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Abstract

Recent works in the literature have proposed models and algorithms

for nonparametric estimation of finite multivariate mixtures. In these

works, the model assumes independent coordinates, conditional on the

subpopulation from which each observation is drawn, so that the de-

pendence structure comes only from the mixture. Here, we relax this

assumption, allowing in the multivariate observations independent mul-

tivariate blocks of coordinates conditional upon knowing which mixture

component from which they come. Otherwise their density functions

are completely multivariate and nonparametric. We propose an EM-like

algorithm for this model, and derive some strategies for selecting the

bandwidth matrix involved in the nonparametric estimation step of it.

The performance of this algorithm is through several numerical simula-

tions. We also experiment this new model and algorithm on an actual

dataset from the model based, unsupervised clustering perspective, to

illustrate its potential.

Keywords. EM algorithm, multivariate kernel density estimation, multivari-
ate mixture, nonparametric mixture.

1 Introduction

Populations of individuals may often be divided into subgroups. The task
in examining a sample of measurements to discern and describe subgroups of
individuals, even when there is no observable variable that readily indexes into
which subgroup an individual properly belongs, is sometimes referred to as
“unsupervised clustering” in the literature, and in fact mixture models may be
generally thought of as comprising the subset of clustering methods known as
model-based clustering.

Finite mixture models may also be used in situations beyond those for
which clustering of individuals is of interest. For one thing, finite mixture
models give descriptions of entire subgroups (called components), rather than
assignments of individuals to those subgroups. Indeed, even the subgroups
may not necessarily be of interest; sometimes finite mixture models merely
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provide a means for adequately describing a particular distribution, such as
the distribution of residuals in a linear regression model where outliers are
present. Much of the theory of these models involves the assumption that the
subgroups are distributed according to a particular parametric form and quite
often this form is univariate or multivariate normal.

The most general model for nonparametric multivariate mixtures is as fol-
lows: suppose the vectors X1, . . . ,Xn are a simple random sample from a
finite mixture of m > 1 arbitrary distributions. The density of each Xi may
be written

gθ(xi) =

m
∑

j=1

λjfj(xi), (1)

where xi ∈ R
r, and θ = (λ,f) = (λ1, . . . , λm, f1, . . . , fm) denotes the parame-

ters of the statistical model. In this model λj denotes the proportion (weight)
of component j in the population; the λj ’s are thus positive and

∑m
j=1 λj = 1.

The fj ’s are the component densities, drawn from some family of multivariate
density functions F absolutely continuous with respect to Lebesgue measure.
Note that the univariate (r = 1) case will only be briefly considered, since this
paper focus on multivariate extensions.

Model (1) is not identifiable if no restrictions are placed on F , where “iden-
tifiable” means that gθ has a unique representation of the form (1) and also
that we do not consider that “label-switching” — i.e., reordering the m pairs
(λ1, f1), . . . , (λm, fm) — produces a distinct representation. The most com-
mon restriction in the mixture literature is to assume that the family F is
parametric, i.e. that any f ∈ F is completely specified by a (d-dimensional)
Euclidean parameter. The most used and studied parametric mixture model
is the Gaussian mixture, where fj is the density of a (eventually multidimen-
sional) Gaussian distribution with mean µj and variance (matrix) Σj . Sec-
tion 1.2 presents various ways of relaxing this parametric assumption while
preserving some sort of identifiability property.

1.1 The EM algorithm

Mixture models are deeply connected to the EM algorithm. This algorithm,
as defined in the seminal paper of Dempster et al. (1977), is more properly
understood to be a class of algorithms, a number of which predate even the
Dempster et al. (1977) paper in the literature. These algorithms are designed
for maximum likelihood estimation in missing data problems, of which finite
mixture problems are canonical examples because the unobserved labels of
the individuals (as in unsupervised clustering) give an easy interpretation of
missing data. A recent account of EM principle, properties and generalizations
can be found in McLachlan and Krishnan (2008), and mixture models are
deeply detailed in McLachlan and Peel (2000).

In a missing data setup, the n-fold product of the pdf of the observations
gθ corresponds to the incomplete data pdf, associated to the log-likelihood
ℓx(θ) =

∑n
i=1 log gθ(xi). In mixture models and many other missing data sit-

uations, maximizing ℓx(θ) leads to a difficult problem. Intuitively, EM algo-
rithms replace this unfeasible maximization by the maximization of a pseudo-
likelihood that resembles the likelihood of the complete data, which is itself
easy to maximize. Assuming y comes from a complete data pdf gc

θ
, the EM
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algorithm iteratively maximizes the operator

Q(θ|θ(t)) := E[log gc
θ(y)|x,θ(t)],

the expectation being taken relatively to the conditional distribution of (y|x),
for the value θ(t) of the parameter at iteration t. Given an arbitrary starting
value θ(0), the EM algorithm generates a sequence (θ(t))t≥1 by iterating the
following steps:

1. E-step: compute Q(θ|θ(t))

2. M-step: set θ(t+1) = argmaxθ∈ΘQ(θ|θ(t)).

In finite mixture models, the complete data associated with the actually
observed sample x is y = (x,Z), where to each individual (multivariate)
observation xi is associated an indicator variable Zi denoting its component
of origin. Notationally, it is common to define Zi = (Zi1, . . . , Zim) with the
indicator variables

Zij = I{observation i comes from component j},
m
∑

j=1

Zij = 1.

From (1), this means that

Pθ(Zij = 1) = λj , and(Xi|Zij = 1) ∼ fj , j = 1, ...,m.

Conveniently, the M-step for finite mixture models always looks partly
the same: No matter what form the fj ’s take, the updates to the mixing
proportions are given by

λ
(t+1)
j =

1

n

n
∑

i=1

p
(t)
ij , for j = 1, . . . ,m,

where p
(t)
ij := P

θ
(t)(Zij = 1|xi) is the posterior probability that the individual i

comes from component j. The updates for the fj ’s depend on the particular
form of the component densities. In parametric mixtures (i.e. when the family
F is completely specified by a d-dimensional Euclidean parameter), the up-
dates of these parameters is often easy, and can be looked like weighted MLE
estimates. This is the case for, e.g., Gaussian mixtures.

1.2 Previous work on semi- and non-parametric mixtures

In this work, the term “nonparametric” means that no assumptions are made
about the form of the fj ’s, even though the weights λ are Euclidean parame-
ters. Note that other authors as, e.g., Lindsay (1995), speak of “nonparametric
mixture modeling” in a different sense: The family F is fully specified up to
an Euclidean parameter, but the mixing distribution, rather than having fi-
nite support of known cardinality m like here, is assumed to be completely
unspecified.

As said above, nonparametric mixture models are not identifiable if no re-
strictions are placed on the family F to which the fj ’s belong. The classical
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definition of identifiability requires that any two different values θ 6= θ′ corre-
spond to two different distributions gθ and gθ′ . Weaker notions of identifiability
can be considered, and in the particular case of mixtures, the fact that there
always exists m! permutations of the labels in θ = (λ1, . . . , λm, f1, . . . , fm) that
result in the same distribution gθ is one of those. Sometimes, the essentially
nonparametric density functions in F may be partially specified by Euclidean
parameters, a case often called semi-parametric. For instance, in the univari-
ate (r = 1) case, Bordes et al. (2006) and Hunter et al. (2007) proved that
when fj(x) = f(x − µj) for some density f(·) that is symmetric about zero,
the mixture (1) admits a unique representation whenever m ≤ 3, except in
very special cases. In the multivariate situation, Benaglia et al. (2009a), and
recently Chauveau et al. (2014) propose some semiparametric mixture models
as well.

On the multivariate situation, the common restriction placed on F in a
number of recent theoretical and algorithmic developments in the statistical
literature is that each joint density fj(·) is equal to the product of its marginal
densities. In other words, the coordinates of the Xi vector are independent,
conditional on the subpopulation or component (f1 through fm) from which
Xi is drawn. Therefore, model (1) becomes

gθ(xi) =
m
∑

j=1

λj

r
∏

k=1

fjk(xik). (2)

This conditional independence assumption has been introduced by Hall
and Zhou (2003), who established that when m = 2, identifiability of param-
eters generally follows in r ≥ 3 dimensions but not in fewer than three. Hall
et al. (2005) extended this result, suggesting that the condition on m gets less
restrictive as r increases; intuitively, dimensionality together with conditional
independence help for identifiability. This results, nowaday known as the “curse
of dimensionality in the reverse”, says that for a given number of components
m, there is a lower bound rm that the dimensionality of observations must
exceed for the model to be identifiable. Allman et al. (2009) finally established
the fundamental result of identifiability for model (2) if r ≥ 3, regardless of m.

Several authors addressed the problem of estimating the parameters of
these semi- or non-parametric mixture models. In the univariate case, Bordes
et al. (2006) and Hunter et al. (2007) both propose estimators based on a
minimum contrast approach, a method impossible to extend beyond m = 2
components. For the multivariate model (2), Hall et al. (2005) give estimators
based on inversion of the mixture, that apply only in the case when m = 2 and
r = 3, due to analytical difficulties appearing beyond this case.

The difficulties associated to these theoretically well grounded approaches
encourage the development of estimation strategies based on the EM principle.
In the univariate case, Bordes et al. (2007) first propose a univariate semipara-
metric (and stochastic) “EM-like” algorithm for a location-shift semiparametric
mixture model

gθ(x) =

m
∑

j=1

λjf(x− µj), x ∈ R, θ = (λ,µ, f).

The novelty that is hidden behind the term EM-like is that the M step is
not a genuine maximization step. It is a hybrid algorithm that introduces
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a nonparametric, Weighted Kernel Density Estimation (WKDE) step. This
algorithm hence gives kernel-density-like estimates for f . It is also a stochastic
algorithm since, at each iteration, each observation in the dataset is randomly
assigned to one of the mixture components. This assignment is based on the
posterior probabilities of component membership. This algorithm is simple to
program and is applicable practically for any number m of components, even
beyond the cases for which identifiability has been proved.

For the multivariate model (2), an empirical “EM-like” algorithm for statis-
tical estimation of its parameter has been introduced in Benaglia et al. (2009a).
This algorithm called npEM (non-parametric EM) eliminates the stochasticity of
the univariate algorithm from Bordes et al. (2007), but also relies on a WKDE
step for the updates of the fjk’s. The npEM algorithm is publicly available in
the mixtools package (Benaglia et al., 2009b) for the R statistical software R
Core Team (2013), and is designed to estimate θ in model (2), and in some
refinements of it. However, despite its empirical success, this algorithm lacks
any sort of theoretical justification; indeed, it can only be called “EM-like” be-
cause it resembles an EM algorithm in certain aspects of its formulation. Levine
et al. (2012) corrects this shortcoming by introducing a smoothed loglikelihood
function and formulating an iterative algorithm with a provable monotonicity
property that happens to produce results that are similar to those of Benaglia
et al. (2009b) in practice.

This article describes a new nonparametric mixture models that extends
model (2) in the sense that it allows for conditionally independent multivariate
component densities. Importantly, this extensions allows for dependence struc-
tures within multivariate subsets of coordinates, apart from the dependence
induced by the mixture that is the unique dependence allowed in model (2).
We present this model in Section 2, and verify that its parameters are identifi-
able using results from Allman et al. (2009) that go beyond the conditionally
independent univariate case. We then focus on statistical estimation of these
parameters in Section 3. We propose a new “EM-like” algorithm called mvnpEM

since it relies – and is a multivariate (mv) per block extension of – the npEM

algorithm introduced by Benaglia et al. (2009a). Like the EM-like algorithms
presented in this introduction, our algorithm requires a weighted kernel den-
sity estimation step, which turns out here to be a multivariate WKDE. We
thus describe possible bandwidth selection strategies for this WKDE in Sec-
tion 3.2. Section 4 is devoted to implementation considerations and a study of
the algorithm through large scale Monte-Carlo simulations. Section 5 describes
an analysis, using our model, of an actual dataset from the machine learning
community. The perspective there is unsupervised model-based clustering, il-
lustrating the potential usefulness of our new mixture model approach relaxing
the conditional independence assumption.

2 Nonparametric mixture with multivariate blocks

We assume now that each joint density fj is equal to the product of B multi-
variate densities that will correspond to conditionally independent multivariate
blocks in the mixture model. Let the set of indices {1, ..., r} be partitioned into
B disjoint subsets sl, i.e. {1, ..., r} =

⋃B
l=1 sl, where 2 ≤ B < r is the total

number of such blocks, and dl is the number of coordinates in lth block, i.e.
lth block dimension. Actually, we will impose B ≥ 3 in practice in view of
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of Allman et al. (2009) result implying that there is little hope to have an
identifiable model for less than 3 independent blocks (see below).

Here, the indices i, j, k and l denote a generic individual, component, co-
ordinate, and block, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r and 1 ≤ l ≤ B (m, r,B
and n stand for the number of mixture components, repeated measurements,
blocks, and the sample size). Suppose fj is equal to the product of fjl−the
multivariate density function of jth component and lth block. Then model (1)
becomes

gθ(xi) =

m
∑

j=1

λj

B
∏

l=1

fjl(xisl), (3)

where xisl = {xik, k ∈ sl} is the multivariate variable which have its coor-
dinates in lth block. Hence this model assumes independence of blocks of
multivariate densities, conditional on the subpopulation from which each ob-
servation is drawn. This is a main difference in comparison to the model of
conditional independence (2) introduced by Hall and Zhou (2003): here the
dependence structure does not come only from the mixture structure, since
some additional within-block dependence is allowed. This model thus brings
more flexibility with respect to the conditional independence assumption, that
is in some applications a shortcoming of model (2).

When all blocks are of size 1 (univariate blocks), then B = r and the
model is the conditional independence assumption model (2). Thus, to have
at least 1 multivariate block of size ≥ 2, we assume B < r in the sequel. Note
that “block” have a different meaning in Benaglia et al. (2009a) and successive
works on smoothed versions like Chauveau et al. (2014). There, block means
a group of coordinates sharing a same univariate density fj for component j,
allowing for more parsimonious models motivated by some actual applications
from psychometrics.

Identifiability considerations

As reviewed briefly in Section 1.2, Hall et al. (2005) explored the identifia-
bility question related to model (2) with univariate conditionally independent
marginals. They also suggest that a similar result could be achievable for con-
ditionally independent blocks of multivariate densities, that is precisely our
model (3). Then Allman et al. (2009) proved a collection of identifiability re-
sults, based on a representation of some latent variable model in terms of 3-way
contingency tables. Their results are based on an algebraic result of Kruskal
(1976, 1977), who describes a 3-way contingency table that cross-classifies a
sample of n individuals with respect to three categorical variables, say Xk,
k = 1, 2, 3, each Xk taking value in a state space {1, . . . , κk} with κk possible
categories. This model assumes existence of a latent (unobservable) variable
Z with values in {1, . . . ,m} that is just an alternative coding of our binary
variables Zij ’s. It is also assumed that conditionally on knowing the exact
class {Z = j}, the 3 observed variables are mutually independent. This model
is thus precisely a version of model (2) for per-components and coordinate fi-
nite measures. Allman et al. (2009) denote this m-class, r = 3-features model
M(m;κ1, κ2, κ3). The full details are in their article, and a survey-like shorter
description for application to model (2) can be found in Chauveau et al. (2014).
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We only summarize briefly this technique here, focusing on results concerning
our model (3).

The representation of the r = 3 conditionally independent finite measures
is done by defining matrices Ak of size m×κk, k = 1, 2, 3, where each Ak’s row j

describes the probability distribution of (Xk|Z = j). Defining λj :
def
= P (Z = j),

and Ã1 = diag(λ)A1, the probability distribution of the latent class model (the
finite mixture) is associated to the κ1 ×κ2 ×κ3 tensor [Ã1, A2, A3], that is the
three-dimensional array whose element with coordinates (u1, u2, u3) is a sum of
products of elements of these three matrices, with column numbers u1, u2, u3
respectively, added up over the m rows:

[

Ã1, A2, A3

]

u1,u2,u3

=

m
∑

j=1

λj

3
∏

k=1

P(Xk = uk|Z = j).

Define the Kruskal rank of a matrix A, rankK(A), as the largest number I of
rows such that every set of I rows of A is independent, and let Ik = rankK(Ak).
Kruskal established that, if I1 + I2 + I3 ≥ 2m + 2, then [A1, A2, A3] uniquely
determines the Ak’s, up to simultaneous permutation and rescaling of rows.
Kruskal’s result is a cornerstone of several subsequent results establishing iden-
tifiability criteria for various latent structure models. Allman et al. (2009) first
reformulate it, proving identifiability of model M(m;κ1, κ2, κ3) (up to label
switching), providing that all entries of λ are positive. Then they extend that
to the r-variate model M(m;κ1, ..., κr) with r ≥ 3, under the condition that
there exists a tripartition of {1, ..., r} into three disjoint nonempty subsets
S1, S2, S3, such that

∑3
l=1 min(m, τl) ≥ 2m+ 2, where τl =

∏

k∈Sl
κk.

Extension of Kruskal’s work to finite mixtures of conditionally independent
univariate nonparametric measures, that is model (2), is based on a judicious
use of cut points to discretize the distributions associated to the fjk’s (Theo-
rem 8). Considering 3 random variables at a time only, each Xk is associated
to Yk = {1{Xk∈I

1
k
}, ...,1{Xk∈I

κk
k

}}, where R is partitionned into κk consecutive

intervals (I lk, 1 ≤ l ≤ κk). Stochastic matrices are built from this construction,
using the fjk’s associated c.d.f.s. It is possible to build these partitions general
enough and well-chosen so that Kruskal’s result applies to these matrices, and
that identifiability for the continuous model can be linked to identifiability
of the discrete one. This requires equivalence between linear independence of
probability distributions and their corresponding c.d.f.s.

Finally, the case of multidimensional blocks of conditionally independent
measures, model (3), is covered using a similar but more cumbersome con-
struction (Theorem 9 in Allman et al., 2009). Discrete random variables Yk’s
are defined based on indicator functions of dl-product intervals, where dl is
the lth block dimension. The equivalence between linear independence of the
probability distributions and corresponding multidimensional c.d.f.’s remains
valid, so that model (3) is identifiable in general.

3 Estimating the parameters

The algorithm we propose is an extension of the original npEM algorithm that
was designed for estimation in the multivariate mixture model (2). The EM
principle is first applied in the E-step, i.e. computation of the posterior proba-
bilities given the current value θ(t) of the whole parameter. The EM machinery
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is also applied straightforwardly for the M-step of the Euclidean part that are
only the weights λ. Then a nonparametric WKDE is applied to update the
component densities per blocks. The main difference is that in this model, we
need multivariate density estimates. This is also where this algorithm becomes
“EM-like”, since kernel density estimation is not a genuine maximization step.

3.1 A multivariate npEM algorithm (mvnpEM)

Given initial values θ(0) = (λ(0),f (0)), the mvnpEM algorithm consists in iter-
ating the following steps:

1. E-step: Calculate the posterior probabilities (conditional on the data
and θ(t)), for each i = 1, . . . , n and j = 1, . . . ,m:

p
(t)
ij := P

θ
(t)(Zij = 1|xi) =

λ
(t)
j f

(t)
j (xi)

∑m
j′=1 λ

(t)
j′ f

(t)
j′ (xi)

, (4)

where f
(t)
j (xi) =

∏B
l=1 f

(t)
jl (xisl).

2. M-step for λ:

λ
(t+1)
j =

1

n

n
∑

i=1

p
(t)
ij , j = 1, . . . ,m (5)

3. Nonparametric kernel density estimation step: For any u in R
dl ,

define for each component j ∈ {1, . . . ,m} and block l ∈ {1, . . . , B},

f
(t+1)
jl (u) =

1

nλ
(t+1)
j

n
∑

i=1

p
(t)
ij KHjl

(u− xisl), (6)

where KHjl
is a multivariate kernel density function, typically Gaussian,

and Hjl is a symmetric positive definite dl × dl matrix known as the
bandwidth matrix. This matrix may depend on the lth block and jth
component, and even on the tth iteration, as it will be precised in the
next Section.

3.2 Bandwidth selection in multivariate KDE

The central decision in the nonparametric density estimation step of both the
npEM and mvnpEM algorithm is the selection of an appropriate value for the
(scalar or matrix) bandwidth or smoothing parameter. Firstly, as in Benaglia
et al. (2009a) it is possible to simply use a single fixed bandwidth for all
components per coordinate within each block, selected by default according
to a rule of thumb from Silverman (1986). Secondly, we investigate a often
more appropriate strategy defining iterative and per component and coordinate
bandwidths by adapting Silverman’s rule of thumb as in Benaglia et al. (2011).

Multivariate Kernel Density Estimation (KDE) has been used since a long
time in multivariate data analysis (see, e.g., Scott, 1992). Forgetting for now
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about blocks and components, and considering a single sample (x1, . . . ,xn) iid
from a pdf f over R

d, the general form of a multivariate KDE is

f̂H(u) =
1

n

n
∑

i=1

KH(u− xi),

where, for u = (u1, u2, . . . , ud)
t ∈ R

d,

KH(u) = |H|−1/2K(H−1/2.u),

K is a multivariate kernel function, H is a symmetric positive definite d × d
“bandwidth matrix”, and H−1/2.u is the usual matrix product.

With a full bandwidth matrix, the corresponding kernel smoothing is equiv-
alent to pre-rotating the data by an optimal amount and then using a diagonal
bandwidth matrix. The bandwidth matrix can be restricted to a class of pos-
itive definite diagonal matrices, and then the corresponding kernel function is
often a product kernel (e.g. Gaussian). In this case, H = diag(h21, h

2
2, . . . , h

2
d)

where hk denotes the kth coordinate bandwidth. Then |H|1/2 = h1 · · ·hd so
that (denoting informally by K both the multivariate and univariate kernels)

KH(u) =
1

h1 · · ·hd
K

(

u1
h1

, . . . ,
ud
hd

)

=

d
∏

k=1

1

hk
K

(

uk
hk

)

.

In the simplest case H = diag(h2, . . . , h2) we have

KH(u) =
1

hd
K

(

1

h
u

)

.

In our mixture model with multivariate blocks, we propose to consider two
cases for the dl × dl diagonal bandwidth matrix associated to the lth block.

Case (i) Same bandwidth per block for all components. The band-
width matrix for block l is diagonal with scalar bandwidths for each coordinates
in the block: Hl = diagonal(h2

sl
),where hsl = (hk)k∈sl . The multivariate kernel

for block l becomes

KHl
(u) =

1
∏

k∈sl
hk

K(H
−1/2
l .u), u ∈ R

dl

where hk is fixed and selected by default according to a rule of thumb from
Silverman (1986), page 48:

hk = 0.9min{SDk,
IQRk

1.34
}(n)−1/5, (7)

and SDk and IQRk are respectively the standard deviation and interquartile
range of the n univariate observations from the kth coordinate.

Case (ii) Adaptive bandwidth per block and component. In this case
the bandwidth matrix for block l is diagonal with scalar bandwidths for each
coordinates in the block, but it depends also on component j and current
algorithm iteration t:

H
(t)
jl = diagonal((h

(t)
jsl

)2), where h
(t)
jsl

= (h
(t)
jk )k∈sl .
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The multivariate Kernel for block l, component j and iteration t is

K
H

(t)
jl

(u) =
1

∏

k∈sl
h
(t)
jk

K
(

(H
(t)
jl )

−1/2.u
)

, u ∈ R
dl .

The values of the per-block and component bandwidths are computed following
the adaptive bandwidth strategy from Benaglia et al. (2011), except that in
the present definition of our model there are no i.i.d. coordinates for which the
n data can be pooled; as said previously, blocks in our model has a different
meaning than in Benaglia et al. (2009a). Each scalar bandwidth is hence
determined from the corresponding n scalar observations of coordinate k, using
a Silverman’s like rule weighted by the posterior probabilities at each iterations
of the mvnpEM algorithm:

h
(t+1)
jk = 0.9min{σ(t+1)

jk ,
IQR

(t+1)
jk

1.34
}(nλ(t+1)

j )−1/5 (8)

where nλ
(t+1)
j estimates the sample size in the jth component, and

µ
(t+1)
jk =

∑n
i=1 p

(t)
ij xik

∑n
i=1 p

(t)
ij

=

∑n
i=1 p

(t)
ij xik

nλ
(t+1)
j

σ
(t+1)
jk =

[

1

nλ
(t+1)
j

n
∑

i=1

p
(t)
ij (xik − µ

(t+1)
jk )2

]1/2

are the weighted empirical means and variances.

To define the iterative interquartile range IQR
(t+1)
jk appearing in (8), we in-

troduce a weighted quantile estimate as in Benaglia et al. (2011). Let a1, . . . , aν
be real numbers and w1, . . . , wν be associated (nonnegative) weights, with
W = w1 + · · · + wν . Denote τ(·) the permutation sorting the ai’s in non-
decreasing order, aτ(1) ≤ · · · ≤ aτ(ν). For α ∈ (0, 1), define the weighted α
quantile estimate to be ατ(iα), where

iα = min{s :
s

∑

i=1

wτ(i) ≥ αW}

is the smallest integer that gives at least a proportion α of the total sum of

weights W . We compute IQR
(t+1)
jk as the difference between the estimated 0.75

and 0.25 quantiles of the ν = n observations from the kth coordinate, using

weights wi = p
(t+1)
ij for the jth component. Note that functions for computing

these quantiles are provided in the mixtools package (Benaglia et al., 2009b).

4 Implementation and simulated examples

The mvnpEM algorithm defined in Section 3.1 has been implemented in the
development version of the mixtools package (Benaglia et al., 2009b) for the
R statistical software (R Core Team, 2013), and will be made publicly avail-
able in a future version of it. In particular, the step requiring nonparametric
multivariate WKDE’s has been coded in C to speed up the CPU time.
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We propose in this section some examples illustrating the performances of
our algorithm, on two synthetic multivariate models. We first introduce a sim-
ple model (model A) with two univariate blocks and one bivariate block. This
model is interesting since it is as close as possible to model (2) with condition-
ally independent marginals. Hence, it allows comparison with the original npEM
algorithm, and Hall et al. (2005) results based on their estimation approach for
the two univariate blocks. It also allows us to compare the estimation quality
between these univariate blocks and the bivariate one. Then we introduce a
second model, model B, with three bivariate blocks using the full potential of
model (3).

Model A: We consider a r = 4 variables, m = 2 components Gaussian
mixture which have 1 multivariate block, i.e. B = 3 blocks of coordinates with
s1 = {1}, s2 = {2}, s3 = {3, 4}. Densities fjl are univariate normals N (µjl, 1)
for the univariate blocks, and N2(µj3,Σ) for bivariate block l = 3, where the
means are given in Table 1, and the common covariance matrix is

Σ =

(

1 1/2
1/2 1

)

.

Model A Block 1 Block 2 Block 3

Coordinate(s) 1 2 {3, 4}
Component 1 N (0, 1) N (0, 1) N2

([

0
0

]

,Σ

)

Component 2 N (3, 1) N (4, 1) N2

([

3
3

]

,Σ

)

Table 1: Model A

The proportion λ1 of the first component will vary between 0.1 and 0.4 in
the experiment concerning this model. Note that model A is intentionally very
similar to the Gaussian trivariate example used first by Hall et al. (2005) to
illustrate the performance of their estimation technique based on inverting the
mixture, and then used for comparison with the npEM estimates in Benaglia
et al. (2009a). This model was considering r = 3 conditionally independent
univariate Gaussian, all N (0, 1) for component 1, and N (3, 1), N (4, 1) and
N (5, 1) for component 2. Model A presents however not so well-separated
distributions across components than Hall et al. (2005) model.

Model B: This is a higher dimensional model with r = 6 variables and
m = 2 components, where λ1 =30 % for the proportion of the first component.
There are 3 blocks of bivariate Gaussian densities with correlation structure
N2(µjl,Σjl), where component means are given in Table 2. This model involves
two covariance matrices,

Σ =

(

1 1/4
1/4 1

)

, and Σ23 =

(

1 1/2
1/2 4

)

.

All three blocks of the first component and the first two blocks of the second
component share the same covariance Σ1l = Σ21 = Σ22 = Σ, whereas Σ23
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is used only for the second component, third block. Figure 2 displays the
marginal densities for this model, together with a result form a single run of
the mvnpEM algorithm.

Model B Block 1 Block 2 Block 3

Coordinates {1, 2} {3, 4} {5, 6}
Component 1 N2

([

0
0

]

,Σ

)

N2

([

0
0

]

,Σ

)

N2

([

0
0

]

,Σ

)

Component 2 N2

([

1
1

]

,Σ

)

N2

([

8
8

]

,Σ

)

N2

([

8
8

]

,Σ23

)

Table 2: Model B

Initialization of the mvnpEM algorithm. To initialize the algorithm,

the first E-step requires initial values for the f
(0)
j ’s which themselves require

an initial n×m matrix of posteriors (p
(0)
ij ). To obtain this matrix, it is possible

to use a k-means clustering algorithm to assign each observation to one initial
components. To get a first clustering of the data, we used in our experiments
two completely opposite strategies, depending on wether or not we provide
k-means with initial clusters centers. Our first setting is “ true initialization”
i.e. using the true means as the centers for the k-means preliminary binning
of the data. The second setting is a data-driven automatic initialization, just
specifying the number of clusters (m), so that m random data points are
chosen as the initial centers within the kmeans procedure (denoted random
initialization hereafter).

Handling the label-switching problem Not surprisingly, the data-driven
initialization without specifying centers to the k-means procedure generates
more label-switching than the mvnpEM true strategy. As explained in Section 1,
label-switching refers to the fact that arbitrary re-orderings of the component
indices (1, . . . ,m) correspond to the same mixture model. In a single real data
study, label switching is not important since component index does not change
interpretation. But these re-orderings are possible when numerous instances
of the same mixture problem are solved. Hence label-switching becomes prob-
lematic in Monte-Carlo simulation studies and bootstrap estimation involving
mixture models. For detailed explanation, see discussion in McLachlan and
Peel (2000) (section 4.9), and for an illustrative stochastic EM example see
Celeux et al. (1996).

In their study, Hall et al. (2005) dealt with label-switching in the same
context by enforcing the constraint λ̂1 < λ̂2. Here, we choose to detect and
“switch-back” the estimates (the final matrix of posteriors here, from which the
other estimates are computed) to be in accordance with the initial representa-
tion. Since in all our experiments we set λ1 < λ2, we decide that a switching
occured after a replication if λ̂1 > λ̂2, in which case we switch the parameters
from 1st component to 2nd component and inversely.

Experiment on model A: For model A, we ran S = 300 replications of
n = 500 observations each, with proportions λ1 ∈ {0.1, 0.2, 0.3, 0.4}. We
computed the errors in terms of the square root of the Mean Integrated Squared
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Error (MISE) for the densities as in Hall et al. (2005):

MISEjl =
1

S

S
∑

s=1

∫

(f̂
(s)
jl (u)− fjl(u))

2du,

where the integral over R
dl is computed numerically and f̂

(s)
jl is the density

estimate at replication s, computed from (6) but using the final values of the

p
(t)
ij ’s, i.e. the posterior probabilities after convergence of the algorithm that

we denote p̂ij ’s.

A difference with Hall et al. (2005) results is that in their work as well as
in the comparisons in Benaglia et al. (2009a), the Integrated Squared Errors
ISEjl =

∫

(f̂jl − fjl)
2 were evaluated using numerical integrations of univari-

ate densities. Here, it appears that estimating f̂
(s)
jl for strongly correlated

blocks using a kernel density estimate (KDE) with diagonal bandwidth ma-
trix is more difficult, and this difficulty may results in overestimated MISE
values, not necessarily implying a poor fitting of the mixture by the algo-
rithm. To illustrate that in a simple case, we ran S = 300 replications of
n = 300 observations of a single bivariate sample (i.e. no mixture, no poste-
riors, usage of standard unweighted KDE) from a centered bivariate Gaussian
density f with unit variances and varying correlation ρ. We then computed
MISEf = 1

S

∑S
s=1

∫

(f̂ (s)− f)2 using a bandwidth matrix following Silverman
(1986) as in (7). Results are in Table 3:

ρ 0.25 0.5 0.8 0.95 0.99

MISEf 0.00339 0.00349 0.00601 0.03547 0.25591

Table 3: The effect of correlation ρ on MISE of the estimation of a centered
bivariate Gaussian density f with unit variances.

This shows that estimation of the MISE deteriorates as correlation in-
creases. Using a non-diagonal bandwidth matrix is thus an interesting per-
spective for future work, to better recover multivariate and strongly correlated
component and block densities. In our present setup and experiment, in order
to get results not too biased by this KDE problem i.e. to obtain comparable
MISEjl’s between univariate and multivariate blocks, we selected variances
matrices Σj ’s with not too strong correlations or covariances (up to 50%).
Also, to allow comparison with the original npEM and Hall et al. (2005) results
for the univariate coordinates, we kept individual densities as in their examples
for the first and the second block (see structure of Model A, Table 1).

We also computed the mean squared error (MSE) for the m−1 proportions
that are the only scalar parameters in these models. In this case for λ1, the
proportion of component 1, we have:

MSEλ1 =
1

S

S
∑

s=1

(λ̂
(s)
1 − λ1)

2,

where, at replication s, λ̂
(s)
1 is computed using (5) with the final values of the

posterior probabilities, p̂ij ’s. Note that we computed and display as well MSE’s
for other scalar measures of precision (means, variances,. . . ) but these are not
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genuine parameters of the model. At each replication, these scalar measures
are weighted versions of the empirical estimates; for instance, the mean for
component j and coordinate k is given by

µ̂jk =

∑n
i=1 p̂ij xik
∑n

i=1 p̂ij
=

∑n
i=1 p̂ij xik

nλ̂j

.

These statistics are provided in Fig. 1 and Fig. 3 as illustrative indicators of
the algorithm efficiency.
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Figure 1: Square roots of MISE for the densities and square roots of MSE for
the scalar parameter λ1, and other scalar measures that are not parameters
in the model (means and covariances), as a function of the proportion of the
first component λ1, for Model A, n = 500 and S = 300 replications, random
initialization and adaptive bandwidth.

Results for model A ran with the adaptive bandwidth strategy are given
in Fig. 1. We obtained similar results with the same bandwith setting; these
results are omitted here for brevity. For this model with similar ranges across
components and blocks, the bandwidth strategy does not make a noticeable
difference. These results were obtained using the random initialization and
checking for label switching. We also obtained similar results with true initial-
ization but omit these results here as well since random initialization is what
users do in practice.

The stable behavior of the MSE’s for λ1 and for the other scalar measures
(means, covariances) estimates show that the algorithm behaves well. In par-
ticular, density and scalar estimates associated to component 1 (black curves)
decrease when λ1 increases, as expected since the proportion of data actually
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coming from this component increases with λ1. Simultaneously, the estimates
associated with component 2 increase (red curves). Moreover, the results for
the

√
MISEfjl ’s are close to the results we can see on the plots on page 517,

figure 2 of Benaglia et al. (2009a) and the plots on page 675, figure 2 of Hall
et al. (2005).

Experiment on model B: For model B, we choose three bivariate blocks,
but with the same kind of constraints we detailed before on the correlations
(see Table 3). Our purpose was also to build a model illustrating the perfor-
mance of the adaptive bandwidth, which requires typically different ranges of
observations per component/coordinates. This model has two “well-separated”
blocks, one with different variance matrices, and one severely overlapping block
(see Table 2).

Before providing a complete Monte-Carlo experiment as for model A, we
start here by presenting in Fig. 2 a result of the algorithm’s behavior on a
single sample, illustrating the parameters and typical density estimates we can
obtain in this case.
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Figure 2: Example of marginal density estimates for Model B, as given by
a single run of the mvnpEM algorithm for a sample of size n = 500, adaptive
bandwidth strategy and random initialization. Column l corresponds to the
two marginals of the lth bivariate block, l = 1, 2, 3. The true (normal) marginal
densities are depicted in dashed lines.
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We obtained an estimates of the proportion of the first component λ̂1 =
0.310 closed to the true value of λ = 0.3. Estimates of the covariances of the
model are also displayed in Table 4. Remind here that only the true covariance
for block 3, component 2 equals 0.5, while the others are equal to 0.25.

Block 1 Block 2 Block 3

Component 1 0.2491 0.2356 0.3291

Component 2 0.2519 0.2502 0.5068

Table 4: The estimates of the covariances for all blocks and components.

We then ran S = 300 replications of samples of sizes n = 400, 600, 800, 1000.
As for model A, we computed the MISE of the densities and the mean squared
error (MSE) of the scalar parameter (λ1) and the other scalar measures of
precision for means and (co-)variances.
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Figure 3: Square roots of MISE’s for the densities and square roots of MSE’s
for the parameters as a function of the sample size n, for the two bandwidth
settings for Model B, S = 300 replications, random initialization, and two
methods for bandwidths settings: adaptive (left) and same (right).

Fig. 3 summarized the results for the two bandwidths tuning strategies
presented in Section 3.2. Remember that in model B λ1 is kept fixed to 0.3,
and the horizontal axis shows the effect of increasing the sample size n. We can
see that the adaptive bandwidth strategy is definitely better for the estimation
of the component densities, than the fixed bandwidth strategy, especially for
the well-separated blocks (l = 2, 3). In addition, all the MSE’s and MISE’s
decrease when the sample size n increases, as expected.

5 An example on actual data

We consider in this section a real dataset from an experiment involving n = 569
instances of Wisconsin Diagnostic Breast Cancer (WDBC). This database is
available through the UW CS ftp server1. The details of the attributes found

1ftp.cs.wisc.edu, see math-prog/cpo-dataset/machine-learn/WDBC/
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in WDBC dataset are: ID number, Diagnosis (M = malignant, B = benign)
and ten real-valued features computed for each cell nucleus: Radius, Texture,
Perimeter, Area, Smoothness, Compactness, Concavity, Concave points, Sym-
metry and Fractal dimension. These features are computed from a digitized
image of a breast mass. The mean, standard error, and “worst” (mean of the
three largest values) of these features are computed for each image, resulting
in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field
23 is Worst Radius. The total number of attributes is 32 (ID, diagnosis, 30
real-valued input features).

This actual dataset is sometimes used as a benchmark for comparing un-
supervised clustering methods. As often, the principle of such a study consists
in estimating the sub-population to which belongs each individual, and after
that to compare these estimates with the true classes, i.e. the Diagnosis vari-
able that is available here. Our motivation in using this dataset is not to find
a scientific definitive answer or the best clustering algorithm, but rather to
illustrate the potential usefulness of our model and show that our estimation
algorithm is usable even for models involving blocks of moderate dimensions.

A mixture model with multivariate, conditionally independent blocks needs
to be defined prior to apply the mvnpEM algorithm. It looks reasonable at first
glance to assume that the ten features lead to conditionally independent re-
sponses so that the 30 coordinates corresponding to these features (from 3rd

coordinate to 32th coordinate) could be organized into B = 10 blocks of di-
mension three each, i.e. {3, ..., 32} =

⋃10
l=1 sl, defined by s1 = {3, 13, 23}, s2 =

{4, 14, 24}, ..., s10 = {12, 22, 32}.
However, from the description of the data we can see that the feature

compactness is defined from two other features: the perimeter and the area
(compactness = perimeter2/area− 1.0). Therefore, to obtain a more reason-
able model, we decided to group these three features in one block. Hence, we
applied the mvnpEM algorithm to model (3) with B = 8 blocks (1 block of size
9 and 7 blocks of size 3), and m = 2 components (corresponding to the two
possible Diagnosis: M = malignant and B = benign). Note that running the
algorithm on that fairly high dimensional model and n = 569 individuals only
took about 1 minute on a common laptop computer.

Maximum A Posteriori strategy and EM classifier In addition to the
parameter estimates θ̂, any EM-like algorithm can provide a classification of
the individuals using a Maximum A Posteriori (MAP) strategy. This (unsu-
pervised) clustering, which is the object of interest here, consists in setting

Ẑij0 = 1, where j0 = argmax
j=1,...,m

{p̂ij} , and Ẑij = 0 for j 6= j0,

where the p̂ij ’s are as previously noted the posterior probabilities after con-
vergence of the algorithm. The MAP classifier is then compared with the true
classes Z corresponding to the Diagnosis variable ∈ {B,M}. This true known
classification gives 62.741% instances in the Benign group (B) and 37.259%
instances in the Malignant group (M).
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% classification B (Benign) M (Malignant) Sum

Group (1) 62.214 9.842 72.056

Group (2) 0.527 27.417 27.944

Sum 62.741 37.259 100

Table 5: The cross-classification of the WDBC data using mvnpEM and the
MAP strategy compared with the true classes.

As displayed in Table 5, we see that the MAP from the mvnpEM algorithm
correctly classify 62.214% of the individuals of the whole dataset into compo-
nent B and 27.417% into component M. 10.369% instances were incorrectly
classified between the two components. We also indicate the true Z marginal
(in the last row) and the MAP marginal distribution (the last column).

Let p denote the % of the correct classification. If there is no “label-
switching”, we have:

p =
1

n

n
∑

i=1

m
∑

j=1

I{Zij=1 and Ẑij=1}

where Ẑ is the MAP estimate from the posterior probabilities after conver-
gence. We computed the correct classification of the EM classifier p and the
distribution of MAP given by each subpopulation; then we compared them
with a k-means classification as in Table 6:

% correctly-classified B (Benign) M (Malignant) p(%)

mvnpEM MAP 99.16 73.585 89.631

k-means 99.72 61.321 85.413

Table 6: The % of correct classification of the WDBC data using mvnpEM and
the MAP strategy and using k-means clustering.

The solution given by the mvnpEM using the MAP classifier is better than
the solution provided by the k-means strategy: 89.631% of the individuals
classified correctly into the two components, in comparison with 85.413%. The
percentage of instances correctly classified within component B is similar for
both strategies, whereas our mixture model approach outperforms the common
k-means approach for recovering the individuals from component M.

6 Discussion

We have proposed in this paper a nonparametric mixture model with condition-
ally independent multivariate blocks. The crucial novelty of our model from
a statistical modeling perspective is that it allows the dependence to be due
not only to the mixture but also to the internal (covariance) structure of the
multivariate distributions within each block. The conditional independence
assumption has been introduced in several works in the literature. Allman
et al. (2009) proved the strong condition for identifiability of the parameters
regardless the number of components m. We used a more general result from
Allman et al. (2009) proving that our model is also identifiable in their sense.
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We then proposed a multivariate, mvnpEM EM-like algorithm for this model.
We have also introduced and described two strategies to select the bandwidth
involved in kernel density estimation step of this algorithm. The performance
of this model have been evaluated through numerical simulations on two syn-
thetic multivariate models: one allowing for comparison with the original npEM
algorithm and Hall et al. (2005) results based on an inversion method (both
designed for univariate blocks only); the other one illustrating some better
estimates that can result from the adaptive bandwidth strategy we have in-
troduced, compared to a more direct fixed bandwidth approach. These new
model and algorithm have also been experimented on an actual dataset which
corresponds to a mixture of two sub-populations related to the diagnostic of
breast cancer. We obtained that an estimation of the component memberships
based on the mvnpEM algorithm and MAP strategy behaves well, in comparison
with a (model-free) k-means strategy. The purpose of this example was also
to illustrate the applicability of our algorithm in real-size datasets and actual
multi-dimensional models.

Both strategies about bandwidth selection for the kernel density estima-
tion step of our algorithm use diagonal bandwidth matrices whose elements
are computed from a fixed or adaptively weighted Silverman’s rule. This rule
is known to be somehow motivated by estimation of Gaussian-shaped (tails)
distributions, which is not necessarily the case here. Other strategies for the
smoothing parameter, i.e. non diagonal bandwidth matrices, or cross-validation
strategies are interesting perspectives for future investigations (see, e.g., Hyn-
dman et al., 2004, for recent research on multivariate bandwidth selection).

Our algorithm, like the original npEM algorithm for univariate blocks from
Benaglia et al. (2009a), provides numerical evidence of consistency but lacks
any theoretical justification. In a recent work, Levine et al. (2012) has intro-
duced a smoothed loglikelihood objective function and developped an iterative
algorithm to correct this. Both algorithms also produced similar results in
some test cases. This smoothed EM idea is the subject of an ongoing work
that is beyond the scope of the present paper.

Note finally that the mvnpEM algorithm introduced in this work will be
publicly available in a future update version of the mixtools package (Benaglia
et al., 2009b) for the R statistical software R Core Team (2013).
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