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Bayesian Inference for non linear stochastic SIR epidemic model
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Inferencefor epidemicparametersanbe challengingjn partdueto datathatareintrin-
sically stochasti@ndtendto be observedy meanof discrete-timesamplingwhichare
limited in their completenessThe problemis particularlyacutewhenthe likelihood of
thedatais computationallyintractable.Consequenthgtandardstatistical techniquesan
becometoo complicatedio implementeffectively. In this work, we developa powerful
methodfor bayesiarparadigmfor SIR stochastieepidemicmodelsvia data-augmented
Markov Chain Monte Carlo. The latter samplesmissingvaluesaswell asthe model
parameterswherethe missingvaluesand parametersretreatedasrandomvariables.
Theseroutinesare basedon the approximationof the discrete-timeepidemicby diffu-
sion processWe illustrate our techniquesisingsimulatedepidemics.
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1 Introduction

For readerghe epidemicsplayeda fundamentakole in humanhistory asone of the causef mis-
ery, poverty and deathduring different centuries.From economicand humanpoints of view, it is
very importantto havethe meansto achievefull understandingf the evolution of thesephenom-
ena. Sincethe late fifties, the developmenbf mathematicabnd computationatools have enabled
a moreformal study of epidemics;therefore,severaltypesof epidemicmodelsusing varioustech-
nigueshavebeenproposedsuchasthe SIR (Susceptible-InfectedRemoved)model, which is used
to understandhe evolution of complexinfectiousdiseasesn orderto predictthe impactof public
health programs. The resultsdependon how clear are the estimatesof the parametergoverning
thesemodels. For SIR epidemiologicalsystemsgstimationfor key parameter®f interest(the con-
tact infectious and the removal rates) is a crucial methodologicalproblem. Various methods
havebeenproposedo estimatetheseparametergrom a time data,of which the more sophisticated
rely on the calculation of a likelihood function (e.g. Becker (1989), Becker and Britton(1999),
Beckeret al.(2003) and Anderssonand Britton (2000)). Likelihood basedinferencefor epidemic
models posesmany challenges not least becauseavailable epidemic data are often censoredor
incomplete but alsothe likelihood requiresthe knowledgeof the transition probabilitieswhich are
unavailablein simpleclosedform for this type of models(El Maroufy et all. (2012)). At the same
time, othersauthorsasBritton (1998), BeckerandHasofer(1997), BeckerandBritton (1999)drew
attentionto this problemof estimationwithin the contextof classicalinferenceand describeda
martingaletechniquefor non-likelihood approaches.However, although the estimatorbasedon
martingaleestimatingfunctions
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wich is consistentand asymptoticallynormally distributed,it is inefficientin general.Furthermore,
computatiorof the standarderrorsof the resultingestimatess difficult andrequirestechniquesuch
asparametricbootstrappingAnotheralternativeapproachis the Bayesianparadigm.This approach
is particularly suitedto the contextof epidemicmodelling sincethe parameter®sf interestare usu-
ally definedin termsof anindividual, which naturallyleadsoneto considerthe distributionsof these
parametergverawhole population.Up to now, almostall of theliteratureconcerningBayesiarsta-
tistical inferenceusenumericaltechniquesuchas Markov Chain Monte Carlo (MCMC), which is
beingincreasinglyemployedin epidemicmodelling (e.g. O’Neill and Roberts(1999); Demiris and
O’Neill (2005a,2005b);and referencegherein), but the Bayesianmethodsusedare distinct from
thatwe presenin this paper.

First, we approximatehe discreetepidemicby diffusion processNext, supposinghatthe diffusion
modelis given in parametricform, so the problem of parameterestimationcan be broughtback
usinginferencefor discretelyobservedliffusion processvhich hasbeenwidely studiedthroughthe
like-lihood function by many authors(seefor exampleSorengnser§2004), Beskoset al. (2006),
Gilioli et al. (2008) and the referencetherein). The maximumlikelihood estimator,using discreet
data,is consistenandasymptoticallynormalif thetime intervalsbetweenconsecutiveobservations
are suf-ficiently small and under suitableconditionsas the processess ergodic(see,PrakasaRao
(1999)). However, for SIR epidemic models, the likelihood function is unknown, and in many
situationsthe inter-observatiortimes are large or latent; hence,the likelihood estimationmay be
unreliableandthe ergodicityis very hardto prove. To overcomethis difficulty, we will adoptthe
bayesiarmethodproposedby Eraker(2001)in the contextof financialmodels.The methodconsist
of augmentinghe low-frequencyobservationdy insertionof finite numberof latentdatabetween
two consecutivereal observationsThis taskis performedby applicationof Markov Chain Monte
Carlo (MCMC) tech-niquewhich alternately update the data and are usually feasible within
moderatecomputingtime. In particularwe statethat underthe family of prior independengamma
distributionsthis leadsto gen-eralizednverse gammadistributions as posteriordistribution. The
hybrid accept-rejectMetropolis-Hastings(hereafter AR-MH) give more rapid convergenceand
requiresknowledgeof the unnormal-izedargetdensityanda proposaldensity (see,Eraker(2001),
Golithly and Wilkinson (2004)). So we suggesit shouldbe with normal densityas good proposal
density.

The structureof this paperis asfollows. In Section2, we presenta temporaldiscreetandnonlinear
diffusion epidemic model. In section 3, we presenta bayesian approachto estimate the
parameterTo deal with a small numberof observationsjn Section4, we introduce latent data
betweenpairs of observationgo improve the results. In Section5, we illustrate somesimulation
examples.

2 Temporal SIR epidemic model

In the basic SIR epidemicmodel the populationunder considerations classifiedinto susceptible,
infectiousandrecovered. We considerin this type of modela closedpopulationof n+ a individ-
uals. At time t, we denotethe size of eachcategoryby S(t), 1(t) and R(t), respectively,so that
S(t) +1(t) + R(t) = n+a. Attimet = 0 the populationonly containssusceptibleandinfectedindi-
viduals with S(0) = n, 1(0) = a. An infecteithdividual remainsinfected,before being removed, for a
randomperiodwith meanl/p. Thelengthsof stayin the state"infected"areassumedo be mutually
independentlin a smalltime perioddt, the probability of anindividual to be infectedis | (t)%dt. A
susceptiblendividual after contactwith aninfectedindividualimmediatelybecomesnfectious. The
meannumberof new infectedindividualsis thenl (t)S(t)%dt. The epidemicendswhenthereis no
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infectuous in the population. This model is often known as the general stochastic epidemic, and is
the most widely studied model. This model is analogous to the deterministic SIR model, defined
in terms of ordinary differential equations (see, Bailey (1975)). The stochastic epidemic is com-
pletely determined by (X (t),Y (t));t > O}, which is a continuous time Markov Chain on the state
spaceE = {(i,j); 0<i<n, 0<j<(n—i)+a}. The transition probabilities from timeto t +h

are given by

Transition P_robability
i) —  (-1l1+1) B—rl]lh+o(h),
i) — (i1 —1) uih+o(h), (1)
i)  — (i.1) 1—(B—nlr|1+ulh)+o(h).

For(i,1) € E, we define? (t) = P{S(t) =i, (t) =1}. It follows directly from (2.1) that these transition
probabilities satisfy the set of Kolmogorov forward equations:
B(i+1)(1—1)

Pyt = —  Piti-y (t) + 1+ D)Pi 42 (1) — (W +

gil
?)P(i,l)(t)

for (i,1) € E, with By (t) = 0if (i,1) ¢ E andP,4(0) = 1.

A Markov process with above described dynamics is termed the general stochastic epidemic.
Instead of usings andl, we normalise the process by the transformatiofs = S(t) /n andy(t) =

I(t)/n. By settingf (x,y) = nBxy = %SI and g(x,y) = nul = pythe Kolmogorov’s equations become

Pxyt)=f(x+ey—g)p(x+ey—gt)+gxy+e)pxy+et)—[f(xy) +gxy)]pxyt)
(2.2)
wheree = % and p(x,y,t) = pxy)(t). By substracting and adding terms to equatfon|(2.2) and letting
€ — 0, we establish, by setting= (x,y) (see Fuchs (2013) for rigorous proof), that

0 ) 102

= P(y,t) = 3y U(y,0)p(y,t)] + 202 [

ot Z(y,0)P(y,1)] (2.3)

with 8 = (B, U(y.8) = (g ,) ands(y.6) = ; ( —BI;?(/y B)&E?l/iy ) '

Equation [(2.B) is the Fokker-Planck equation associated to the diffusion prio€esg(t)) which is
solution, according to @ksendal (1995) (see also, Tory (2000) and Kloeden and Platen (1999)), of the

non-linearbivariateltdé stochastidifferential equation:

(3?) - (Bx_yﬁ—xiy> de+o(xy) (S\A\A&Q (2.4)

whereo(x,y) = % ( —\/\/BBTTyy \/?3—)/ ) The conditions under which the SDE given by (2.4) can be
solved for(x,y) are satisfied (see Anderson and Britton (2000)). The right hand side of the differential
equation(Z:4) consistf thedeterministiqseeBailey (1975)) andhe stochasticomponent§V;

and W which are two standardindependenBrownian motions, representingstochasticallyin

disease transmissi@andrecovers.

The paramete® is unknownand hasto be estimated. However, the objective of this paperis to
illustrate an efficient methodto estimateit becausethe quantity Ry = % which designthe basic



4 El Maroufy et al.

reproduction number (the average number of new infections caused by a single infective in a large
susceptible population). This quantity is used to interpret the threshold behaviour of the epidemic; a
large outbreak can occur if and onlyR§ > 0. A prior distribution will be specified of = (3, ) and
inference will be performed based upon its joint posterior distribution using a Bayesian approach.

3 Inferencefor non-linear diffusion model

For simplicity, we write the system{Z2.4) invectorialform:
d¥ =U(Y;,0)dt+o(Y;,0)dW(t) (3.1)

whereU : R2x © — R? ando : R? x © — R?*?, for some compact parameter €®tC R2. We
assume that the proce¥s$t) will be observed at a finite integer of times and the objective is to
conduct inference for the (unknown) parameter veétam the basis of these partial and discrete
observations oY (t). In practice it is necessary to work with the discretized versiof_of (3.1), given
by the Euler approximation

AY; = U (Y;,0)At + o(Y;, 8)AW(t), (3.2)

whereAW is two dimensional iidN(0O,,I,At) random vector.

Diffusion processes provide an analytical tractability, but the parameters that govern their dynamics
areoften difficult to estimate from the data obtained after difzation of time. In short, the estima-

tion problem is that the model is formulated in continuous time, while the sampling data are naturally
available only at discrete frequencies and perhaps with a low frequency. The Eraker’'s approach is
based on the introduction between each pair of observatioms-af latent data points. The method

is based on the MCMC (Monte-Carlo-Markov-Chain) technique applied to a wide class of models,
including models with incomplete data. It is assumed that the observations are collected in discrete
integertimes but by do not putting At = 1 this situationdoesnot approximatewell the transition
density.Hence to ensurethatthe discretizatiorbiasis arbitrarily smallwe put At = 1/m,for conve-

niently chosen positive integen. The timenterval [0,T | is subdivided into mx T equidistamints
O=to<ti<..<th1<ty=T. Let

g_ ( X %1 S %m—l X, §m+1 Co L Xy >
Yo Yu - - ¢ Y1 Y Yo - - - Y
be the matrix of all (real and latent) data. We shall denot&;by (x;,y;) the real datum at timg
wheni is a multiple integer ofmand¥;, = (%% ) the latent datum and, generically, Hy a real or
latent datum depending on the context. Altogether,2x (m— 1) data points are missing from the
system.
Conditionally to the first observation the joint posterior density is given by

N
m¥.8) 0[] p%18)p(8) (3.3)

where R .
P(\?i 16) = |zi:11|12e7%(AYifUi,lﬁt)’(Zi,lﬁt)*l(AYifUi,lﬁt)’ (3.4)

with AY, =Y — Y1, U1 =U(Y¥_1;0), Z_1 = o(Y,_1;0)0" (Y_1;8), |=}| is the determinant of
the inverse matrix o; and p(0) is the prior density of the parameter. From now on, we adopt the
notation wherat(0) denotes all proper densitieg,denotestin an unnormalized form. Note that all
posterior densities of the parameters conditionally to the observations are proportignal to (3.3).
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4 Gibbssampler

We have formulated in(3.3) the joint posterior for the model parameters as well as observed and

unobservediatabut our realinterestis in the distribution of (8,Y \ Yobs Yobs) WhereYops denoteshe
observeddataup to timet,. As discussedn Golihtly andWilkinson (2004) (seealsotherelatedref-
erencegherein)theinferencemayproceedy alternatingoetweernthe simulateddataandparameters

conditional on augmented data and the current state of the parameters. As in the epidemiological con-
text the number of missing data is relatively large, a Gibbs sampler is suitable for sampling indepen-
dently the quantities. At first step, we consider a guess value dwawn from the prior distribution

1(0) and generate latent data as shown in the next section. At this point, we generate a new value
of 6, then we update latent observations. By repeating, this process generates a Markov chain which
has the desired posterior(e,\? \\?obsy\?obs), as its stationary distribution. For an overview of the use

of Markov chains for exploring the posterior distributions we refer you back to the works of Tierney
(1994).

4.1 Simulating the latent data

For the univariate diffusion processes, the MCMC method have been extensively examined, for ex-
ample in financial models Roberts and Stramer (2001), Eleriah €001) and Durham and Gallant
(2002) employ block updating schemes to simulate the latent data. For our bivariate partially observed
model, due to the high dimensionality (large number missing data and parameters) it is convenient to
use Gibbs sampler. The first step in the Gibbs sampler involves the simulation of missing data. We
use Eraker's method (see Eraker (2001)) to generate one latent obse¥vaii@mY;_1,Y..1. So we

know

(Y |¥,;,8) O p(¥i[¥i-1,Yi11;6) (4.1)
where
P(YiYio1,Yi41,8) = |54 |72 (4.2)
F[(AY—Ui a8t (5 1A HAY=Ui 1A +(AY - Ui AL (S A1) YAV 11 -UiAt)]

e 2

andY,; designates the matri without theith column.

The density in[(42) is not a density of standard form, so we suggest to use the AR-MH algorithm,
because this algorithm is fast and only requires knowledge of the unormalized proposal glémesity

can be sampled from. As motivated in Eraker (2001), whinnot a multiple ofm, Y; is updated

using the normal distributiohl(%(\?i_l +\?i+1), %Zi_lAt) as a good proposal density.

4.2 Sampling from the full conditional for the parameter

The remaining step in either the Gibbs sampler is to saiplehe value o®, conditional to its cur-

rent state and the augmented dat#;tt iteration. We consider the stbg-1, once we have simulated

the matrix, the paramet&"t1) must be generated. If the posterior density of the parameter does not
have a known usual distribution, we might still impose a Metropolis-Hastings step, but it is not the
case her. Due to the form of likelihood function derived[in(3.3), a family of independent gamma
distribution is seen a natural set of conjugate priors chiefly in the context of epidemic model where
the parameters are positive (see, Streftaris and Gibson (2004), Demeris and O’Neill (2005a, 2005b)
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and the reference therein). Under this family of priors the application of Bayes’ theorem produces as
posteriors generalized inverse gaussian distributions. More formally, we have the following

Proposition 4.1. If the  and p follow independent gamma prior distributiors(3) O I (mg,Ag, B)
andmi(p) O T (my, Ay, ). Then

(B O te 2B 2P (4.3)
and .

T[(u’?) 0 umtlf%flei% [(CZJFZ)\“)WF%] , (44)
where B, C,, B; and G are constants calculated from data ahdm, A, a) = a™1le A for o e R

and m,\ are positive constants.

Proof: The proof of the previous statement is presented in the Appeindix

As mentionedabove the questionof whetheror noteRy > 1 is oftenof interestwe will considetthis
conceptin practice We will useasthe prior of Ry. In orderto do this, thefollowing factsareusedin
the sequel. Sinced== 3/ then its prior density is given by Clancy and O’Neill (2008)

e\, Tty R
n(Ro)—<)\u> M(mg) +(my) (;—BRoJrl)nwm“ with Ro > 0,

with prior mean and variance given by

MeAy

E(R) = (Mu—1)Ag

and

_ mp(mptmu—1) Ag\?
varR) = o e (3

We seethatif m, < 1, Ry hasnegativeprior meanandif m, < 2 Ry hasnegativeprior variance.Iln
other words, such vague priors on (3 angligld inaccuraterior for Ry, this means that is possible

to consider the posterior meank{ as a suitable summary measure. Now, assumeriiat m, = m
andAg = Ay, = A; atypical casein practisewill bem > 1 andA a small positive number this gives

E(Rp) > 1 andmeanghatthe epidemicis aboveits thresholdor maybenot. This suggestsomeneed
for warinessin usingthe meanasthe sole meansof assessingvhetheror not an epidemicis above

threshold. However, the alternatiigeto choose m and A such tHat0 < Ry< 1) = 1/2 in this case,
the epidemicshall havethe sameprobability to be below or abovethe threshold.

4.3 Algorithm

The following algorithm summarizes our strategy of simulation:

(i)- Initialize all missing data of the matri using linear interpolation between two observed values
and initialising paramete®© andp© according to the principe in the last paragraph.
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(i)- Fori =1,...,n at iterationh we use the AR-MH for drawing an observation using a normal
distribution [ (Y-t Zo1xAl)

(iii)- Drawingp using [4.3).
(iv)- Drawingu using [4.4).
(v)- Increase the value ofi and go back to stepi}.

As mentioned in Propositidd.1, if the prior distribution of parameters is a gamma distribution, then
the posterior is generalized inverse Gaussian. It is not easy to sample directly from this distribution
(see Hormann and Leydold (2014) and the reference given there). In this case a Metropolis-Hasting
algorithm can be used in the steps 3 and 4. We consider, as proposal density for the M-H algorithm, a
gamma distribution with special parameters. We proceed as follows : At each iteration, we calculate
the quantityb given byb = éggxp(ﬁ(h)\?(h)). Given that the mean and variance of a gamma distri-

+

butionT (y,n) are given by% and 3 respectively, we takg= k x b andn = k wherek is a positive
integer which we can be calculated by viewing the shape of the posterior distribution after initialising
the data.

5 Simulation study

Toillustratethemethodologypresentedhn this paperthe MCMC schemas appliedto thegeneralSIR
epidemicmodelwith knownparametersTheobservablgartof thedatacomesrom thesimulationof
original doubleMarkov chainusingthe exactGillespiealgorithmgivenin GibsonandBruck (2000)
with true valuesof the parameter@sgivenin the Table 1. For eachdataset,dueto computational
demandsthe MCMC sampleris run for 20000iterationswith m =5, m = 10 andm = 15. Notethat
the algorithmis codedin R andexecutedon Laptopi3. The applicationof the methodoutlined her
improvesthe estimateof B and . Looking at Table 1 and Figure 1 which summarisehe posterior
distribution; Table1 give posteriormeanandvariance We seethatthe estimatesirecloseto thetrue
value as the numberof latent dataincrease.Thereis a considerablamprovementup to a certain
value of m, while for greatervalue the improvements lesspronounced.The histogramsn Figure
1 revealthe convergencef the algorithmtowardsa limit distribution. In the caseof a true value of
parameterss not available,lt shouldbe betterto choosem aslargeaspossiblebut this leadsto huge
computationakostandthe balancebetweenthe computationakostand goodnes®f fit steersusto
considera smallvalueof m.

6 Conclusion

In this paper, we have provided a fully Bayesian approach to estimate the SIR epidemic parameters,
when the populations of individuals are large, by adopting a diffusion approximation. We are essen-

tially concerned with the Bayesian analysis of nonlinear, discretely observed stochastic differential

eguations. We have shown that although the SDE approximation is often adequate for simulation in
the context of Bayesian inference, this approach is undertaken by adopting a Gibbs sampler.
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Figure 1: Frequency histograms based on 10000 for postiiities estimate @ (green),
andp (violet), for m=5, m= 10 andm = 15 with born-in of 20000 iterations in all cases.
(For interpretation of the references to colour in the lebefthis figure the reader is referred
to the electronic version of this article).
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Truevaluesof B Posterior of mT_r?JevaJuesof M Posterior of u Ro

e gm0k oo

S 0% oernss 07 ogyrasage O4097470

" 95 Gousass %2 oooesssos 2570608
m=10

R T

S A

"S %5 oumss %2 ooossreas 2577278
m=15

"& 1 commis 6 06833605 1003608

e o Mo QU gum

S 95 goumooss %2 oooaszs 2578642

Table 1: Posterior means and standard deviation8,fpandR, for At = 1/min all cases.

Instead a classical normal distribution as prior, whichasnealistic because it allows negative value
of the parameters, we have proposed Gamma (on the positivea® distributions. We found that
these distributions lead to the best estimation.
The MCMC fit obtained can be considered satisfactory takimg account the computational diffi-
culties. Further research will be devoted to further imprgvthe fit by considering more efficient
algorithms based on block updating of missing data (DurhathGallant (2002)) in addition to con-
sider the hyperbolic diffusion based on the discretizedsitervia the Milstein scheme. Also the
method established in this paper can be generalized to StReepidemic models.

Appendix 1

To prove the Propositidn 4.1, we first consider the followimgcess

h(t)

by 1t6 formula, we found

= g(zt) = (x(V),1+ 2 - x() -y(1))

= (x(t),z(1)),

dh(t) =U (h(t),8) At + a(h(t), 8) AW
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where
B BX(t)[1+ 8 —x(t) — z(t)]
U(h(t).8) = ( ML+ 2 —x(t) - 2(t)) )
L (/O E XD 70 0
anda(h(t),8) = \/ﬁ( 0 \/u(1+%—X(t)—Z(t))>
Then, by[(3.4) it is obvious that
P(%16) = |2 %3 (A% — Ui 10 (51_140) " HAY Ui 1A ©.1)

where

Bxia()[1+28—x1-7 1] 0
2i1= 8 M(A+8—x_1-7_1) |-

n
SinceZ;_; is diagonal, then

(AY, —Ui_1A) T (Z_1 A HAY —Ui_1AL) =
<1) (A% + P11+ 8~ x_1-2-1)A°  [Az—pd+28—x_1— z_l)At]2]
At

Bxi—1[14+ 8 —X_1—7_1] H(1+28—x_1—7_1)
it follows immediately from[(€6.11), that

~

p(Yi8) = p(Yi|B)-p(Yi|W) (6.2)

where

n —n [ +Bx_q[1+ § %17 _g)at]?

et Bxi_1[1+f—%_1-7_1]
Bxi—1(1+28—%_1—7_1)

~ n 0 x (27 *l:(lJr%’xi—l’Zi—l)A‘]z
YilW) = e MR —%_13-1)
PO = [

By independence @ andp (3.3) becomes

and

[ “n AX.+Bxi71[1+%*Xpr%fﬂm]z

rl B*zem‘ Py R 13 D(B)]

[62-10+8-%_1-5_ 1A

[l—luzezm HI+3-%_1-7_1) p(p,)] , (6.3)

So, if replacingp(B) by B™*exp(—AB), B € R, andp(u) respectively by™texp(—Ap), ue Ry,
we obtain from[(6.B) the following:

[Ax+Bx_ l[1+ﬁ—x| 1-7%_ 1]&1]2

T[(BN) _ Bf%+(mfl)e2AntX 21 1+ R —x_1-7_1 )\B; B>0 (6.4)

and
[22 w1+ B-x_1-7_ 1At

(V) = 30T y Huso. (6.5)
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We now proceed by regarding the quantities in the exporientiee have

N [AX +PBXi—1[1+ 2 —Xi_1— Zi—l]At]z
i; BXi—l[l—l—Q—Xi_l—Zi—l]

)2
[Zm 11+——X| 1— %1

A A Az

N

+ ;(ZAxi At).

1 N a 2
~+B _lei71[1+ ~—X1—za] (A

By settingB; = A1, B> = f££A> andB3z = A, then from [E.4) we can easily conclude that, for
B € R+1

n(pIY) O (YU t[Br 208 (6.6)

wherem— % €R ; Bo+2A e R%; B € RY. This is the first assertion of the Propositign {4.1).
In the same manner we deduce from (6.5) that

() Oy ¥ e 420 (6.7)
where
c. — IS (Aa)”
1 At | G148 —%_1—7_4]
1 N a 2 N
C = At I;[1+ﬁ—x. 1—7Z- 1](At)] 2 [1+——X| 1—Z-1](At).
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