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ABSTRACT4

The consequences of rapid and extreme flooding events, such as tsunamis, riverine flooding and5

dam breaks show the necessity of developing efficient and accurate tools for studying these flow6

fields, and devise appropriate mitigation plans for threatened sites. Two-dimensional simulations7

of these flows can provide information about the temporal evolution of water depth and velocities,8

but the accurate prediction of the arrival time of the flood and the extent of the inundated areas still9

pose a significant challenge for numerical models of rapid flows over rough and variable topogra-10

phies. Careful numerical treatments are required to reproduce the sudden changes in velocities11

and water depths, evolving under strong nonlinear conditions that often lead to breaking waves or12

bores. In addition, new controlled experiments of flood propagation in complex geometries are13

also needed to provide data for testing the models and evaluate their performance in more realistic14

conditions. In this work we implement a robust well-balanced numerical model to solve the nonlin-15
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ear shallow water equations (NSWE) in a non-orthogonal boundary-fitted curvilinear coordinate16

system. We show that the model is capable of computing flows over highly variable topogra-17

phies, preserving the positivity of the water depth, and providing accurate predictions for wetting18

and drying processes. The model is validated against benchmark cases that consider the use of19

boundary-fitted discretizations of the computational domain. In addition, we perform a laboratory20

experiment of a rapid flood over a complex topography, measuring the propagation of a dam-break21

wave on a scaled physical model, registering time series of water depth in 19 cross-sections along22

the flow direction. We use the data from this experiment to test our numerical model, and compare23

our model performance with the numerical results of two other recognized NSWE models, show-24

ing that ours is a reliable tool for predicting efficiently and accurately extreme inundation events25

and long-wave propagation over complex topographies.26

Keywords: Shallow water equations, shock capturing methods, well-balanced schemes, boundary-27

fitted curvilinear coordinates28

INTRODUCTION29

In recent years, a number of catastrophic events have involved rapid flooding over complex30

topography, such as tsunamis and river floods. In Chile, for example, several Glacial-lake outburst31

floods (GLOF) have occurred in the Colonia river, a tributary of the Baker river(47◦10’ S; 73◦20’32

W), as a consequence of the Cachet-II lake outburst. In fact, two major events in 2008 generated an33

increase of the Baker river free surface elevation of above 4.5 m and a peak discharge over 3,00034

m3/s (DGA Satellite monitoring station at Baker River, DGA-MOP,Chile), flooding large parts35

of the Colonia and Baker river valleys and putting at risk the town of Caleta Tortel, located at the36

mouth of the Baker river (Dussaillant et al. 2009). This eventhas repeated two times a year since37

2008, which is likely linked to significant increments of temperature that have been registered on38

the entire watershed in the last years.39

Recently, on February27th 2010, an 8.8 Mw earthquake occurred off the coast of south-central40

Chile (Fritz et al. 2011; Lay et al. 2010), generating a destructive tsunami that affected a significant41

portion of the coast, the Juan Fernández Archipíelago, and Easter Island, taking the lives of 12442
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people. As a consequence of these events, local authoritiesand the central government are cur-43

rently developing new hazards and risk plans in different coastal communities along Chile, which44

consider the investigation of the inundation extent and maximum water depth estimations, peak45

discharge and velocities, among other hydrodynamic variables for riverine floods and tsunamis.46

In order to study the large and costly consequences of these major rapid flooding events, it is47

necessary to develop instruments that can be used to predictaccurately and efficiently the flow48

velocities and water depths, and assess their associated hazards and risks. A good estimation49

of flow features such as run-up, affected areas, and arrival time of the peak flood will lead to50

define better the mitigation plans, early warning systems, and improve the preparedness of people51

when facing such catastrophic situations, incorporating the hydrodynamic forces into the design52

of coastal and riverine infrastructure (Federal EmergencyManagement Agency 2011; American53

Society of Civil Engineers 2006; Yeh 2006).54

The Nonlinear Shallow Water Equations (NSWE) are usually employed in these cases to de-55

scribe the flow dynamics, and model fairly long-waves in a homogeneous and incompressible fluid.56

They are obtained by vertically averaging the three-dimensional Navier-Stokes equations assuming57

a hydrostatic pressure distribution, resulting in a set of horizontal two-dimensional hyperbolic con-58

servation laws that describe the evolution of the water depth and depth-averaged velocities (Cunge59

et al. 1980; Stoker 1992).60

In the last decades, a significant number of numerical modelshave been developed to simulate61

these complex flows, employing finite-difference methods (e.g. Molls and Chaudry 1995; Molls62

and Zhao 2000), finite-element methods (e.g. Berger and Stockstill 1995; Tucciarelli and Termini63

2000), or finite-volume methods (e.g. Valiani et al. 2002; Zhou et al. 2004; Loose et al. 2005). In64

the framework of finite volume methods, Godunov-type formulations have become very useful to65

solve the NSWE, since they can reproduce complex discontinuities such as shock-waves or wet-66

dry interfaces by solving a Riemann problem at each cell interface of the discretized domain (Toro67

2001; Leveque 2002).68

Many environmental flows such as bore propagation (Hibberd and Peregrine 1979), tsunami69
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inundations (Yeh 1991), or glacial lake outburst floods (Cenderelli and Wohl 2001), fall within this70

category of extreme flood events that can be represented by the NSWE. They are characterized by71

rapid wetting and drying over highly variable topographies, giving rise to complex unsteady free72

surface dynamics which pose a significant challenge for the numerical models. Numerical strate-73

gies for integrating the governing equations in these shallow extreme flows must also deal with74

complicated geometries and the highly complex dynamics of wave breaking and run-up. Simi-75

larly, the discretization of the boundaries of the physicaldomain may have a strong influence in76

the development of the flow dynamics, introducing errors or numerical instabilities if not carefully77

performed (Baghlani et al. 2008).78

Motivated by these applications, in this investigation we develop an efficient numerical model79

to solve the two-dimensional dynamics of extreme flows over natural terrains. We extend the80

method of Marche et al. (2007), which has shown to resolve complex features of free-surface81

flows by implementing a well-balanced approach. Well-balanced schemes are specifically con-82

ceived to preserve local and global mass conservation to machine accuracy, maintaining also the83

steady and motionless states. To achieve this requirement,it is necessary to discretize carefully84

the friction and bed-slope source terms (see Greenberg and Leroux 1996; LeVeque 1998; Gallouet85

et al. 2003; Audusse et al. 2004; Liang and Marche 2009, for more details). We formulate and86

solve the governing equations in a non-orthogonal generalized curvilinear coordinate framework87

to model extreme flows propagation over natural terrains. Weuse a finite volume well-balanced88

approach based on a robust VFRoe-relaxation Riemann solver (Gallouet et al. 2003; Berthon and89

Marche 2008), calculating mass and momentum fluxes at cell interfaces and performing the hy-90

drostatic reconstruction method proposed by Audusse et al.(2004). The source term that accounts91

for friction effects is treated with the semi-implicit fractional-step approach of Liang and Marche92

(2009). Validation of the new model is presented through thecomparison with benchmark tests,93

which are specifically chosen to assess its ability to deal with wet-dry interfaces, complex geome-94

tries, shocks, friction and bathymetric source terms.95

In addition, the future studies of these flows will require new experiments, representing the96
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complex features of rapid flooding events over realistic arbitrary geometries, to test and improve97

the numerical models. In this investigation we also performa dam-break experiment on a scaled98

physical model, representing the bed and banks of a mountainriver. We register time-series of99

water depth, and then compare the results with simulations carried out with the new well-balanced100

numerical model, showing that it can capture the most relevant characteristics of the flow. Fur-101

thermore, in order to compare our model performance with previously validated numerical mod-102

els, we simulated this experience using two well-known shock-capturing NSWE models, AnuGA103

(Mungkasi and Roberts 2013) and GeoClaw (Berger et al. 2011). From this comparison we can104

establish the improvement achieved by our numerical approach in terms of the overall agreement105

of the free surface variations in time, the estimation of themaximum amplitude of the propagated106

bore and its arrival time to different locations.107

The paper is organized as follows: In section 2 we present thenon-dimensional governing108

equations and the partial transformation to generalized non-orthogonal curvilinear coordinates that109

are employed in the model. The numerical scheme and the different algorithms used to integrate110

the NSWE are briefly described in section 3. Validation tests and comparisons of numerical simu-111

lations with benchmark cases and previously published experimental data are presented in section112

4. In section 5 we describe new dam-break experiments conducted in the Hydraulic Laboratory of113

the Pontificia Universidad Católica de Chile, intended to further validate the model over a realistic114

and highly variable topographic configuration. Conclusionsand future perspectives of this work115

are discussed in section 6.116

GOVERNING EQUATIONS117

The two-dimensional NSWE are a system of nonlinear partial differential equations represent-118

ing the mass and momentum conservation laws, which were originally derived by Saint-Venant119

(1871). The fluid is assumed as incompressible and homogeneous, with hydrostatic pressure dis-120

tribution. The shallow water or long-wave hypothesis considers negligible vertical velocities and121

depth-uniform horizontal velocities. Hence, the NSWE are often applied to river or nearshore122

flows where the characteristic horizontal wave-length is much longer that the characteristic water123
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depth (see Cunge et al. 1980, for more details).124

In what follows, we will work with a non-dimensionalized setof NSWE by choosing charac-125

teristic horizontal and vertical length-scales and a velocity scale (L, H, andU respectively). By126

defining the length and velocity scales of the flow, the time-scale is represented byT = L/U ,127

and the dimensionless Froude number byFr = U/√gH, which quantifies the relative importance128

of inertial effects over gravity (g). The dimensional variables, noted with a hat (̂), are hereafter129

defined aŝx = Lx, ŷ = Ly, ẑ = Hz, ĥ = Hh, û = Uu, v̂ = Uv, and t̂ = Tt, wherex̂ and ŷ130

represent the Cartesian directions,ẑ defines the bed elevation,ĥ is the water depth,̂u andv̂ are the131

depth-averaged flow velocities in each Cartesian direction,andt̂ is the time. In order to reproduce132

better complex arbitrary geometries, we introduce a boundary-fitted curvilinear coordinate system133

in two dimensions denoted by the system(ξ, η). Generalized curvilinear coordinates are chosen to134

follow the boundaries of the physical domain, adapting the grid to the geometrical details of the135

terrain. With this transformation we can have a better resolution in zones of interest and an ac-136

curate representation of the boundaries, resulting in an efficient discretization of the flow domain137

(Lackey and Sotiropoulos 2005; Liang et al. 2007; Baghlani etal. 2008).138

The Cartesian NSWE can be partially transformed to this new coordinate system maintaining139

the hydrodynamic variables referenced to the Cartesian frame. This procedure is known as partial140

transformation and only modifies the mass and momentum fluxesof the governing equations. The141

full transformation would change the hydrodynamic variables vector,Q = [h, hu, hv]T , to the ve-142

locity components in theξ andη directions, using the so-called contravariant velocity components,143

and the derivatives in the convective terms would yield the well-known Christoffel symbols of the144

second kind (Ahn and Hosoda 2007). Therefore, considering only bed-slope and friction source145

terms, the non-dimensional NSWE can be written in curvilinear coordinates in the following form146

(Lackey and Sotiropoulos 2005),147

∂Q

∂t
+ J

∂F

∂ξ
+ J

∂G

∂η
= Sb(Q) + Sf (Q) (1)148

whereQ is the vector of hydrodynamic variables,F andG are the flux vectors expressed in terms149
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of the new spatial coordinate systemξ andη, respectively, andSb(Q) andSf (Q) are the source150

terms vectors. These vectors are given by the following expressions:151

Q =




h

hu

hv




, F =
1

J




hU1

uhU1 + 1
2Fr2

h2ξx

vhU1 + 1
2Fr2

h2ξy




, G =
1

J




hU2

uhU2 + 1
2Fr2

h2ηx

vhU2 + 1
2Fr2

h2ηy




, (2)152

Sb(Q) =




0

− h
Fr2

(zξξx + zηηx)

− h
Fr2

(zξξy + zηηy)




, Sf (Q) =




0

−Sfx

−Sfy




153

whereh represents the water depth,u andv are the non-dimensional depth-averaged flow velocities154

in each Cartesian directions;z defines the bed elevation,zξ andzη define the local bed slope with155

respect to the transformed coordinate system (ξ, η) andSf represents the friction source term.156

The additional terms that appear in the fluxes,ξx, ξy, ηx, andηy are the resulting metrics157

associated to the coordinate change, andJ = ξxηy − ξyηx is the Jacobian of the transformation,158

which will remain constant for a fixed grid.U1 andU2 are the contravariant velocity components,159

expressed asU j = uǫx + vǫy with (j, ǫ) ∈ {(1, ξ), (2, η)}. The transformed system of equations160

is discretized on a rectangular and uniform grid in the transformed space(ξ, η) using the finite161

volume method that is described in the next section.162

NUMERICAL SCHEME163

The curvilinear NSWE system given in Eq. (1) is integrated using a finite volume well-balanced164

scheme, coupled with a splitting strategy for the treatmentof source terms (Liang and Marche165

2009). We decompose the solution associated to the system ofequations (1) at each time step166

by solving two systems, one associated to the NSWE with topography source terms and a second167

associated to the remaining friction terms. In the following subsections we describe the different168

steps of the algorithm, including the implementation of theboundary conditions, and the stability169

criterion of the numerical solution.170
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Solution of the NSWE with Topography Source Terms171

In this step we solve the following system associated to NSWE with topography source terms,172

∂Q

∂t
+ J

∂F

∂ξ
+ J

∂G

∂η
= Sb(Q) (3)173

We seek a numerical strategy that provides stable shock-capturing integration of system (3)174

with a precise control of the spurious oscillations inducedby numerical dispersion. In addition, the175

scheme should be able to handle the complex interactions between flow and topography, including176

the preservation of motionless and steady states. We chooseto adapt the robust second-order finite177

volume scheme introduced by Marche et al. 2007 to the non-orthogonal boundary-fitted coordinate178

framework.179

Taking into account the new system of coordinates, the spatial discretization of Equation (3)180

can be recast under the following semi-discrete finite-volume formalism,181

d

dt
Qi,j +

Ji,j
∆ξ

(F ∗

i+ 1

2
,j
− F ∗

i− 1

2
,j
) +

Ji,j
∆η

(G∗

i,j+ 1

2

−G∗

i,j− 1

2

) = Sb(i,j) (4)182

whereQi,j is the vector of cell-centered hydrodynamic variables,Ji,j is the cell-centered Jacobian183

of the coordinate transformation,F ∗

i±1/2,j andG∗

i,j±1/2 correspond to the numerical flux functions184

through the(i, j) cell interfaces, andSb(i,j) to the centered discretization of the bed-slope source185

term. We denote by∆ξ and∆η the cell sizes, and the interface between the(i, j)th cell and the186

(i+ 1, j)th by (i+ 1
2
, j), as depicted in Fig. 1.187

The computation of the numerical fluxesF ∗

i±1/2,j andG∗

i,j±1/2 is achieved using a robust VFRoe-188

relaxation scheme proposed by Gallouet et al. (2003). To achieve a second order accurate scheme,189

we straightforwardly apply the MUSCL extrapolation proposed by Van Leer (1979). This tech-190

nique considers that numerical fluxes are computed by linearly reconstructing the hydrodynamic191

variables, leading to more accurate reconstructed states at each side of the interface of every cell192

as shown in Fig. 1 (see Bouchut 2004, for details). In order to handle topographic variations and193

the requirement for the preservation of static flows, we alsoadapted the well-balancing discretiza-194
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tion for the bed-slope term proposed by Audusse et al. (2004)to the boundary-fitted curvilinear195

coordinate system of equations. In this step of the algorithm we built a linear reconstruction of the196

topography considering the MUSCL reconstructed hydrodynamic variables as shown in Marche197

et al. (2007). Finally, the source termSb(Q) is estimated through the new reconstructed values of198

the fluxes. For a detailed description of the computation of the fluxes and the hydrodynamic vari-199

ables the reader is referred to the work of Marche et al. (2007) and Berthon and Marche (2008).200

Solution of the Friction Source Terms201

The friction source term is incorporated using the splitting semi-implicit method proposed202

by Liang and Marche (2009). The corresponding ordinary differential equation of the splitting203

operation is defined as follows,204

dQ

dt
= Sf (5)205

where206

Sf = (0,−τfx,−τfy)
T (6)207

In this equation, the termsτfx and τfy are the non-dimensionalized bed shear-stresses for each208

cartesian direction. The magnitude of the bed shear stresses in each direction can be calculated as209

follows:210

τfx = Cf u
√
u2 + v2 (7)211

τfy = Cf v
√
u2 + v2 (8)212

whereCf is a non-dimensionalized bed friction coefficient, which can be expressed using one of213

the standard existing approaches developed for uniform flows such as Manning or Chézy.214

Following the algorithm developed by Liang and Marche (2009), equation (5) is integrated215

using an implicit scheme and a second-order Taylor series expansion. Note that an additional216

friction limitation may be locally added to prevent from unphysical flow reversing, due to large217
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drag forces in vanishing depth areas, as mentioned by Burguete et al. (2008).218

As far as time-discretization is concerned, we use a classical second-order Runge-Kutta scheme219

for each time-step in this splitting approach. In order to solve system shown in Eq. (1) at the220

boundaries of the computational domain, we have implemented and tested in the model three types221

of boundary conditions: i.) Transmissive or open boundary,allowing the information to freely222

leave the domain without propagating spurious informationback to the domain; ii.) Solid wall or223

close boundary, that imposes no discharge through the boundary of the domain; and iii.) Absorb-224

ing/Generating boundary condition, which relies on the work of Sanders (2002) and Cienfuegos225

et al. (2007), which allow to prescribe inflow discharge or free surface information at the bound-226

ary, such as incoming waves or stage-discharge relationships, and freely evacuate back-traveling227

waves. Finally, the stability of the numerical model is controlled by the Courant-Friedrich-Lewy228

criterion (CFL) (Toro 2001).229

VALIDATION230

As previously explained, the numerical model in non-orthogonal generalized coordinates is231

based on the method of Marche et al. (2007), incorporating bed-friction with the splitting semi-232

implicit method of Liang and Marche (2009). Initially, we validated the model using various233

benchmark cases that are not shown herein, for rectangular domains employing discretizations in234

Cartesian coordinates. These first tests involved shock-capturing and moving shoreline problems,235

obtaining quantitatively accurate results in comparison with analytical solutions and laboratory236

data, which are the same cases previously studied by Marche et al. (2007). The following series of237

benchmark tests are intended to illustrate the improvements obtained when a boundary-fitted curvi-238

linear discretization is used, and to prove the ability of the model to deal with complex geometries,239

bed-slope, and friction source terms.240

Dam-Break in a Convergent-Divergent Flume241

We test the numerical model with a dam-break induced flow in a convergent-divergent channel,242

performing simulations of two-dimensional flood waves studied experimentally by Bellos et al.243

(1992). The channel is21.2 m long and has a rectangular cross-section of variable width. At a244
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distance of 5 m downstream from the beginning of the flume, there is a smooth curved contraction245

and expansion of0.6 m of minimum width, the flume has a constant bed-slope that canbe changed246

and ranges between±1%. For a detailed description of the domain the reader is referred to the247

work of Bellos et al. (1992).248

The simulation of the experiment was carried out using a non-uniform boundary-fitted mesh of249

241× 41 cells and the channel was assumed to have a mild bed-slope,S0 = 0.002, and a Manning250

friction coefficientn = 0.012 consistent with the recommendations of Bellos et al. (1992).The251

dam is located at the end of the contraction, at a distance of8.5 m from the upstream boundary252

of the flume. Initial conditions consist of a water depth upstream of the dam of0.30 m, null flow253

velocities, and dry terrain downstream of the dam. A no-flow boundary condition was imposed at254

the sidewalls and at the upstream boundary of the flume. At thedownstream end of the channel255

an open boundary condition is applied to allow all the information to exit the domain without256

propagating back and perturbing the numerical solution. The simulations were carried out for70257

s using a CFL number equal to0.9 in order to ensure numerical stability during the computations.258

The geometry of the channel, dimensions and location of measurement points studied by Bellos259

et al. (1992) along with the computational mesh are shown in Fig. 2.260

The results show that dam-break phenomena is correctly captured by the numerical model as261

observed in Fig. 3. At the breaking, the shock wave spreads through the expansion and propagates262

downstream inundating the dry bottom. A rarefaction wave propagates upstream decreasing the263

water depth, which is then reflected at the upstream closed boundary of the flume. Then, the water264

depth in the flume starts decreasing, reaching a minimum of0.014 m after70 s. From the images265

depicted in Fig. 3, it can be seen that computed water depths and arrival times of the front are266

in excellent agreement with experimental data for all the studied measurement points, confirming267

the abilities of the model to capture shocks and deal with wet-dry cells and source terms over a268

curvilinear geometry.269
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Dam-Break over a closed basin with steep topography and friction270

An important characteristic of the model is its capability of handling frictional source terms in271

the numerical solution of the NSWE, especially in situationswhere the flow is shallow or when272

the process of wave run-up/run-down is important. Here we test the numerical model with the273

flood produced by a dam-break over a closed channel with threeconical obstacles. This test was274

first proposed by Kawahara and Umetsu (1986) and subsequently used by many researchers (e.g.275

Brufau et al. 2002; Brufau and Garcı́a-Navarro 2003; Gallardo et al. 2007; Nikolos and Delis 2009)276

to assess the ability of numerical models to deal with steep bed-slopes and friction source terms,277

wetting/drying proceses, and test local and global mass conservation.278

The basin is70 m long in the streamwisex direction and 30 m wide in the cross-stream ory279

direction. The bed topography is defined by the following equation,280

z(x, y) = max




0

1− 0.1 ·
√
(x− 30)2 + (y − 22.5)2

1− 0.1 ·
√
(x− 30)2 + (y − 7.5)2

2.8− 0.28 ·
√
(x− 47.5)2 + (y − 15)2




(9)281

Initial conditions consist of a motionless free surface elevation upstream of the dam location282

(atx = 16 m) equal to1.85 m, and a dry bottom bed downstream. The simulation was performed283

employing a101× 101 uniform mesh using the suggested Manning coefficient ofn = 0.018, and284

no-flow boundary conditions were applied to all the sidewalls of the basin. Computations were285

carried out for400 s in order to achieve steady state as shown in previous investigations (Nikolos286

and Delis 2009), using a CFL number equal to0.9 to ensure the stability of the model during the287

computations.288

Evolution of the free surface is shown in Fig. 4. After the dam-break, the flood wave wets the289

small obstacles and a reflected wave is propagated back to theupstream boundary. At the same290

time, the front passes through the small obstacles and runs up and down over the larger obstacle,291
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which is partially dry. Later, the wetting front separates and symmetrically goes around the larger292

mound as it crosses back at the middle of the channel downstream from the larger conical obstacle.293

Finally, the wave hits the downstream solid boundary and is reflected back to the obstacles. The294

motion decays in time as a consequence of the friction force and after approximately400 s, the295

steady state is reached leaving the three obstacles partially dry. These results agree well with those296

obtained by Gallardo et al. (2007) and Nikolos and Delis (2009), and illustrate the ability of the297

model to represent the interaction between dry and wet cellswith high accuracy over a steep and298

frictional topography. Results also demonstrate that global mass conservation was achieved during299

the entire computation. Therefore, the robustness and stability of the friction scheme in conjunction300

with the well-balancing properties of the solution of the hyperbolic system are validated.301

EXPERIMENTAL DAM-BREAK OVER COMPLEX TERRAIN AND NUMERICAL302

SIMULATION303

With the purpose of testing the numerical model, we carry outan experiment for the propaga-304

tion of a dam-break wave generated by the rapid emptying of a reservoir over a scaled physical305

model of a river. The experiments were conducted in the Hydraulic Laboratory of thePontificia306

Universidad Cat́olica de Chile. In this section we present the details of the experiment, and the307

comparison between experimental results and numerical solutions obtained with our model and308

with two recognized NSWE models: AnuGA (Roberts et al. 2010; Mungkasi and Roberts 2013)309

and GeoClaw (Clawpack Development Team 2013; Berger et al. 2011), showing the capacity of the310

models to handle highly demanding natural conditions analogous to the propagation of a tsunami311

wave over varying topography.312

Experimental Set-up313

Dam-break experiments were conducted in a physical model ofa river consisting of a narrow314

and steep valley with complex topography presented in Fig. 5(a). The model was built using a315

geometrical scale equal to 1:60 and Froude similarity. The entire river reach is14.6 m long and316

has a maximum width of4.5 m. It starts with a narrow and curved zone with an average adverse317

bed-slope of nearly−4.5%, then it becomes wider towards its downstream end. The average bed-318

13 Guerraet al., February 11, 2014



slope over the river reach considered in the experiments is−1.5%. A longitudinal profile of the319

river reach along with the location of the measurements points is shown in Fig. 5(b). The river bed320

was built with a uniform concrete mix with fine gravel, which yields a roughness characterized by321

a Manning coefficient ofn = 0.014.322

Upstream of the river reach, there is a reservoir and a woodengate that holds a fixed volume323

of water equal to2.17 m3. The experiment we carry out consists of a sudden lift of the reservoir324

gate to release the water into a quiescent free surface downstream. A bore wave is then produced325

and propagated to the end of the river reach. The free surfaceevolution within the scaled-model is326

recorded during60 s. At the reservoir, free surface elevation is set at0.85 m, while at the river it is327

set at0.56 m as shown in Fig. 5(b). Free surface variations are recordedat nineteen points in the328

river reach and at the reservoir as depicted in Fig. 5(b).329

At the reservoir, free surface variations were measured using a KPSI brand pressure transducer330

recording voltage at100 Hz. The accuracy of this instrument is±1%. It was calibrated such331

that1 V equals1 m of water column. At downstream cross-sections, free surface variations over332

the mean water level were measured using wave DHI resistive gauges, which were located at the333

thalweg of the studied cross sections. Each gauge records voltage data at100 Hz, the accuracy of334

these gauges is±1.5 mm and the zero drift is±5%, depending on the water temperature.335

For the experiments, we use four resistive gauges, i.e. onlyfour points could be measured336

at each run. Thus, five set of experiments with different gauge positions, are performed in order337

to cover the nineteen considered sections. As a verificationof the repetability of the data, three338

repetitions were performed at each gauge location, maintaining the position of the pressure sensor339

in the reservoir in order to use it as a reference to synchronize the time series.340

Numerical Simulation341

The digitized bathymetry of the physical model is constructed from 39 measured cross sec-342

tions within the river reach. Then, the bathymetric data together with the reservoir geometry is343

interpolated using a cubic spline method to create a boundary-fitted computational domain, which344

correctly represents the bathymetric features of the riverreach and its geometry. The physical345
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model is discretized into130×30 cells of variable size, covering an area of16×4.5 m2. The mesh346

used in the simulations and the digitized bathymetry are shown in Fig. 6. As initial conditions, free347

surface elevations at the reservoir and the river are set to0.85 m, and0.56 m, respectively. Zero348

velocities over the entire domain are considered att=0. The open boundary condition is used at349

the downstream end of the river reach and close boundary conditions are applied to the sides of the350

computational domain. CFL condition is set to 0.9 in order to ensure the numerical stability of the351

simulations. The gate is instantly removed at t = 0 and the wave propagates downstream as seen in352

the experiments.353

Results354

The numerical model is able to simulate the dam-break event and the propagation of the bore355

wave over the river reach. Fig. 7 illustrates the propagation process showing 4 snapshots of the356

numerical computation, where the blue color represents thewet surface. As depicted in these357

figures, the bore propagates downstream of the river reach through the narrow and steep valley.358

It takes approximately10 seconds to the bore wave to reach the end of the river reach (≈14 m).359

The entire flood wave propagates downstream along the complex geometry of the physical model,360

flooding and drying cells, and reaches a steady state after nearly 60 seconds. Fig. 8 shows the361

velocity vectors field10 seconds after the gate opening; flow features observed in thelaboratory362

experiments, such as recirculation and reflection due to topographical obstacles are observed in363

these numerical results. The main aspects of the rapidly varying flow measured in the experiments364

are thus reproduced by the numerical model.365

Evolution of the bore wave is studied and compared to experimental data through time series366

of the computed free surface dynamics at the same locations measured in the experiments. Ad-367

ditionally, we have carried out numerical simulations using similar NSWE numerical models in368

order to assess and compare our model accuracy for similar discretization settings. The chosen369

numerical models are AnuGA (Roberts et al. 2010; Mungkasi andRoberts 2013) and GeoClaw370

(Clawpack Development Team 2013; Berger et al. 2011). Both models solve the NSWE using a371

well-balanced shock-capturing finite volume method, mainly differing in the discretization of the372
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domain; AnuGA model uses non-structured meshes, while GeoClaw uses an adaptive meshing373

approach. In order to define comparable grids for both simulations, we prepared meshes with a374

similar discretization sizes. For the AnuGA model, we defined a mesh of 4026 triangular elements.375

GeoClaw model uses an adaptive mesh configuration that variesthe distribution of element size376

with time, defining areas of refinement when needed. For this particular case, the refinement zone377

was controlled in order to mantain a number of grid nodes similar to our model and to AnuGA.378

Figures showing the defined grids for AnuGA and GeoClaw along with the configuration for both379

simulations are presented in Appendix I.380

Comparisons between measured and computed time series of thefree surface evolution for the381

three models are presented in Fig. 9. Our analysis shows thatthe main features of the process,382

i.e. the arrival times, peak amplitudes and recession curves, are well reproduced by our numerical383

model and by GeoClaw. AnuGA results seem to be accurate in representing maximum amplitude,384

but for this particular case, the model overestimates the final free surface elevation.385

Based on the results obtained in the simulations, we establish three quantities related to the386

inundation and propagation process that are studied, namely the overall agreement of the free sur-387

face elevation on time, the maximum amplitude of the bore at each measurement location and the388

arrival time of the wave front. For each of these variables, mean relative errors to the measurements389

were calculated at gauge locations; these relative errors are defined as follows:390

Relative root mean square error (RRMSE)391

A root mean square error is used to compare the experimental and numerical free surface392

elevation at each location and at the same time to highlight the locations were the larger differences393

were found. The relative root mean square error for a location k, and the average relative root mean394

square error considering all locations are defined respectively as:395

RRMSE2
k =

1

T

∫ T

0

(
ηkm(t)− ηkn(t)

ηkm(t)

)2

dt (10)396
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RRMSE =

(
1

M

n∑

k=1

RRMSE2
k

)1/2

(11)397

whereT is the period of time considered in measurements and in simularions (60 s); M is398

the number of measurement points, andηkm andηkn are the measured and numerical free surface399

elevation at eachk location respectively.400

Maximum amplitude of the wave401

The maximum amplitude of the bore is an important flood variable since it is related with the402

destructive potential of the wave. This variable is defined as the difference between the maximun403

and the initial free surface elevation at the river reach. The mean relative error between experimen-404

tal data and numerical results is estimated as follows:405

∆Hr =
1

M

M∑

k=1

∣∣∣∣
H(ηkm)−H(ηkn)

H(ηmk)

∣∣∣∣ (12)406

Arrival time407

The arrival time of the wave is an interesting parameter for defining evacuation plans as it408

indicates the available time to leave flood-prone areas and it is also a proxy for the celerity of the409

bore. The arrival time of at a locationk is defined as the first instant where the signal surpasses the410

initial value by a certain threshold, which is defined here as1 mm. The mean relative error of this411

variable over all the measuring sections is defined as:412

∆T a =
1

M

M∑

k=1

∣∣∣∣
T a(ηkm)− T a(ηkn)

T a(ηkm)

∣∣∣∣ (13)413

The calculated mean relative errors for each model are summarized in Fig. 10. The RRMSE414

for the three models shows a very good overall agreement between measurements and numerical415

predictions, with a1.7% relative error for our model and a2.1% relative error for AnuGA and416

GeoClaw, which is an acceptable error considering how demanding the experiment is. For our417

model, the highest relative errors are found in the gauges located upstream, near the gate.418
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It is found that in average, the maximum amplitude is underestimated by all models, being419

the variable with the higher relative error. However, in terms of arrival times of the wave front,420

predicted results are in excellent agreement with observations (less than 5% mean relative error for421

our model). Main differences were found in the first gauges closer to the reservoir with maximum422

local errors reaching10%. These differences might be explained by the opening mechanism of the423

gate, which is frictionless and instantaneous in the simulation, but performed in a finite time in the424

experiments, where vertical velocities might also be generated and interfere with the dynamics of425

the wave downstream, thus increasing the maximum amplitudeof the wave.426

Summarizing, the results from our model show that it can correctly capture the time evolution427

of the free surface elevation, the arrival time of the bore and its maximum amplitude. For this428

singular case, our simulations show a decrease in the studied relative errors when comparing to429

the results of previously validated numerical models when asimilar discretization setting of the430

domain is used.431

CONCLUSIONS432

In this investigation we have developed and validated a finite-volume numerical model to simu-433

late extreme flows and rapid flooding over natural terrains and complex geometries. The numerical434

scheme successfully reproduces the flow hydrodynamics overrough and highly variable topogra-435

phies, incorporating an accurate and robust treatment of bore dissipation and wet and dry process.436

The method is based on algorithms proposed by Marche et al. (2007), and adapted here to solve437

the bed-slope source term and to incorporate friction by using the splitting semi-implicit scheme438

developed by Liang and Marche (2009). An important advantage of this model is the simplicity439

and low cost of its implementation, yielding accurate results using coarse computational grids.440

Two benchmark test cases are considered to illustrate the capabilities of our new model. Test441

cases involve the use of boundary-fitted grids, with frictional and varying bathymetry, and dam-442

break floods. The use of boundary fitted grids is shown for the case of the dam-break in a443

converging-diverging flume (Bellos et al. 1992). Numerical results are in excellent agreement with444

experimental data obtained by Bellos et al. (1992), showing the ability of the model to deal with445
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a complex geometry and a rapidly varying flow. The process of run-up and run-down, and wet-446

ting and drying of the terrain as the wave propagates are reproduced in the numerical simulations447

of the benchmark cases analyzed in this investigation. Thiscase also illustrates the stability and448

the well-balanced property of our model, since steady stateis correctly reached due to frictional449

effects.450

We report new experimental data for a dam-break wave propagating over the scaled physical451

model of a river reach with narrow and steep valleys. This experiment was specially designed to452

test the numerical model and to evaluate its ability for representing extreme and rapid flooding453

over natural conditions. For this case, we have also compared our results with those from two454

other NSWE numerical models, showing a better relative performance by our model in terms of455

the studied hydrodynamic variables when similar computational discretizations are employed.456

The results reported in this research confirm that our numerical model is a robust and powerful457

tool that can be used to simulate high-volume flash-floods andsignificant inundation over dry ter-458

rain under realistic conditions, giving accurate results in terms of water depth evolution, discharge459

and inundated area. The model performance shows that it can become a useful tool for evaluating460

extreme and rapid flood events over complex bathymetries, and to assess their hazards in terms461

of inundation extent and depth, depth-averaged velocities, arrival time of peak discharge, etc. We462

expect that the model will be used as an instrument to developnew inundation hazard maps in463

coastal and riverine areas.464

Future research using the model developed in this investigation will focus on the study of com-465

plex engineering and geophysical flows. Large-scale coastal flows, such as tsunami propagations466

(Yamazaki and Cheung 2011), will also be studied by incorporating the Coriolis effect into the467

model. Also, advanced sediment transport and morphodynamic models (Cao et al. 2004; Vasquez468

et al. 2008) will be added to the basic equations of the flow to study erosion and sedimentation469

processes in fluvial and coastal environments. Finally, this model will be employed to investigate470

density-coupled flows, incorporating the transport of active and passive contaminants in rivers and471

estuaries (Loose et al. 2005).472
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APPENDIX I.479

In this section we present additional information about theconfiguration used for the numer-480

ical simulations of the Dam-break over a physical model using AnuGA and GeoClaw numerical481

models. Fig. 11 present the mesh configuration for each model; Fig. 11(a) presents the triangular482

mesh of4026 required by the AnuGA model and Fig. 11(b) presents the initial adaptive mesh used483

for the simulation with GeoClaw. The element size distribution of the AnuGa and of our model484

considered approximately a60% of the elements under100 cm2 in size, being both distributions485

comparable. For the simulation using GeoClaw, the time evolution of the distribution of elements486

was controled in order to maintain the number of the finer elements aroud 4000, which are69.4487

cm2 in size. For both models, CFL number was set equal to0.95 in order to achieve numerical488

stability.489
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FIG. 1. Discretization cell and numerical fluxes. L and R deno te the left and right
boundaries of the cell, − and + signs are the left and right sides of the cell interface.

FIG. 2. Dam-Break in a convergent-divergent flume: Geometry of the channel,
boundary-fitted grid, bathymetry and measurement points (b lack dots)
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(d)

FIG. 3. Dam-Break in a convergent-divergent flume: Water dep th time series at
measurement points. (a) x = 4.0 m, (b) x = 8.5− m, (c) x = 8.5+ m, (d) x = 13.5 m
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(a) (b)

(c) (d)

FIG. 4. Dam-Break over a closed basin: Free surface elevatio n. (a) t = 2 s, (b) t = 12
s, (c) t = 20 s, (d) t = 300 s
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(b)

FIG. 5. Dam break Experience: (a) Physical model and measureme nt instruments,
upstream view, (b) Longitudinal profile of the river reach bo ttom elevation, initial
conditions and measurement points
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FIG. 6. Numerical Model of dam break experience: Digital bat hymetry of the physi-
cal domain and curvilinear mesh of the physical model of 130× 30 cells

(a) (b)

(c) (d)

FIG. 7. Numerical model of dam-break experience: Flood exte nsion at different
times (a) Initial condition, (b) t= 4.4 s, (c) t= 20 s, (d) t= 60 s
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FIG. 8. Numerical model of dam-break experience: Velocity v ectors for the propa-
gation of the flooding wave over the river at t= 10 s
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(a) (b)

(c) (d)

FIG. 9. Numerical model of dam-break experience: Compariso n between measured
and predicted free surface elevation at different location s, (a) Reservoir, (b) Gauge
location 24, (c) Gauge location 20, (d) Gauge location 12. In all figures, the dotted
black line represents the experiments and the solid lines re present the numerical
results of our model, GeoClaw, AnuGA.
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FIG. 10. Summary of mean relative errors between experiments and numerical re-
sults for each NSWE model. RRMSE: Relative root mean square error between
experimental and numerical free surface elevation. ∆Hr Mean relative error in the
maximum amplitude of the bore. ∆T a

r : Mean relative error in the arrival time of the
bore.
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FIG. 11. Physical model discretization grids: (a) Triangula r mesh of 4060 elements
for AnuGA model, (b) Initial adaptive mesh with three levels of refinement for Geo-
Claw model
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