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Bayesian Inference for non linear stochastic SIR epidemic model

Hamid El Maroufy1

Department of Mathematics, Sultan Moulay Slimane University, Morocco. 
T. Kernane, S. Becheket, A. Ouddadj
University of Sciences and Technology USTHB, Algiers, Algeria

Inference for epidemic parameters can be challenging, in part due to data that are intrin-
sically stochastic and tend to be observed by means of discrete-time sampling, which are 
limited in their completeness. The problem is particularly acute when the likelihood of 
the data is computationally intractable. Consequently standard statistical techniques can 
become too complicated to implement effectively. In this work, we develop a powerful 
method for bayesian paradigm for SIR stochastic epidemic models via data-augmented 
Markov Chain Monte Carlo. The latter samples missing values as well as the model 
parameters, where the missing values and parameters are treated as random variables. 
These routines are based on the approximation of the discrete-time epidemic by diffu-
sion process. We illustrate our techniques using simulated epidemics.

Keywords: Epidemic model; Diffusion process; Conjugate distribution; MCMC simulation.
2010 Mathematics Subject Classification: 92D30, 60J28, 60J20, 60H10, 62F20.

1 Introduction
For readers the epidemics played a fundamental role in human history as one of the causes of mis-
ery, poverty and death during different centuries. From economic and human points of view, it is 
very important to have the means to achieve full understanding of the evolution of these phenom-
ena. Since the late fifties, the development of mathematical and computational tools have enabled 
a more formal study of epidemics; therefore, several types of epidemic models using various tech-
niques have been proposed such as the SIR (Susceptible-Infected- Removed) model, which is used 
to understand the evolution of complex infectious diseases in order to predict the impact of public 
health programs. The results depend on how clear are the estimates of the parameters governing 
these models. For SIR epidemiological systems, estimation for key parameters of interest (the con-
tact infectious and the removal rates) is a crucial methodological problem. Various methods 
have been proposed to estimate these parameters from a time data, of which the more sophisticated 
rely on the calculation of a likelihood function (e.g. Becker (1989), Becker and Britton(1999), 
Becker et al.(2003) and Andersson and Britton (2000)). Likelihood based inference for epidemic 
models poses many challenges, not least because available epidemic data are often censored or 
incomplete, but also the likelihood requires the knowledge of the transition probabilities which are 
unavailable in simple closed form for this type of models (El Maroufy et all. (2012)). At the same 
time, others authors as Britton (1998), Becker and Hasofer (1997), Becker and Britton (1999) drew 
attention to this problem of estimation within the context of classical inference and described a 
martingale technique for non-likelihood approaches. However, although the estimator based on 
martingale estimating functions
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wich is consistent and asymptotically normally distributed, it is inefficient in general. Furthermore, 
computation of the standard errors of the resulting estimates is difficult and requires techniques such 
as parametric bootstrapping. Another alternative approach is the Bayesian paradigm. This approach 
is particularly suited to the context of epidemic modelling since the parameters of interest are usu-
ally defined in terms of an individual, which naturally leads one to consider the distributions of these 
parameters over a whole population. Up to now, almost all of the literature concerning Bayesian sta-
tistical inference use numerical techniques such as Markov Chain Monte Carlo (MCMC), which is 
being increasingly employed in epidemic modelling (e.g. O’Neill and Roberts (1999); Demiris and 
O’Neill (2005a, 2005b); and references therein), but the Bayesian methods used are distinct from 
that we present in this paper.
First, we approximate the discreet epidemic by diffusion process. Next, supposing that the diffusion 
model is given in parametric form, so the problem of parameter estimation can be brought back 
using inference for discretely observed diffusion process which has been widely studied through the 
like-lihood function by many authors (see for example Sorenønsen (2004), Beskos et al. (2006), 
Gilioli  et al. (2008) and the reference therein). The maximum likelihood estimator, using discreet 
data, is consistent and asymptotically normal if the time intervals between consecutive observations 
are suf-ficiently small and under suitable conditions as the processes is ergodic (see, Prakasa Rao 
(1999)). However, for SIR epidemic models, the likelihood function is unknown, and in many 
situations the inter-observation times are large or latent; hence, the likelihood estimation may be 
unreliable and the ergodicity is very hard to prove. To overcome this difficulty, we will adopt the 
bayesian method proposed by Eraker (2001) in the context of financial models. The method consist 
of augmenting the low-frequency observations by insertion of finite number of latent data between 
two consecutive real observations. This task is performed by application of Markov Chain Monte 
Carlo (MCMC) tech-nique which alternately update the data and are usually feasible within 
moderate computing time. In particular we state that under the family of prior independent gamma 
distributions this leads to gen-eralized inverse gamma distributions as posterior distribution. The 
hybrid accept-reject Metropolis-Hastings (hereafter AR-MH) give more rapid convergence and 
requires knowledge of the unnormal-ized target density and a proposal density (see, Eraker (2001), 
Golithly and Wilkinson (2004)). So we suggest it should be with normal density as good proposal 
density.
The structure of this paper is as follows. In Section 2, we present a temporal discreet and non linear 
diffusion epidemic model. In section 3, we present a bayesian approach to estimate the 
parameter. To deal with a small number of observations, in Section 4, we introduce latent data 
between pairs of observations to improve the results. In Section 5, we illustrate some simulation 
examples.

2 Temporal SIR epidemic model

n

n

In the basic SIR epidemic model the population under consideration is classified into susceptible, 
infectious and recovered. We consider in this type of model a closed population of n + a individ-
uals. At time t, we denote the size of each category by S(t), I(t) and R(t), respectively, so that 
S(t) + I(t) + R(t) = n + a. At time t = 0 the population only contains susceptible and infected indi-
viduals with S(0) = n, I(0) = a. An infected individual remains infected, before being removed, for a 
random period with mean 1/µ. The lengths of stay in the state "infected" are assumed to be mutually 
independent. In a small time period dt, the probability of an individual to be infected is I(t)β dt. A 
susceptible individual after contact with an infected individual immediately becomes infectious. The 
mean number of new infected individuals is then I(t)S(t)β dt. The epidemic ends when there is no
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infectuous in the population. This model is often known as the general stochastic epidemic, and is
the most widely studied model. This model is analogous to the deterministic SIR model, defined
in terms of ordinary differential equations (see, Bailey (1975)). The stochastic epidemic is com-
pletely determined by{(X (t) ,Y (t)) ; t ≥ 0}, which is a continuous time Markov Chain on the state
spaceE = {(i, j) ; 0≤ i ≤ n, 0≤ j ≤ (n− i)+a} . The transition probabilities from timet to t + h
are given by

Transition Probability

(i, l) −→ (i −1, l +1)
βil
n

h + o(h),
(i, l) −→ (i, l −1) µlh+ o(h),

(i, l) −→ (i, l) 1 − (
β
n
il
h + µlh) + o(h).

(2.1)

For(i, l)∈E, we definePil (t)=P{S(t) = i, I(t) = l}. It follows directly from (2.1) that these transition
probabilities satisfy the set of Kolmogorov forward equations:

P′
(i,l)(t) =

β(i +1)(l −1)
n

P(i+1,l−1)(t)+µ(l +1)P(i,l+1)(t)− (µl +
βil
n
)P(i,l)(t)

for (i, l) ∈ E, with Pil (t)≡ 0 if (i, l) /∈ E andPna(0) = 1.
A Markov process with above described dynamics is termed the general stochastic epidemic.
Instead of usingSand I , we normalise the process by the transformationsx(t) = S(t)/n andy(t) =
I(t)/n. By setting f (x,y) = nβxy= β

N SI and g(x,y) = nµI = µy the Kolmogorov’s equations become

p′ (x,y, t) = f (x+ ε,y− ε)p(x+ ε,y− ε, t)+g(x,y+ ε)p(x,y+ ε, t)− [ f (x,y)+g(x,y)] p(x,y, t)
(2.2)

whereε = 1
n and p(x,y, t) = p(x,y)(t). By substracting and adding terms to equation (2.2) and letting

ε → 0, we establish, by settingy = (x,y) (see Fuchs (2013) for rigorous proof), that

∂
∂t

p(y, t) =− ∂
∂y

[U(y,θ)p(y, t)]+
1
2

∂2

∂y2 [Σ(y,θ)P(y, t)] (2.3)

with θ = (β;µ), U(y,θ) =
( −βxy

βxy−µy

)
and∑(y,θ) = 1

n

(
βxy −βxy
−βxy βxy+µy

)
.

Equation (2.3) is the Fokker-Planck equation associated to the diffusion process(x(t),y(t)) which is
solution, according to Øksendal (1995) (see also, Tory (2000) and Kloeden and Platen (1999)), of the
non-linear bivariate Itô stochastic differential equation :

(
dx
dy

)
=

( −βxy
βxy−µy

)
dt+σ(x,y)

(
dW1

dW2

)
(2.4)

whereσ(x,y) = 1√
n

( √
βxy 0

−
√

βxy
√

βy

)
. The conditions under which the SDE given by (2.4) can be

solved for(x,y) are satisfied (see Anderson and Britton (2000)). The right hand side of the differential

β
µ

equation (2.4) consists of the deterministic (see Bailey (1975)) and the stochastic components W1 
and W2 which are two standard independent Brownian motions, representing stochastically in 
disease transmission and recovers.
The parameter θ is unknown and has to be estimated. However, the objective of this paper is to 
illustrate an efficient method to estimate it because the quantity R0 = , which design the basic
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reproduction number (the average number of new infections caused by a single infective in a large
susceptible population). This quantity is used to interpret the threshold behaviour of the epidemic; a
large outbreak can occur if and only ifR0 > 0. A prior distribution will be specified onθ = (β,µ) and
inference will be performed based upon its joint posterior distribution using a Bayesian approach.

3 Inference for non-linear diffusion model

For simplicity, we write the system (2.4) in vectorial form:

dYt =U(Yt ,θ)dt+σ(Yt ,θ)dW(t) (3.1)

whereU : R2 ×Θ → R
2 and σ : R

2 ×Θ → R
2×2, for some compact parameter setΘ ⊆ R

2. We
assume that the processY(t) will be observed at a finite integer of times and the objective is to
conduct inference for the (unknown) parameter vectorθ on the basis of these partial and discrete
observations onY(t). In practice it is necessary to work with the discretized version of (3.1), given
by the Euler approximation

∆Yt =U(Yt ,θ)∆t +σ(Yt ,θ)∆W(t), (3.2)

where△Wt is two dimensional iidN(02, I2△t) random vector.
Diffusion processes provide an analytical tractability, but the parameters that govern their dynamics
areoften difficult to estimate from the data obtained after discretization of time. In short, the estima-
tion problem is that the model is formulated in continuous time, while the sampling data are naturally
available only at discrete frequencies and perhaps with a low frequency. The Eraker’s approach is
based on the introduction between each pair of observations ofm−1 latent data points. The method
is based on the MCMC (Monte-Carlo-Markov-Chain) technique applied to a wide class of models,
including models with incomplete data. It is assumed that the observations are collected in discrete
integer times but by do not putting △t = 1 this situation does not approximate well the transition 
density. Hence, to ensure that the discretization bias is arbitrarily small we put △t = 1/m, for conve-
niently chosen positive integer m. The time interval [0,T ] is subdivided into m× T equidistant points
0= t0 < t1 < .... < tn−1 < tN = T. Let

Ŷ =

(
xt0 x̂t1 . . . x̂tm−1 xtm x̂tm+1 . . . xtN
yt0 ŷt1 . . . ŷtm−1 ytm ŷtm+1 . . . ytN

)

be the matrix of all (real and latent) data. We shall denote byYti = (xti ,yti ) the real datum at timeti
when i is a multiple integer ofm andŶti = (x̂ti , ŷti ) the latent datum and, generically, byŶti a real or
latent datum depending on the context. Altogether, 2×T × (m−1) data points are missing from the
system.
Conditionally to the first observation the joint posterior density is given by

π(Ŷ,θ) ∝
N

∏
i=1

p(Ŷi |θ)p(θ) (3.3)

where
p(Ŷi |θ) = |Σ−1

i−1|12e−
1
2(△Ŷi−Ui−1△t)′(Σi−1△t)−1(△Ŷi−Ui−1△t), (3.4)

with △Ŷi = Ŷi − Ŷi−1, Ui−1 = U(Ŷi−1;θ), Σi−1 = σ(Ŷi−1;θ)σT(Ŷi−1;θ), |Σ−1
i | is the determinant of

the inverse matrix ofΣi and p(θ) is the prior density of the parameter. From now on, we adopt the
notation whereπ(θ) denotes all proper densities,p denotesπ in an unnormalized form. Note that all
posterior densities of the parameters conditionally to the observations are proportional to (3.3).
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4 Gibbs sampler

We have formulated in (3.3) the joint posterior for the model parameters as well as observed and
Ŷ Ŷ Ŷunobserved data but our real interest is in the distribution of (θ, \ obs| obs) where Yobs denotes the 

observed data up to time tn. As discussed in Golihtly and Wilkinson (2004) (see also the related ref-
erences therein) the inference may proceed by alternating between the simulated data and parameters

conditional on augmented data and the current state of the parameters. As in the epidemiological con-
text the number of missing data is relatively large, a Gibbs sampler is suitable for sampling indepen-
dently the quantities. At first step, we consider a guess value forθ drawn from the prior distribution
π(θ) and generate latent data as shown in the next section. At this point, we generate a new value
of θ, then we update latent observations. By repeating, this process generates a Markov chain which
has the desired posterior,π(θ,Ŷ \Ŷobs|Ŷobs), as its stationary distribution. For an overview of the use
of Markov chains for exploring the posterior distributions we refer you back to the works of Tierney
(1994).

4.1 Simulating the latent data

For the univariate diffusion processes, the MCMC method have been extensively examined, for ex-
ample in financial models Roberts and Stramer (2001), Elerian etal. (2001) and Durham and Gallant
(2002) employ block updating schemes to simulate the latent data. For our bivariate partially observed
model, due to the high dimensionality (large number missing data and parameters) it is convenient to
use Gibbs sampler. The first step in the Gibbs sampler involves the simulation of missing data. We
use Eraker’s method (see Eraker (2001)) to generate one latent observationŶi givenŶi−1,Ŷi+1. So we
know

π(Ŷi |Ŷ\i ,θ) ∝ p(Ŷi |Ŷi−1,Ŷi+1;θ) (4.1)

where

p(Ŷi |Ŷi−1,Ŷi+1,θ) = |Σ−1
i−1|12×|Σ−1

i |12× (4.2)

e−
1
2[(△Ŷi−Ui−1△t)′(Σi−1△t)−1(△Ŷi−Ui−1△t)+(△Ŷi+1−Ui△t)′(Σi△t)−1(△Ŷi+1−Ui△t)]

andŶ\i designates the matrix̂Y without theith column.
The density in (4.2) is not a density of standard form, so we suggest to use the AR-MH algorithm,
because this algorithm is fast and only requires knowledge of the unormalized proposal densityq that
can be sampled from. As motivated in Eraker (2001), wheni is not a multiple ofm, Ŷi is updated
using the normal distributionN(1

2(Ŷi−1+Ŷi+1),
1
2Σi−1△t) as a good proposal density.

4.2 Sampling from the full conditional for the parameter

The remaining step in either the Gibbs sampler is to sampleθ(h) the value ofθ, conditional to its cur-
rent state and the augmented data, ath-th iteration. We consider the steph+1, once we have simulated
the matrix, the parameterθ(h+1) must be generated. If the posterior density of the parameter does not
have a known usual distribution, we might still impose a Metropolis-Hastings step, but it is not the
case her. Due to the form of likelihood function derived in (3.3), a family of independent gamma
distribution is seen a natural set of conjugate priors chiefly in the context of epidemic model where
the parameters are positive (see, Streftaris and Gibson (2004), Demeris and O’Neill (2005a, 2005b)
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and the reference therein). Under this family of priors the application of Bayes’ theorem produces as
posteriors generalized inverse gaussian distributions. More formally, we have the following

Proposition 4.1. If the β and µ follow independent gamma prior distributions:π(β) ∝ Γ(mβ,λβ,β)
andπ(µ) ∝ Γ(mµ,λµ,µ). Then

π(β|Ŷ) ∝ βmβ−N
2 −1e

− 1
2

[
(B2+2λβ)β+ B1

β

]

, (4.3)

and

π(µ|Ŷ) ∝ µmµ−N
2 −1e

− 1
2

[
(C2+2λµ)µ+C1

µ

]

, (4.4)

where B2, C2, B1 and C1 are constants calculated from data andΓ(m,λ,α) = αm−1e−λα for α ∈ R
∗
+

and m,λ are positive constants.

Proof: The proof of the previous statement is presented in the Appendix1.

As mentioned above, the question of whether or note R0 > 1 is often of interest, we will consider this 
concept in practice. We will use as the prior of R0. In order to do this, the following facts are used in 
the sequel. Since R0 = β/µ then its prior density is given by Clancy and O’Neill (2008)

π(R0) =

(
λβ

λµ

)mβ

× Γ(mβ +mµ)

Γ(mβ)+Γ(mµ)
× R

mβ−1
0(

λβ
λµ

R0+1
)mβ+mµ

with R0 > 0,

with prior mean and variance given by

E(R0) =
mβλµ

(mµ−1)λβ

and

Var(R0) =
mβ(mβ +mµ−1)

(mβ −1)2(mµ−2)

(
λβ

λµ

)2

.

We see that if mµ ≤ 1, R0 has negative prior mean and if mµ ≤ 2 R0 has negative prior variance. In 
other words, such vague priors on β and µ yield  inaccurate prior for R0, this means that it is possible

to consider the posterior mean ofR0 as a suitable summary measure. Now, assume thatmβ = mµ = m
and λβ = λµ = λ; a typical case in practise will be m > 1 and λ a small positive number, this gives 
E(R0) > 1 and means that the epidemic is above its threshold or maybe not. This suggests some need 
for wariness in using the mean as the sole means of assessing whether or not an epidemic is above

threshold. However, the alternative is to choose m and λ such that P(0 ≤ R0 ≤ 1) = 1/2 in this case,  
 the epidemic shall have the same probability to be below or above the threshold.

4.3 Algorithm

The following algorithm summarizes our strategy of simulation:

(i)- Initialize all missing data of the matrix̂Y using linear interpolation between two observed values
and initialising parametersβ(0) andµ(0) according to the principe in the last paragraph.
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(ii)- For i = 1, ...,n at iterationh we use the AR-MH for drawing an observation using a normal
distributionN (Yi−1+Yi+1

2 , Σi−1×∆t
2 ).

(iii )- Drawingβ using (4.3).

(iv)- Drawingµ using (4.4).

(v)- Increase the value ofh and go back to step (ii ).

As mentioned in Proposition4.1, if the prior distribution of parameters is a gamma distribution, then
the posterior is generalized inverse Gaussian. It is not easy to sample directly from this distribution
(see Hörmann and Leydold (2014) and the reference given there). In this case a Metropolis-Hasting
algorithm can be used in the steps 3 and 4. We consider, as proposal density for the M-H algorithm, a
gamma distribution with special parameters. We proceed as follows : At each iteration, we calculate
the quantityb given byb = max

β∈R+

p(β(h) Ŷ(h)). Given that the mean and variance of a gamma distri-

bution Γ(γ,η) are given byγ
η and γ

η2 respectively, we takeγ = k×b andη = k wherek is a positive
integer which we can be calculated by viewing the shape of the posterior distribution after initialising
the data.

5 Simulation study

To illustrate the methodology presented in this paper, the MCMC scheme is applied to the general SIR 
epidemic model with known parameters. The observable part of the data comes from the simulation of 
original double Markov chain using the exact Gillespie algorithm given in Gibson and Bruck (2000) 
with true values of the parameters as given in the Table 1. For each data set, due to computational 
demands, the MCMC sampler is run for 20000 iterations with m = 5, m = 10 and m = 15. Note that 
the algorithm is coded in R and executed on Laptop i3. The application of the method outlined her 
improves the estimate of β and µ. Looking at Table 1 and Figure 1 which summarise the posterior 
distribution; Table 1 give posterior mean and variance. We see that the estimates are close to the true 
value as the number of latent data increase. There is a considerable improvement up to a certain 
value of m, while for greater value the improvement is less pronounced. The histograms in Figure 
1 reveal the convergence of the algorithm towards a limit distribution. In the case of a true value of 
parameters is not available, It should be better to choose m as large as possible but this leads to huge 
computational cost and the balance between the computational cost and goodness of fit steers us to 
consider a small value of m.

6 Conclusion

In this paper, we have provided a fully Bayesian approach to estimate the SIR epidemic parameters,
when the populations of individuals are large, by adopting a diffusion approximation. We are essen-
tially concerned with the Bayesian analysis of nonlinear, discretely observed stochastic differential
equations. We have shown that although the SDE approximation is often adequate for simulation in
the context of Bayesian inference, this approach is undertaken by adopting a Gibbs sampler.
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Figure 1: Frequency histograms based on 10000 for posteriordensities estimate ofβ (green),
andµ (violet), for m= 5, m= 10 andm= 15 with born-in of 20000 iterations in all cases.
(For interpretation of the references to colour in the legend of this figure the reader is referred
to the electronic version of this article).
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m=5
True values of β Posterior of β True values of µ Posterior of µ R̂0

mean
1

0.8791245
1

0.9685208
0.9076982

sd 0.06521707 0.06752782
mean

0.3
0.2886688

0.7
0.704504

0.4097476
sd 0.04927155 0.07741329

mean
0.5

0.5245903
0.2

0.2040725
2.570608

sd 0.0149452 0.008621898
m=10

mean
1

0.9788925
1

0.9734421
1.0055991

sd 0.0660991 0.06778218
mean

0.3
0.2949151

0.7
0.7203489

0.409406
sd 0.0507018 0.07960507

mean
0.5

0.5194062
0.2

0.201533
2.577276

sd 0.01474604 0.00857833
m=15

mean
1

0.9791271
1

0.9739063
1.0053606

sd 0.06481448 0.06833605
mean

0.3
0.2959734

0.7
0.7238514

0.408887
sd 0.04982702 0.07998687

mean
0.5

0.5174422
0.2

0.2006646
2.578642

sd 0.01470055 0.00846525

Table 1: Posterior means and standard deviations forβ, µ andR0 for ∆t = 1/m in all cases.

Instead a classical normal distribution as prior, which is not realistic because it allows negative value
of the parameters, we have proposed Gamma (on the positive real set) distributions. We found that
these distributions lead to the best estimation.
The MCMC fit obtained can be considered satisfactory taking into account the computational diffi-
culties. Further research will be devoted to further improving the fit by considering more efficient
algorithms based on block updating of missing data (Durham and Gallant (2002)) in addition to con-
sider the hyperbolic diffusion based on the discretized density via the Milstein scheme. Also the
method established in this paper can be generalized to otherSIR epidemic models.

Appendix 1

To prove the Proposition 4.1, we first consider the followingprocess

h(t) = g(z(t)) =
(

x(t) ,1+
a
n
−x(t)−y(t)

)

= (x(t) ,z(t)) ,

by Itô formula, we found
dh(t) =U(h(t),θ)△t +σ(h(t),θ)△Wt
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where

U(h(t),θ) =

(−βx(t)[1+ a
n −x(t)−z(t)]

µ(1+ a
n −x(t)−z(t))

)

andσ(h(t),θ) =
1√
n

(
−
√

βx(t)[1+ a
n −x(t)−z(t)] 0
0

√
µ(1+ a

n −x(t)−z(t))

)
.

Then, by (3.4) it is obvious that

p(Ŷi |θ) = |Σ−1
i−1|12e−1

2
(△Ŷi −Ui−1△t)′(Σi−1△t)−1(△Ŷi −Ui−1△t) (6.1)

where

Σi−1 =

(
βxi−1(t)[1+ a

n−xi−1−zi−1]
n 0

0
µ(1+ a

n−xi−1−zi−1)
n

)
.

SinceΣi−1 is diagonal, then

(△Ŷi −Ui−1△t)T(Σi−1△t)−1(△Ŷi −Ui−1△t) =
(

n
△t

)[[△xi +βxi−1[1+ a
n −xi−1−zi−1]△t

]2

βxi−1[1+ a
n −xi−1−zi−1]

+

[
△zi −µ(1+ a

n −xi−1−zi−1)△t
]2

µ(1+ a
n −xi−1−zi−1)

]

it follows immediately from (6.1), that

p(Ŷi |θ) = p(Ŷi |β).p(Ŷi |µ) (6.2)

where

p(Ŷi |β) =
√

n
βxi−1(1+ a

n −xi−1−zi−1)
e

−n
2△t ×

[△xi+βxi−1[1+
a
n−xi−1−zi−1]△t]2

βxi−1[1+
a
n−xi−1−zi−1]

and

p(Ŷi |µ) =
√

n
µ(1+ a

n −xi−1−zi−1)
e

−n
2△t ×

[△zi−µ(1+ a
n−xi−1−zi−1)△t]2

µ(1+ a
n−xi−1−zi−1) .

By independence ofβ andµ (3.3) becomes

π(Ŷ,θ) ∝

[
n

∏
i=1

β− 1
2 e

−n
2△t ×

[△xi+βxi−1[1+
a
n−xi−1−zi−1]△t]2

βxi−1[1+
a
n−xi−1−zi−1] p(β)

]

×
[

n

∏
i=1

µ−
1
2 e

−n
2△t ×

[△zi−µ(1+ a
n−xi−1−zi−1)△t]2

µ(1+ a
n−xi−1−zi−1) p(µ)

]
, (6.3)

So, if replacingp(β) by βm−1exp(−λβ) , β ∈R+ andp(µ) respectively byµm−1 exp(−λµ) , µ∈R+,
we obtain from (6.3) the following:

π(β|Ŷ) = β−N
2 +(m−1)e

−n
2△t ×

N
∑

i=1

[△xi+βxi−1[1+
a
n−xi−1−zi−1]△t]2

βxi−1[1+
a
n−xi−1−zi−1]

−λβ
; β > 0 (6.4)

and

π(µ|Ŷ) = µ−
N
2 +(m−1)e

−n
2△t ×

N
∑

i=1

[△zi−µ(1+ a
n−xi−1−zi−1)△t]2

µ(1+ a
n−xi−1−zi−1)

−λµ
; µ> 0. (6.5)
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We now proceed by regarding the quantities in the exponentials, we have

N

∑
i=1

[
△xi +βxi−1[1+ a

n −xi−1−zi−1]△t
]2

βxi−1[1+ a
n −xi−1−zi−1]

=

[
N

∑
i=1

(△xi)
2

xi−1[1+ a
n −xi−1−zi−1]

]

︸ ︷︷ ︸
A1

1
β
+β

[
N

∑
i=1

xi−1[1+
a
n
−xi−1−zi−1] (△t)2

]

︸ ︷︷ ︸
A2

+
N

∑
i=1

(2△xi△t)

︸ ︷︷ ︸
A3

.

By settingB1 =
n
△t A1, B2 =

n
△t A2 andB3 =

n
△t A3, then from (6.4) we can easily conclude that, for

β ∈R+,

π(β|Ŷ) ∝ β(m−N
2 −1)e

− 1
2

[
(B2+2λ)β+ B1

β

]

, (6.6)

wherem− N
2 ∈ R ; B2+2λ ∈R

∗
+; B1 ∈ R

∗
+. This is the first assertion of the Proposition (4.1).

In the same manner we deduce from (6.5) that

π(µ|Ŷ) ∝ µm−N
2 −1)e

− 1
2

[
(C2+2λ)µ+C1

µ

]

, (6.7)

where

C1 =
n
△t

[
N

∑
i=1

(△zi)
2

[1+ a
n −xi−1−zi−1]

]

C2 =
1
△t

[
N

∑
i=1

[1+
a
n
−xi−1−zi−1] (△t)2

]
=

N

∑
i=1

[1+
a
n
−xi−1−zi−1] (△t) .
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