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ABSTRACT

T Wave Alternans (TWA) is considered as an indicator of

Sudden Cardiac Death (SCD). In this paper for TWA detec-

tion, a method based on a nonlinear dynamic model is pre-

sented. For estimating the model parameters, we use an Ex-

tended Kalman Filter (EKF). We propose EKF6 and dualrate

EKF6 approaches. Dualrate EKF is suitable for modeling the

states which are not updated in all time instances. Quan-

titative and qualitative evaluations of the proposed method

have been done on TWA challenge database. We compare

our method with that proposed by Sieed et al. in TWA chal-

lenge 2008. We also compare our method with our previous

proposed approach (EKF25-4obs). Results show that the pro-

posed method can detect peak position and amplitude of T

waves in ECG precisely. Mean and standard deviation of es-

timation error of our method for finding position of T waves

do not exceed four samples (8 msec).

Index Terms— Electrocardiogram (ECG), T Wave Alter-

nans (TWA), Extended Kalman Filter (EKF), Dualrate EKF.

1. INTRODUCTION

CardioVascular Diseases (CVD) are one of the major causes

of mortality in humans [1]. A great part of these deaths oc-

curs suddenly and is known as Sudden Cardiac Death (SCD)

which has a high incidence. Implantable Cardioverter Defib-

rillators (ICD) are the most effective way of preventing SCD.

However, implanting an ICD is an invasive procedure. Vari-

ous non-invasive indices have been proposed to predict SCD

such as QRS duration, QT dispersion, heart rate variablity

and etc. T wave alternans (TWA) is one of the most promis-

ing non-invasive indices for SCD prediction [1]. It is a pat-

tern in ECG characterized by two (rarely more) distinct forms

of T waves appearing in alternation (like Fig.1). Several al-

gorithms have been proposed to automatically detect TWA,
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employing linear and nonlinear signal processing techniques.

Details of them can be found in [2].

Fig. 1. Visible TWA in ECG signal [3].

A nonlinear dynamical model for generation of synthetic

ECG signals has been developed by McSharry et al. [4]. Up

to now, many researches extended and modified this model.

In this paper and based on this model, we propose a new

framework for detecting the T wave alternans in ECG signal.

By introducing a simple AR model for each of the parame-

ters of T Gaussian function and considering separate states

for PQRS and T waves, new EKF structure (EKF6) is con-

structed. Firstly we use EKF6 approach for estimating the

states, then we use the estimated states for finding the peak

position and amplitude of T waves in ECG. We observe that in

ECG signals with TWA, the amplitude of T waves in odd and

even beats are different. We also propose “dualrate EKF6”

approach, which assumes that some states (such as peak posi-

tion of T wave, ... ) are not necessary to be updated in all time

instances and can only be updated in certain instances. It is

for the first time that EKF-based frameworks have been used

for T wave alternans detection. And also dualrate EKF-based

approach is used for ECG analysis for the first time in this

paper. For validation of our method, we will use ECG signals

from TWA challenge database [5]. The proposed method is

compared with that proposed by Sieed et al. [3, 6] in TWA

challenge 2008. We also compare our method with our previ-

ous proposed approach (EKF25-4obs) [7]. Results show that

the proposed methods can detect peak position and amplitude

of T waves in ECG precisely.



Due to space limitations, basics of EKF are not discussed

in this paper. Details of them can be found in [8–10]. Previous

EKF-based approaches are discussed in section 2. In section

3, we explain our proposed method (“EKF6” and ”dualrate

EKF6” approaches) for T wave alternans detection. In section

4, we present the results. Finally, discussion and conclusions

are provided in section 5.

2. PREVIOUS EKF-BASED APPROACHES

A synthetic ECG generator has been proposed by McSharry

et al. [4], which is based on a nonlinear dynamic model.

Sameni et al. [8] transformed this model and proposed an Ex-

tended Kalman Filter (EKF) algorithm which was firstly used

for ECG denoising. Discrete state-equations of this model

(EKF2) are as follows:
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∆θ2

i,k
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) + zk + ηk

(1)

where ϕk is the phase of ECG, ωk is the beat-to-beat angular

frequency of the RR interval. In this model it is assumed that

zk is a state variable which is a sum of 5 Gaussian functions

(i ∈ {P,Q,R, S, T}). Each Gaussian function is defined with

three main parameters: αi,k, bi,k and θi,k terms correspond to

the amplitude, width and location of the Gaussian functions

and ∆θi,k = (ϕk− θi,k)mod(2π). δ is the sampling time, ηk
is a random additive noise that models the inaccuracies of the

dynamic model. Details of this model can be found in [8].

Sayadi et al. modified the EKF2 framework and pro-

posed “EKF17” approach used for ECG denoising, compres-

sion [11] and beat segmentation of normal ECG signals [12].

They also proposed “EKF4” approach used for PVC detec-

tion [13] and ECG denoising [14].

Akhbari et al. [9] introduced a simple AR model for angu-

lar velocity of ECG (ωk), considered it as a state of model and

proposed “EKF3” and “EKF3-2” approaches used for ECG

denoising. They also proposed EKF25 frameworks for ECG

fiducial points extraction [7, 15]. In fact 25 parameters of

ECG signal were considered as states of an EKF and peak,

onset and offset of all characteristic waves (QRS complex, P

and T waves) of ECG signal were found by this approach. For

observations, they considered two cases: in [15] two observa-

tions were used, while four observations were used in [7].

The later, also was used for R-peak detection in non-invasive

fetal ECG (fECG) signals which are acquired from multiple

electrodes on mother’s abdomen [16].

3. OUR PROPOSED METHOD

3.1. EKF6 Approach

In this paper by taking the idea of previous EKF-based ap-

proaches, we propose a new framework. We consider sep-

arate states for PQRS and T waves and also define an AR

model for parameters of T Gaussian function and consider

them as states. Discrete state and observation equations of

our proposed model are defined in (2) and (3), respectively.



























































ϕk+1 = (ϕk + ωkδ) mod(2π)
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) + Tk + ηTk

αT,k+1 = αT,k + u1,k

bT,k+1 = bT,k + u2,k

θT,k+1 = θT,k + u3,k

(2)






Φk = ϕk + v1k
PPCCk = PCk + v2k
TTk = Tk + v3k

(3)

In (2), the first state is the phase of the ECG. PCk and Tk are

the PQRS and T waves of ECG which are separately consid-

ered as states. The parameters of the PQRS wave Gaussian

functions are considered as process noise but the parameters

of the T wave Gaussian function are considered as states 4 to

6 with first order AR dynamics but without corresponding ob-

servations. In fact in this approach we consider 6 parameters

of ECG as states, so we call it “EKF6”. The system state and

process noise vectors are defined as:

xk = [ϕk, PCk, Tk, αT, k, bT, k, θT, k]
T

wk = [ωk, ηPCk
, ηTk

, αi, k, bi, k, θi, k, u1, k, u2, k, u3, k]
T ,

i ∈ {P,Q,R, S}

(4)

In (3), the first equation corresponds to phase observa-

tion and others correspond to ECG observation in PQRS and

T intervals, respectively: y
k

= [Φk, PPCCk, TTk]
T and

vk = [v1k, v2k, v3k]
T . Details of observation definitions can

be found in [7].

Fig. 2 shows the blockdiagram of our proposed approach

for finding the peak position of T waves. In this blockdia-

gram, T̂ (θ) is the estimated T wave by EKF6 model (third es-

timated state) and T (θ) is constructed from estimated T Gaus-

sian parameters (states 4 to 6) as following:

T (θ) = α̂T exp(−
(θ − θ̂T )

2

2b̂2T
) (5)

The proposed method for finding the peak position and

amplitude of T waves, consists of the following steps:

• Considering the estimated T wave (T̂ (θ)) and finding its

maximum value location by (6). These points are called

TP and are the first candidate group for final peak position

of T waves.

TP = argmax
θ

T̂ (θ) (6)



                                                                                   

Phase 

Calculation 

(Tw)k

TTk

(PCw)k

PPCCk
ECG

Signal
EKF6 

Structure 

Eq. (2)  

and

(3)

ECG

Phase 

ˆ

)(
^

PC

)(T̂

T
ˆ

T
b̂

T

ˆ

Eq.(6) 

Eq. 

(5)
)(T

P
T

Eq. 

(8)

T Peak 

Points

sk

(sk)

Eq. 

(7)
T

T

ˆ

Fig. 2. Blockdiagram of proposed EKF6 approach for finding

peak position of T waves.

• Construct T (θ) Gaussian function (by (5)) and find the

location of maximum of absolute of this function by (7).

These points are called ΘT and are the second candidate

group for final peak position of T waves.

ΘT = argmax
θ

|T (θ)| (7)

• θ̂T is 6th estimated state by EKF6 and can be consid-

ered as third candidate group for final peak position of

T waves.

• Using a decision rule like (8) to find the final peak position

of T wave (Tpeak), where sk is the observed (original)

ECG signal. Tamp is the amplitude of T wave peaks.

Tpeak = argmax
TP ,ΘT ,θ̂T

(sk(TP ), sk(ΘT ), sk(θ̂T ))

Tamp = sk(Tpeak)
(8)

3.2. Dualrate EKF6 Approach

Dualrate Kalman filter is a kind of Kalman filter used in cases

which we have observations which are not in the same rate.

For example, Kuure-Kinsey et al. used a dualrate Kalman

filter for continuous glucose monitoring [17]. Their model

has two measured outputs: sensor output and reference blood

glucose (fingerstick) measurements, each on a different time

scale. The sensor measurements are the fast time scale, with

order of magnitude in minutes. The fingerstick measurements

are more infrequent and on the slow time scale with order of

magnitude in hours. For estimating the model parameters,

they considered one dynamic equation and two observation

equation sets as below [17]:

Xk+1 = ΦXk + Γwk

yf,k = CfastXk + vf,k
ys,k = CslowXk + vs,k

(9)

Update at fast and slow sample time are given by predic-

tor/corrector equations in (10) and (11), respectively [17].

X̂k|k−1 = ΦX̂k−1|k−1

ŷf,k|k−1 = CfastX̂k|k−1

X̂k|k = X̂k|k−1 +K
fast
k (yf,k − ŷf,k|k−1)

(10)

X̂k|k−1 = ΦX̂k−1|k−1

ŷs,k|k−1 = CslowX̂k|k−1

X̂k|k = X̂k|k−1 +Kslow
k (yf,k − ŷs,k|k−1)

(11)

For solving the model which has different measurement

rates, we can consider two different observations and pre-

dictor/corrector equations (as above) or we can actually let

Kalman filter run as normal, that is with the same rate for

both corrector/predictor parts, but in some time instances we

force the effective Kalman gain to become zero [18]. This can

be done by simply multiplying Kk by a factor, say a, so that

the corrected estimate is:

X̂k|k = X̂k|k−1 + aKk(yk − ŷk|k−1) (12)

a = 1 is default value, to be used when X̂k|k be updated by

the measurement (via the innovation process), and a = 0 is

used when X̂k|k shall not be updated, implying that X̂k|k is

equal to X̂k|k−1 [18]:

X̂k|k = X̂k|k−1 + 0Kk(yk − ŷk|k−1) = X̂k|k−1 (13)

In this paper beside EKF6 approach, we also implement

“dualrate EKF6” approach. In fact, in dualrate approach we

assume that αT,k, bT,k and θT,k states in (2) are not updated in

all time instances and are only updated in certain time points

beside the peak position of T (iT ). iT is a rough approxi-

mation of T-peak positions which are found by adding a con-

stant value to the location of R-peaks. So in dualrate EKF6

approach, we assume that in the Kalman gain matrix (Kk),

the corresponding elements of αT,k, bT,k and θT,k states have

only values in certain time instances (iT ) and we force these

elements to zero in other instances.

4. RESULTS

For validation of our method, we use TWA challenge database.

It contains 100 multichannel ECG records sampled at 500 Hz.

By following the procedure of Fig.2 and equations (5)-(8),

peak position and amplitude of T waves have been detected.

Sieed et al. achieved the best score in TWA challenge

2008 [19]. They first detected the local maximum value in

each ECG beat and considered it as R-peaks (normally R is

the highest peak in an ECG beat of lead-I or II) and after

that defined a interval between two consecutive R-peaks and

found the local maximum value in this interval and consid-

ered it as T-peaks [6]. We compare our proposed method

with Sieed et al. method and also with our previous pro-

posed approach (EKF25-4obs) [7]. For a few records of

TWA challenge database, the position of T wave is defined

by “ecgpuwave” software [20]. We calculate estimation er-

ror which is defined as time differences between results of

“ecgpuwave” software (considered as ground truth) and our

proposed method. Table 1 shows the mean (m) and standard

deviation (SD) of estimation error of EKF6, dualrate EKF6,



EKF25 and Sieed et al. approaches for finding the T-peak

position. We can see that EKF6 and dualrate EKF6 can de-

tect T-peak position better than other methods; their ‘m” and

“SD” values do not exceed four samples (8 msec).

Table 1. Mean and SD of errors (msec) between estimated T-

peak position and annotations defined by “ecgpuwave” soft-

ware

m ± SD (µV )
Record EKF6 Dualrate EKF6 EKF25 Sieed et al.

twa01 6.9 ± 1.2 7 ± 1.3 8.3 ± 1.9 9.6 ± 0.8
twa10 2.5 ± 4.3 2.3 ± 4.6 10.2 ± 3.7 7.2 ± 3.4
twa91 7.2 ± 1.2 7.2 ± 1.6 8.6 ± 2.4 9.8 ± 1.2
twa93 2.8 ± 7.3 2.7 ± 7.6 11.2 ± 7.6 9 ± 4.2

After estimating the T waves successfully, then we sep-

arate odd and even T-peaks; mean and standard deviation of

their amplitudes are calculated. Results are given in table 2.

The difference between T- amplitude of odd and even beats is

known as T wave alternans. Mean and standard deviation of

T wave alternans are also given in table 2.

TWA challenge database includes different records from

various databases such as long-term ST database, sudden car-

diac death, normal sinus rhythm and synthetic ECG. Here we

use three different kinds of ECG of this database:

• Records twa01, twa29, twa70, twa91 and twa97 are syn-

thetic ECG with TWA and from table 2, we can see

that these records have significant TWA and all the ap-

proaches have reasonable results; results of EKF6 and

dualrate EKF6 are as good as other methods.

• Records twa10 and twa93 are normal sinus rhythm. In

table 2, we can see that all methods have a large vari-

ance and more than their mean; which are not reasonable.

Since these two records are normal, maybe they can not

be considered as a signal with TWA and maybe their odd

and even T waves may not appearing in alternations.

• Records twa52 and twa81 are synthetic ECG without

TWA and from table 2, we can see that they have no

significant TWA as we expected.

5. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a method for finding the peak po-

sition and amplitude of T waves and consequently the T wave

alternans in ECG signals. By introducing a simple AR model

for each of the parameters of T Gaussian function and consid-

ering separate states for PQRS and T waves, new EKF struc-

ture (EKF6) is constructed. We also propose dualrate EKF6

approach and assume that parameters of T Gaussian function

(αT,k, bT,k and θT,k) are not updated in all time instances and

are only updated in certain instances beside the T peak points.

For validation of our proposed approach, we use TWA chal-

lenge database and compare our results with the results of the

Table 2. Comparison of mean and SD of T wave amplitudes

for odd and even beats and TWA amplitude obtained by dif-

ferent approaches.

m ± SD (µV )
Record Method odd beats even beats TWA Amp.

twa01 EKF6 338.6 ± 1.8 328.2 ± 0.4 10.7 ± 1.7
D.R.EKF6 339.2 ± 1.9 328.2 ± 0.4 11 ± 1.9
EKF25 338.9 ± 1.4 325.6 ± 3.6 13.2 ± 3.4
Sieed et al. 337.3 ± 0.7 325.5 ± 0.9 11.7 ± 0.9

twa29 EKF6 489 ± 13.3 455 ± 2.3 34 ± 11.6
D.R.EKF6 492.2 ± 8 454.6 ± 2.3 37.6 ± 6.6
EKF25 491 ± 5.4 452.2 ± 4.3 38.9 ± 4.4
Sieed et al. 494 ± 2.6 452.3 ± 4.2 41.7 ± 4.8

twa70 EKF6 565.1 ± 3.4 557 ± 2.3 8.1 ± 3.2
D.R.EKF6 562.2 ± 4 554.4 ± 3 7.85 ± 5.6
EKF25 566 ± 3.8 558.7 ± 1.4 7.2 ± 3.7
Sieed et al. 567.6 ± 1.4 559.2 ± 1.6 8.5 ± 1.2

twa91 EKF6 336.5 ± 2.5 321 ± 1 15.5 ± 2
D.R.EKF6 336.8 ± 2.5 320.4 ± 1.8 16.4 ± 2.5
EKF25 333 ± 5.6 318.3 ± 5.4 14.8 ± 5
Sieed et al. 334.2 ± 3.2 318.2 ± 2.7 16 ± 2.8

twa97 EKF6 493 ± 3.4 479.8 ± 1.6 13.2 ± 4.2
D.R.EKF6 492.7 ± 3.4 479.8 ± 1.6 13 ± 4.2
EKF25 492 ± 5.3 475.7 ± 6 16.4 ± 9.8
Sieed et al. 489.9 ± 4 475.4 ± 4 14.5 ± 6

twa10 EKF6 492.8 ± 15 484.7 ± 16.7 8 ± 18.8
D.R.EKF6 492.8 ± 15 484.3 ± 17 8.5 ± 19.2
EKF25 493.5 ± 17.9 487.9 ± 14.8 5.6 ± 13.2
Sieed et al. 495.5 ± 16.1 492.4 ± 13.2 3.2 ± 14.5

twa93 EKF6 776.7 ± 67 825 ± 73.3 48.3 ± 76.7
D.R.EKF6 776.3 ± 66.7 824.5 ± 72.7 48.2 ± 75.3
EKF25 764.6 ± 133.2 827.5 ± 72 62.8 ± 82.3
Sieed et al. 808.8 ± 62.2 832.7 ± 77 23.8 ± 73.2

twa52 EKF6 677.6 ± 3 676.8 ± 2.8 0.73 ± 4.8
D.R.EKF6 677.1 ± 4.8 677.5 ± 2.5 −0.36 ± 5.5
EKF25 675.6 ± 5.6 674.3 ± 5 1.26 ± 8.6
Sieed et al. 675 ± 2.4 673.8 ± 3.3 1.26 ± 4.1

twa81 EKF6 677.5 ± 2.3 677.3 ± 2 0.17 ± 2.4
D.R.EKF6 678 ± 1.6 677.7 ± 1.9 0.27 ± 1.5
EKF25 677.5 ± 2.5 677.5 ± 2.5 −0.05 ± 2.4
Sieed et al. 673.4 ± 4.5 673.8 ± 3.5 −0.38 ± 4.7

team (Sieed et al.) which had the best scores in challenge

2008 and also with our previous proposed approach (EKF25-

4obs). We see that our proposed methods can detect the T-

peak position better than other methods and ‘m” and “SD”

values of their estimation error do not exceed four samples

(8 msec). For TWA amplitude calculation, all methods have

good and reasonable results for synthetic ECG signals with

TWA (twa01, twa29, twa70, twa91 and twa97). For signals

which are normal (twa10 and twa 93), results are not reason-

able as we expected and for synthetic ECG signals without

TWA (twa52 and twa81), results show no significant TWA

as we expected. So our proposed methods can distinguish

between different kinds of signals (signals with TWA, normal

signals and signals without TWA) and their results are as good

as other mentioned methods. Future work will include inten-

sive experiments on more TWA signals using this approach.
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