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Introduction

Electrocardiogram (ECG) records the electrical activity of heart and is a noninvasive, safe and quick tool for cardiac disease diagnosis. During the recent years there have been significant advances in adult clinical electrocardiography but analysis of fetal ECG (fECG) is still in its infancy. fECG signal contains precise information that can help clinicians and physicians in making important decisions during labor. Fetal heart rate (FHR) monitoring is a routine for obtaining significant information about the fetal condition during pregnancy and labor. The characteristics of the fECG, such as heart rate, waveform, and dynamic behavior, are convenient in determining the fetal life, fetal development, fetal maturity, and existence of fetal distress or congenital heart disease. The FHR may change as the fetus responds to conditions in the uterus [START_REF] Hasan | Detection and processing techniques of fECG signal for fetal monitoring[END_REF].

Analyzing the fECG and finding its R peaks are so important in different applications. In [START_REF] Altuve | Multivariate ECG analysis for apnoeabradycardia detection and characterisation in preterm infants[END_REF], Altuve et al. use the RR interval extracted from the fECG to detect apnea bradycardia episodes. They study three time series (RR interval, R wave amplitude and QRS complex duration) for periods at rest, before, during and after apnea-bradycardia episodes. Some methods have been proposed for processing the fetal ECG using the direct fetal ECG which is acquired from a fetal scalp electrode during delivery. As acquiring the direct fECG is invasive and can be done only in labor time, extraction of noninvasive fECG can be of great interest. Since the noninvasive fECG is highly contaminated by maternal ECG (mECG) and other artifacts, developing a method that can extract fetal ECG from mixture of mECG, fECG, and other interference sources is underway by biomedical engineering communities. In [START_REF] Hasan | Detection and processing techniques of fECG signal for fetal monitoring[END_REF], various methodologies and developed algorithms on fECG signal detection and analysis for fetal monitoring are illustrated.

Among the several methods addressing fetal extraction, there are many methods (such as periodic component analysis (πCA) [START_REF] Sameni | Multichannel electrocardiogram decomposition using periodic component analysis[END_REF] and extended Bayesian filtering framework [START_REF] Niknazar | Fetal ECG extraction by extended state kalman filtering based on singlechannel recordings[END_REF]) that use fetal R-peak positions. Indeed, these methods utilize fetal R-peak positions as prior information for exploiting the quasi-periodic nature of this signal.

In this paper, we propose an efficient method for Rpeak detection in noninvasive fetal ECG signals which are acquired from multiple electrodes on mother's abdomen. The proposed method is performed in two steps: first, we employ a robust tensor decomposition-based method to roughly extract fetal ECG from mixtures of fetal and maternal ECGs; then a method based on extended Kalman filter (EKF) is used for fetal R-peak detection.

The ECG Kalman filtering framework is recalled in Section 2. In Section 3, we explain our proposed method for fetal ECG extraction and R-peak detection. In Section 4, we present the results of applying the proposed method on actual noninvasive fetal ECG signals. Finally, our discussion and conclusions are stated in Section 5.

ECG Kalman Filtering Background

McSharry et al. [START_REF] Mcsharry | A dynamic model for generating synthetic electrocardiogram signals[END_REF] have proposed a synthetic ECG generator, which is based on a nonlinear dynamic model. Details of this model can be found in [START_REF] Mcsharry | A dynamic model for generating synthetic electrocardiogram signals[END_REF]. Sameni et al. [START_REF] Sameni | Nonlinear bayesian filtering framework for ECG denoising[END_REF] transformed these dynamic equations into the polar form to obtain a simpler compact set, with the simplified discrete form shown as: 2π), δ is the sampling time, η k is a random additive noise that models the inaccuracies of the dynamic model. In [START_REF] Hasan | Detection and processing techniques of fECG signal for fetal monitoring[END_REF], z k is the state model of ECG, which models the whole PQRST complex as a sum of N Gaussians and the summation over i is taken over the number of Gaussian functions used for modeling the shape of the ECG. The α ik , b ik and θ ik terms correspond to the amplitude, angular spread and location of the Gaussian functions and ω k is the beat-to-beat angular frequency of the RR interval.

{ φ k+1 = (φ k + ω k δ) mod(2π) z k+1 = - ∑ i δ α ik ω k b 2 ik ∆θ ik exp(- ∆θ 2 ik 2b 2 ik ) + z k + η k (1) where ∆θ ik = (φ k -θ ik ) mod(

3.

Proposed Method

Fetal ECG Extraction

In this paper for fECG extraction, the deterministic blind separation of sources having different symbol rates, proposed in [START_REF] Almeida | Deterministic blind separation of sources having different symbol rates using tensor based parallel deflation[END_REF] has been adapted to ECG signal. This method, assumes that each of the n = 1, . . . , N sources has periodic symbols. Then, it builds a three-way tensor Ȳ (n) ∈ C M×T ×L , where M , T n , and L n denote the number of sensors, symbol period and time samples per symbol period of the n-th source, respectively. For each source, the tensor is built by stacking the data for each period of the source into a slice of the tensor. In the ECG context, due to the quasi-periodic nature of the ECG signal, one can firstly detect ECG R-peaks then stack ECG beats centered at the R-peaks to build the tensors Ȳ (n) . Each of these tensors can then be decomposed into the loading matrices

A (n) ∈ C M×R , S(n) ∈ C T ×R and H(n) ∈ C L ×R ,
which provide estimates of the mixing matrix, the ECG beat amplitude, and the ECG temporal pattern. In [START_REF] Almeida | Deterministic blind separation of sources having different symbol rates using tensor based parallel deflation[END_REF], the Canonical Polyadic (CP) has been used for tensor decomposition. However, in order to track the fECG mixed with the strong mECG, a robust tensor decomposition should be used. We employ a weighted CP (WCP) for decomposition of the tensors, which applies a weight on each entry of the tensor to better concentrate on the signal of interest. Therefore, the new criterion is:

min { Â(n) , Ŝ(n) , Ĥ(n) } ∑ i,j,k w (n) ijk ( y (n) ijk - Rn ∑ r=1 a (n) ir s(n) jr h(n) kr ) 2 F , (2) 
where

w (n) ijk = exp { - (y (n) ijk -µ ik ) 2 σ 2 ik } , n = 1, . . . , N (3) 
are the elements of a nonnegative weight tensor, which is of the same size as Ȳ (n) . Here, µ is the mean of Ȳ (n) over the j-th dimension and σ is the median absolute deviation (MAD) estimator of Ȳ (n) over the j-th dimension.

In order to apply this method to roughly estimate fECG, first maternal R-peaks are easily detected from the mixture and the maternal tensor is built. Decomposition of this tensor yields the maternal leading matrices that are then used to reconstruct mECG. The reconstructed mECG is subtracted from the mixture to provide a noisy estimate of fECG, which can be used to roughly estimate fetal Rpeak positions. Having the rough fetal R-peak positions, the fetal tensor can be constructed and decomposed. The fetal loading matrices are finally used to reconstruct the rough fECG estimate.

R-peak Detection

After extracting the rough fECG, we use an EKF-based method for R-peak detection [START_REF] Akhbari | ECG fiducial points extraction by extended kalman filtering[END_REF]. Discrete state and observation equations of our proposed model are defined in (4) and [START_REF] Mcsharry | A dynamic model for generating synthetic electrocardiogram signals[END_REF], respectively.

                               φ k+1 = (φ k + ω k δ) mod(2π) P k+1 = -∑ i∈{P 1 ,P 2 } δ α ik ω k b 2 ik ∆θ ik exp(- ∆θ 2 ik 2b 2 ik ) + P k + η P k C k+1 = -∑ i∈{Q,R,S} δ α ik ω k b 2 ik ∆θ ik exp(- ∆θ 2 ik 2b 2 ik ) + C k + η C k T k+1 = -∑ i∈{T 1 ,T 2 } δ α ik ω k b 2 ik ∆θ ik exp(- ∆θ 2 ik 2b 2 ik ) + T k + η T k α i,k+1 = α i,k + u j,k , j = {1, • • • , 7} b i,k+1 = b i,k + u j,k , j = {8, • • • , 14} θ i,k+1 = θ i,k + u j,k , j = {15, • • • , 21} i ∈ {P 1 , P 2 , Q, R, S, T 1 , T 2 } (4)        Φ k = φ k + v 1k P P k = P k + v 2k CC k = C k + v 3k T T k = T k + v 4k (5) 
In (4), the first state is the phase of the ECG. The second, third and forth ones are the different waves of ECG which are separately considered as a state. The parameters of the Gaussian functions are considered as hidden-state variables (states 5 to 21 : α i,k , b i,k and θ i,k ) with first order AR dynamics but without corresponding observations. In [START_REF] Akhbari | Fiducial points extraction and characteristic waves detection in ECG signal using a model-based bayesian framework[END_REF], we used (4) and assumed that the ECG observation can be defined as a summation of P k , C k and T k states (z k = P k + C k + T k + v 2k ). This assumption was not wrong but estimated ECG waves had rising and falling drifts, compensated in the estimated ECG which is the sum of estimated waves. These drifts may be due to this fact that in that model, we have only one observation (based on 3 states) which corresponds to original ECG. There, we had not used the estimated waves directly and we just used a peak detection method for finding their peaks which, despite the drift of estimated waves, peak of waves can be estimated accurately.

Here we modify the previous model and consider four observations for our model. In [START_REF] Mcsharry | A dynamic model for generating synthetic electrocardiogram signals[END_REF], the first one corresponds to the phase observation and the others correspond to the ECG observation in P, C and T intervals, respectively. In fact, we determine three windows for segmenting the original ECG and finding the P P k , CC k and T T k observations. Here we use windows which are the difference of two sigmoid functions and have almost soft rising and falling edges. The begining and end of these windows are defined corresponding to the phase of ECG. Indeed, we assume that P , C and T intervals correspond to ECG phase in the intervals [-π, -π/6], [-π/6, π/6] and [π/6, π] respectively. It is important to note that this assumption for normal ECG signals is almost valid. These windows are defined in [START_REF] Sameni | Nonlinear bayesian filtering framework for ECG denoising[END_REF] and the shape of the windows is controlled with γ, set here as γ = 30 in order to provide quite instantaneous transistions. Observations P P k , CC k and T T k in (5) are calculated by multiplying the original (observed) ECG signal and windows defined in [START_REF] Sameni | Nonlinear bayesian filtering framework for ECG denoising[END_REF].

(P w) k = 1 1 + exp -γ(Φ k -(-π)) - 1 1 + exp -γ(Φ k -(-π/6)) (Cw) k = 1 1 + exp -γ(Φ k -(-π/6)) - 1 1 + exp -γ(Φ k -(π/6)) (T w) k = 1 1 + exp -γ(Φ k -(π/6)) - 1 1 + exp -γ(Φ k -(π))
(6) The R-peak detection is based on 3 successive tasks: • Using "peak detection" method (finding the maxima) for estimated QRS Complex ( Ĉ) and finding its peak which is called P C .

• Constructing Q(θ), R(θ) and S(θ) Gaussian functions [START_REF] Almeida | Deterministic blind separation of sources having different symbol rates using tensor based parallel deflation[END_REF] and find the maximum of

Q(θ) + R(θ) + S(θ) function which is called Θ R . ((8)).
• Using a decision rule like [START_REF] Akhbari | Fiducial points extraction and characteristic waves detection in ECG signal using a model-based bayesian framework[END_REF] to find the final R-peak points of fetal ECG (R peak ), where s k is the extracted fetal ECG signal.

i(θ) = αi exp(- (θ -θi ) 2 2 b2 i ), i ∈ {Q, R, S} (7) 
Θ R = argmax(Q(θ) + R(θ) + S(θ)) (8) R peak = argmax(s k (Θ R ), s k (P C )) (9) 

Results

For evaluation of our method, we use the noninvasive fetal ECG database in the Physionet/Computing in Cardiology Challenge 2013 [10]. This dataset consist of a collection of one-minute fetal ECG recordings. Each recording includes four noninvasive abdominal signals and was sampled at 1 kHz. Details can be found in [10].

Figures 1 and2 show the first channel of recorded ECG (which is a mixture of maternal ECG, fetal ECG and other noises), estimated maternal and fetal ECGs by the proposed method for data "a08" and "a12" from the database, respectively. In these figures, the reference annotations (the given R-peaks) and the estimated R-peaks by the proposed method are shown with green and red points, respectively. We can see that the proposed method can extract fetal ECG from recorded ECG and also can detect the Rpeaks with a high accuracy. Figure 3 shows the estimated fetal ECG, the given R-peaks (green points) and the estimated R-peaks (red points) for data "a03", "a04", "a05" and "a22" of database. The obtained average scores of event 4 and 5 on the set B of "Physionet Challenge 2013" data are 1326.21 and 45.06, respectively 

Discussion and Conclusions

In this paper, we proposed a method for accurate fetal Rpeak detection from noninvasive maternal and fetal ECG mixtures which are acquired from multiple electrodes on mother's abdomen. For rough fetal ECG extraction, we employed a robust tensor decomposition method and for fetal R-peak detection, we used a method based on EKF. The WCP decomposition used in this study enables us to Figure 3. Estimated fetal ECG, Given R-peaks (green points) and estimated R-peaks (red points) for data "a03", "a04", "a05" and "a22".

capture weak traces of the fECG mixed with the strong mECG. In addition, by introducing a simple AR model for each of the 21 dynamic parameters of the Gaussian functions and considering separate states for ECG waves, new EKF structure was constructed.

Quantitative and qualitative results show that proposed approach detects R-peaks of fetal ECG with a high accuracy. The average score of our proposed method for the PhysioNet Challenge 2013 on set B from entry 1 are 1326.21 and 45.06 for event 4 and 5 respectively.

Figure 1 .

 1 Figure 1. (a). First channel of recorded ECG (data "a08") and given R-peaks (b). Estimated maternal ECG (c). Estimated fetal ECG, given R-peaks (green points) and estimated R-peaks (red points).

Figure 2 .

 2 Figure 2. (a). First channel of recorded ECG (data "a12") and given R-peaks (b). Estimated maternal ECG (c). Estimated fetal ECG, given R-peaks (green points) and estimated R-peaks (red points).
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