0,1,...,k det B i0,i1...,i k 0,1,...,k t = 0≤i0<i1<...<i k ≤n det B i0,i1,...i k 0,1,...,k 2 .
As det n+1 (f ) = 2 -n(n+1) = 0 by (5.5) and (5.19), the rank of the matrix B must be (k + 1) in C * , hence for any z ∈ C * , we have 0

≤ i 0 < i 1 < . . . < i k ≤ n, such that det B i0,i1,...i k 0,1,...,k (z) = 0, thus det k+1 (f ) > 0 in C * .
To complete the proof of Theorem 5.3, it remains to compute the strength of the singularity. Notice that M = BB t is a positive hermitian matrix, since λ i > 0. By the formulas (5.24), (5.25), as i p ≥ p, j p ≥ p, β i are increasing and

k p=0 β p - k(k + 1) 2 = -(k + 1)α 0 + kγ 1 + (k -1)γ 2 + . . . + γ k = -α k+1 , we get det k+1 (f ) = 0≤p<q≤k (β q -β p )|z| -2α k+1 ζ k + o(1) as z → 0, (5.26) 
with ζ k = det M 0,1,...,k 0,1,...,k > 0. This implies

U k+1 = -2α k+1 log |z| + O(1) near 0. Hence U = (U 1 , • • • , U n ) satisfies (5.
2) in C. This completes the proof of Theorem 5.3.

By Theorem 5.3, we have proved that any f given by (5.15) verifying (5.5) is a solution of (5.6), because U = (U 1 , . . . , U n ) defined by (5.16) is a solution of the Toda system. In particular, it is the case for f = 0≤i≤n λ i |z| 2βi satisfying (5.5), with β i are given by (5.13). Let L denote the linear operator of the differential equation (5.6). Then

0 = LL(f ) = n i=0 λ i |L(z βi )| 2 ,
which implies L(z βi ) = 0, ∀ 0 ≤ i ≤ n. Thus Step 2 is proved.

Step 3

Suppose U = (U 1 , . . . , U n ) is a solution of equation (5.2), we will prove that f = e -U1 can be written as the form of (5.15). For any solution (U i ), as f = e -U1 > 0 satisfies (5.6), we have

f = n i,j=0
m ij f i f j , where m ij = m ji for all 0 ≤ i, j ≤ n, where f i (z) = z βi is a set of fundamental solutions of (5.6).

We want to prove that f can be written as a sum of |P i (z)| 2 , which is not true in general, because even a positive polynomial in C cannot be written always as sum of squares of module of polynomials. For example, it is the case for 2|z| 6 -|z| 4 -|z| 2 + 2. It means that, we need to use further informations from the Toda system. In fact, we will prove that M = (m ij ) is a positive hermitian matrix.

With V i given by (5.10),

e V1 = |z| 2α1 e -U1 = |z| 2α1 f = m 00 + n i=1 m ii |z| 2(βi-β0) + 2 0≤i<j≤n Re m ij zβj-βi |z| 2(βi-β0) ,
Take z = 0, we get m 00 > 0. Let J = (z ij ) 0≤i,j≤n with z ij = z βj (i) as in Step 2. Using (5.24), (5.25) and the monotonicity of β i , exactly as before, we get, for 1

≤ k ≤ n -1 det k+1 (f ) = 0≤p<q≤k (β q -β p )|z| -2α k+1 det M 0,1,...,k 0,1,...,k + o(1) , as z → 0.
Recall that e -U k+1 = 2 k(k+1) det k+1 (f ) and V k+1 is defined by (5.10),

e -V k+1 (0) 2 2(k+1)k = |z| 2α k+1 det k+1 (f ) z=0 = det M 0,1...,k 0,1,...k × 0≤p<q≤k (β q -β p ) 2 ,
which yields

det M 0,1...,k 0,1,...k > 0, ∀ 1 ≤ k ≤ n -1.
(5.27)

Similarly, when k = n, noticing that

n p=0 β p - n(n + 1) 2 = 0, we obtain 2 -n(n+1) = det n+1 (f ) = det(M ) × 0≤p<q≤n (β q -β p ) 2 , (5.28) 
hence det(M ) > 0. Combining with (5.27) and m 00 > 0, it is well known that M is a positive hermitian matrix. Consequently, we can decompose M = BB t with a upper triangle matrix B = (b ij ) where b ii > 0.

To conclude, we have

f = n i,j=0 m ij f i f j = n k=0 |Q k | 2 , where Q k = k i=0 b ik f i .
It is equivalent to saying that f is in the form of (5.15) with λ i = b 2 ii > 0. Combining with Theorem 5.3, the proof of Theorem 5.1 is finished.

Quantization and Nondegeneracy

Here we will prove Theorem 1.3. We first prove the quantization of the integral of e ui . By (5.24), (5.25) and again the monotonicity of β i with f given by (5.15), we have for 1

≤ k ≤ n, e -U k = 2 k(k-1) det k (f ) = |z| 2(β n-k+1 +•••+βn)-k(k-1) [c k + o(1)] , as |z| → ∞, where c k = 2 k(k-1) λ n-k+1 λ n-k+2 • • • λ n × n-k+1≤q<p≤n (β p -β q ) 2 > 0.
Thus, as

-∆U k = e u k -4πα k δ 0 R 2 e u k dx = 4πα k + lim R→+∞ ∂B R ∂U k ∂ν ds = 4π α k + β n-k+1 + • • • + β n - k(k -1) 2 = 4π α k + α n-k+1 + k(n -k + 1) . Therefore, n k=1 a ik R 2 e u k dx = 4π(2 + γ k + γ n+1-k ), which implies u k (z) = -4π(2 + γ n+1-k ) log |z| + O(1), for large |z|.
This proves the quantization.

To prove the nondegeneracy, we let (u i ) be a solution of the singular Toda system SU (n + 1) (1.6) and φ i be solutions of the linearized system LSU (n + 1):

-∆φ i = n j=1 a ij e uj φ j in R 2 , φ i ∈ L ∞ (R 2 ) ∀ 1 ≤ i ≤ n, (6.1) 
or equivalently

-4Φ i,z z = exp   n j=1 a ij U j   × n j=1 (a ij Φ j ) in R 2 , Φ i ∈ L ∞ (R 2 ), ∀ 1 ≤ i ≤ n
where U j are defined by (5.1) and Φ j defined by (4.2).

We will use the quantities Y j 1 = e U1 e -U1 Φ 1 (j+1) -e -U1 (j+1) Φ 1 for 1 ≤ j ≤ n, and

Y j k+1 = - Y j k,z + W j k+1 Φ k,z z U k,z z for 1 ≤ k < j ≤ n.
Recall that Y n n,z = 0 in C * for solutions of LSU (n + 1), we can prove also (as for (2.4))

Y j j,z = -Φ j,z z U j+1,z -U j,z z Φ j+1,z for solutions of LSU (n + 1) and j < n. (6.2)

Now we define some new invariants Z k for solutions of (6.1), which correspond to Z k for system SU (n + 1). Let

Z n = Y n n , and Z k = Y n k + Φ k,z Z k+1 + n-2 j=k Y j k Z j+2 , ∀ k = n -1, n -2, . . . , 1.
The central argument is Lemma 6.1. For any solution of (6.1), we have Z k ≡ 0 in C * for all 1 ≤ k ≤ n.

Proof. By the same argument as in section 4, we have that Z n is holomorphic in C * , since

Z n = Y n n = n i=1 Φ i,zz -2 n i=1 U i,z Φ i,z + n-1 i=1 (Φ i,z U i+1,z + U i,z Φ i+1,z ) .
Using the integral representation formula for Φ i , we see that

∇ k Φ i = O(z -k ) as |z| → ∞ for all k ≥ 1, so Z n = O(z -2
) at infinity. On the other hand, since γ j > -1 for all 1 ≤ j ≤ n, we have Φ i ∈ C 0,α (C) with some α ∈ (0, 1), for any 1 ≤ i ≤ n. Again, by elliptic estimates, we can claim that

∇ k Φ i (z) = o z -k as z → 0, for k ≥ 1, 1 ≤ i ≤ n.
By the behaviour U i via (5.11), Z n = o(z -2 ) near the origin, so Z n ≡ 0 in C * .

Combining the iterative relations on Y j k , the behaviours of Φ i and U j , we can claim that for all k ≤ j ≤ n,

Y j k = O z k-j-2 as |z| → ∞ and Y j k = o z k-j-2 as |z| → 0. (6.3) Therefore (recalling that Z k = w k z k-2-n for any k), as Z n = W n n and Y n n = 0, Z n-1,z = Y n n-1,z + Φ n-1,z z Z n = -U n-1,z Y n n -Φ n-1,z z W n n + Φ n-1,z z Z n = 0. So Z n-1 is holomorphic in C * .
Using expression of Z k , the asymptotic behaviour of Φ i and (6.3), we see that

Z n-1 = O(z -3 ) at infinity and Z n-1 = o(z -3 ) near 0, hence Z n-1 = 0 in C * . For k ≤ n -2, suppose that Z j = 0 for j > k, we have Z k,z = Y n k,z + Φ k,z z Z k+1 + Y k k,z Z k+2 + n-2 j=k+1 Y j k,z Z j+2 = -U k,z z Y n k+1 + Φ k+1,z Z k+2 + n-2 j=k+1 Y j k+1 Z j+2 + Φ k,z z Z k+1 -W n k+1 -U k+1,z Z k+2 - n-2 j=k+1 W j k+1 Z j+2 = -U k,z z Z k+1 = 0.
Here we used the definition of Z k+1 . Similarly, the asymptotic behaviors yield that Z k = 0 in C * . The backward induction finishes the proof.

Let g = f Φ 1 with f = e -U1
. By the definition of Y j 1 , we see that g

(j+1) = f (j+1) Φ 1 + f Y j 1 for any 1 ≤ j ≤ n. Finally, g (n+1) = f (n+1) Φ 1 + f Y n 1 = -Φ 1 n-1 j=0 Z j+1 f (j) + f Y j 1 = -Z 1 f Φ 1 -Z 2 f Φ 1 - n-1 j=2 Z j+1 g (j) -f Y j-1 1 + f Y n 1 22 = - n-1 j=0 Z j+1 g (j) + f Y n 1 + Φ 1,z Z 2 - n-2 j=1 Y j 1 Z j+2 = - n-1 j=0
Z j+1 g (j) .

For the last line, we used Z 1 = 0. Therefore g satisfies exactly the same differential equation (5.6) for f .

As g is a real function in C * , we get g = m kl f k f l with a hermitian matrix ( m kl ). As before, the coefficients m kl need to be zero if

µ k+1 + • • • + µ l / ∈ N, k < l, because for z = |z|e iθ , g = n k=0 m kk |z| 2β k + 2 k |z| 2β k Re k<l m kl e i(µ k+1 +•••+µ l )θ
is a single-valued function in C * . Besides, we can also eliminate the subspace of constant functions for Φ 1 as in section 4. We can conclude then the solution space for (6.1) has the same dimension for the solution manifold for (1.6), which means just the nondegeneracy.

7 Proof of Theorem 1.5

Let u be a solution of (1.1). By the proof of Lemma 5.2, f = e -U1 satisfies the differential equation:

L(f ) = f (n+1) + n-1 k=0 Z k+1 f (k) = 0 in C \ {P 1 , . . . , P m }, (7.1) 
where Z k+1 is a meromorphic function with poles at {P 1 , . . . , P m } and Z k+1 (z) = O(|z| -n+k-1 ) at ∞. From Lemma 2.1, the principal part of Z k at P j is

Z k = w k (z -P j ) n+1-k + O 1 |z -P j | n-k , (7.2) 
where the coefficient depends only on {γ ij , 1 ≤ i ≤ n}.

As we knew in the Introduction, locally f can be written as a sum of |ν i (z)| 2 , where ν i (z) is a holomorphic function. Hence

0 = LL(f ) = n i=0 |L(ν i )| 2
Therefore, {ν i } 0≤i≤n is a set of fundamental solutions of (7.1), and by (7.1), ν ∧ • • • ∧ ν (n) (z) remains a constant through its analytical continuation. The local exponents {β ij , 1 ≤ i ≤ n} of (7.1) at each P j is completely determined by the principal part of Z k . Hence by (7.2) and (5.13), we have

β 0j = -α 1j , β ij = β i-1,j + γ ij + 1.
Therefore, near each P , = 1, 2, . . . , m, ν i (P + z) = 0≤j≤n c ij z β j g j (z), where g j is a holomorphic function in a neighbourhood of P . Since β j -β 0 are positive integers, we have ν(P + ze 2πi ) = e 2πiβ 0 ν(P + z), (7.3) i.e. the monodromy of ν near P is e 2πiβ 0 I, I is the identity matrix. Therefore, the monodromy group of (5.6) consists of scalar multiples of I only, which implies [ν(z)], as a map into CP n , is smooth at P and well-defined in C.

• If γ 1 ∈ N, γ 2 ∈ N, then c 2 = c 3 = 0; if γ 1 ∈ N, γ 2 ∈ N, there holds c 1 = c 3 = 0; we get a four dimensional solution manifold in both cases.

• If γ 1 ∈ N, γ 2 ∈ N but γ 1 + γ 2 ∈ Z, then c 1 = c 2 = 0, the solution manifold to (8.1) is of four dimensions.

In all cases, we have The proof follows directly from the formulas (1.9) and (5.16). Here in the below we give direct calculations instead of the general consideration in section 5.

Define (U 1 , U 2 ) and α 1 , α 2 by (5.1). Denoting

W 1 = -e U1 e -U1
= U 1,zzz -3U 1,zz U 1,z + U 3 1,z , then W 1,z = -U 1,z z U 1,zz + U 2,zz -U 2 1,z -U 2 2,z + U 1,z U 2,z := -U 1,z z W 2 . As before, we can claim that W 2,z = 0 in C * . By studying the behaviour of W 2 at ∞, we get

W 2 = w 2 z 2 in C * where w 2 = -α 2 1 -α 2 2 + α 1 α 2 -α 1 -α 2 .
As (W 1 + U 1,z W 2 z = U 1,z W 2,z = 0 in C * , by considering z 3 (W 1 + U 1,z W 2 ), there holds

W 1 + U 1,z W 2 = w 1 z 3 in C * where w 1 = 2α 1 + 3α 2 1 + α 3 1 + α 1 w 2 .
Combine all these informations, the function f := e -U1 satisfies In the following, we show how to get explicit formulas of U i for two cases, and all the others can be treated similarly. The formulas of u i or the quantization (8.3) of the integrals are clearly direct consequences of expression of U i . Moreover, there holds also e -U1 = -4e Indeed, the positivity of e -U1 in C * implies that a 1 , a 3 > 0, so is a 2 by (8.5). We obtain then the expression of e -U2 directly and we can check that the necessary and sufficient condition required to get solutions of (8.1) is always (8.5). We leave the details for interested readers. This yields

f zzz = -f W 1 = - w 1 z 3 f + f U 1,z w 2 z 2 = -
e -U1 = 1 4Γ|z| 2α1 (γ 2 + 1)ξ 1 + (γ 1 + γ 2 + 2)ξ 2 z γ1+1 -c 1 2 + γ 1 + 1 ξ 1 ξ 2 |z| 2(γ1+γ2+2)
and e -U2 = 1 4Γ|z| 2α2 (γ 1 + 1)ξ 1 ξ 2 + As e -U2 > 0, we must have c 1 ≥ 0. So we get λ = 0, and we find the expression of f as in Case 1 with a 2 = 0. Then we need to verify the equation (8.5). However this is impossible since a 2 = 0. Thus a 2 must be non zero.

γ 1 + γ 2 + 2 ξ 2 |z| 2(γ2+1) + γ 2 + 1 ξ 1 |z| 2(γ2+1) z γ1+1 - (γ 1 + γ 2 + 2)c 1 γ 2 + 1

R 2 e u1 dx = R 2 e

 22 u2 dx = 4π(γ 1 + γ 2 + 2).(8.3) 

w 2 z 2 f z - w 1 z 3 f

 3 in C * .(8.4) Consider special solution of (8.4) like z β , then β should satisfy β(β -1)(β -2) + w 2 β + w 1 = 0. We check readily that the equation of β has three roots:β 1 = -α 1 , β 2 = α 1 + 1 -α 2 and β 3 = α 2 + 2. Hence β 3 -β 2 = γ 2 + 1 > 0 and β 2 -β 1 = γ 1 + 1 > 0.We obtain finally f (z) = 1≤i,j≤3 b ij z βi zβj with an hermitian matrix (b ij ).

Case 1 : 3 i=1a

 13 γ i / ∈ N and γ 1 + γ 2 / ∈ Z. To get a well defined real function f in C * , we have b ij = 0 for i = j, so that f = e -U1 = i |z| 2βi in C * , with a i ∈ R.Therefore direct calculation yieldse -U2 4 = -e -2U1 U 1,z z = f f z z -f z f z = 1≤i<j≤3 a i a j (β i -β j ) 2 |z| 2(βi+βj -1) .

Case 2 : 3 i=1a

 23 γ 1 ∈ N but γ 2 ∈ N. We get e -U1 = i |z| 2βi + Re λz γ1+1 |z| 2α1 in C * , with a i ∈ R, λ ∈ C.If a 2 = 0, changing eventually the value of a 1 , there exists c 1 ∈ C such thate -U1 = a 1 + a 2 z γ1+1 -c 1 2 + a 3 |z| 2(γ1+γ2+2)|z| 2α1 in C * .

2 .= a 1 + 1 = - |λ| 2 (γ 1 + 1 ) 2 4 , c 2 = a 1 a 3 (γ 1 + γ 2 + 2 ) 2 , c 3 =

 21121142312223 So it remains to eliminate the case a 2 = 0. If a 2 = 0, we can rewritef Re λz γ1+1 + a 3 |z| 2(γ1+γ2+2) |z| 2α1 in C * where λ ∈ C. Direct calculation yields e -U2 4 = f f z z -f z f z = |z| 2(-α2+γ2+1) c 1 |z| -2(γ2+1) + c 2 + c 3 Re λz γ1+1where c a 3 (γ 1 + γ 2 + 2)(γ 2 + 1).

  -2U2 U 2,z z . With the explicit values of β i , we can check that (U 1 , U 2 ) is a solution if and only ifa 1 a 2 a 3 Γ 2 = 1 64 where Γ = (γ 1 + 1)(γ 2 + 1)(γ 1 + γ 2 + 2), + γ 2 + 2)ξ 1 4Γ , a 3 = (γ 1 + 1) 4Γξ 1 ξ 2 with ξ 1 , ξ 2 > 0.

	or equivalently			
	a 1 =	(γ 2 + 1)ξ 1 4Γ	, a 2 =	(γ 1
				(8.5)

Applying the estimate of Brezis and Merle [START_REF] Brezis | Uniform estimates and blow-up behavior for solutions of -∆u = V (x)e u in two dimensions[END_REF], we have

for some γ * i . To compute γ * i , we might use the Kelvin transformation, u i (z) = u i (z|z| -2 ) -4 log |z|. Then u i (z) also satisfies (1.1) with a new singularity at 0,

The local exponent of ODE (7.1) corresponding to u i near 0 is β * i where

Since the monodromy near 0 is a scalar multiple of the identity matrix, we conclude that β * i -β * 0 must be integers and therefore, all γ * i are integers. By identifying S 2 = C ∪ {∞}, we see ν(z) can be smoothly extended to be a holomorphic curve from S 2 into CP n and ∞ might be a ramificated point with the total ramification index γ * i . This ends the proof of Theorem 1.5.

8 Appendix: explicit formula for SU (3)

For general SU (n + 1) (1.6), depending the values of γ i > -1, we can have many different situations by Theorem 1.1. The solution manifolds have dimensions ranging from n to n(n + 2). On the other hand, with the expression of U 1 given by (1.9) and f = e -U1 , we can obtain U 2 , • • • , U n using the formulas in (5.16). However the formulas for U k , 2 ≤ k ≤ n are quite complicated in general.

In this appendix, we focus on the case of SU (3) and give the explicit formulas for n = 2. Consider

with γ 1 , γ 2 > -1. Our result is Theorem 8.1. Assume that (u 1 , u 2 ) is solution of (8.1).

• If γ 1 , γ 2 ∈ N. The solution space is an eight dimensional smooth manifold. More precisely, we have

with Γ = (γ 1 + 1)(γ 2 + 1)(γ 1 + γ 2 + 2) and

where c 1 , c 2 , c 3 ∈ C, ξ 1 , ξ 2 > 0.

• If now γ 1 ∈ N, γ 2 ∈ N and γ 1 + γ 2 ∈ Z, then c 1 = c 2 = c 3 = 0, the solution manifold to (8.1) is of two dimensions.